Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кобальт III определение полярографическое

    Наиболее часто применяются комп-лексоны, преимущественно комплексен III. Комплексон III образует со многими ионами металлов малодиссоциирующие комплексные соединения. Титруют по предельному току определяемого иона. Определяются висмут, железо, никель, свинец,-цинк, медь, марганец, кобальт, ртуть, кадмий, индий. Устойчивость комплексов этих металлов с комплексоном III различна, поэтому титруют при определенной кислотности среды. Амперометрическое титрование возможно, для определения полярографически неактивных веществ, когда ни титруемый ион, ни реагент не дают диффузионный ток. Для этого в анализируемый раствор вводят специальный ион-индикатор, способный к электродной реакции. Индикатор реагирует с реагентом после того, как прореагируют определяемые ионы. Титрование в этом случае проводят при потенциале, соответствующем предельному току индикатора. Например, при амперометрическом титровании алюминия раствором фторида в качестве индикатора применяют раствор соли железа [c.165]


    Тороповой и Елизаровой [4326] использованы полярографические каталитические токи водорода в растворе 8-оксихиноли-ната кобальта для определения бериллия. Метод основан на свойстве 8-оксихинолината кобальта снижать перенапряжение водорода на ртутном капельном электроде, в результате чего возникают каталитические токи водорода. Присутствие бериллия вызывает понижение высоты каталитической волны 8-оксихинолината кобальта, причем это уменьшение пропорционально концентрации бериллия. [c.88]

    Соединения с аммиаком и органическими аминами. Комплексы этого типа используются при фотометрическом и полярографическом определениях кобальта, а также при маскировке. Константы нестойкости аммиакатов и аминатов кобальта приведены в табл. 10. [c.24]

    Нередко прихо ится определять сравнительно большие количества кобальта в сталях. Поэтому применяются наряду с фотометрическими и полярографическими методами определения также титриметрические и гравиметрические методы. [c.186]

    Можно определять кобальт колориметрическим методом с помощью нитрозо-К-соли (1-нитрозо-2-нафтол-3,6-дисульфонат натрия), которая окисляет двухвалентный кобальт до трехвалентного и, образуя комплекс, окрашивает раствор в красный цвет [125, 126]. Кобальт определяют полярографически на хлоридно-аммиачном фоне. Трехвалентный кобальт дает две волны первая соответствует восстановлению Со Со +, а вторая — Со -> Со°. Определение ведут по второй волне с —1,3 в. Двухвалентный кобальт дает [c.154]

    Никель может быть успешно определен полярографическим методом с применением в качестве фона пиридина при потенциале полуволны — 0,8 в. Кобальт на этом фоне дает четкую волну за никелем, которая не мешает его определению. [c.216]

    Что касается загрязнений, то необходимо помнить, что небольшие количества инертного материала анода, например платины, часто растворяются в электролите и затем осаждаются на катоде. Это иногда оказывает серьезное влияние на последующие операции определения. Так, платина, осажденная таким образом на ртутном катоде, мешает спектрофотометрическому определению кобальта и полярографическому определению цинка [160]. [c.106]

    Высокозарядные ионы металлов способны восстанавливаться ступенчато и давать несколько полярографических волн. Это характерно, например, для анионов хромата, молибдата, вольфрамата, ванадата, катионов железа (П1), кобальта и др. На рис. 25.8 показано восстановление хромат-ионов в растворе гидроксида аммония. Первая волна соответствует восстановлению хромат-ионов до хрома (П1), вторая — переходу хрома(И1) в хром (И). Высшая степень окисления образует волну при более положительном потенциале, чем средняя (или низшая) степень окисления. Это явление иногда используют для устранения влияния посторонних ионов. Так, никель (И восстанавливается легче кобальта (И) и мешает определению последнего. В этом случае можно сначала окислить кобальт до трехвалентного, например пероксидом водорода в аммиачном растворе. Полярогра- [c.502]


    ПОЛЯРОГРАФИЧЕСКИЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ КОБАЛЬТА [c.164]

    Никель и кобальт представляют собой элементы с близкими химическими свойствами и постоянно сопутствуют друг другу в рудах и минералах. Эти элементы часто приходится определять в рудах, сталях, сплавах, шлаках и других природных и технических материалах. Главная трудность полярографического определения обоих элементов при совместном присутствии заключается в том, что восстановление их ионов происходит при очень близких [c.250]

    Полярографическое определение кобальта после отделения железа карбонатом бария [1013, 1358, 1406]. Этот метод применим при приблизительно равных количествах кобальта и никеля. Сталь растворяют в соляной кислоте, окисляют двухвалентное железо азотной кислотой, раствор выпаривают досуха и растворяют остаток в 1 мл 6 N раствора соляной кислоты. К полученному раствору прибавляют раствор хлорида аммония и взвесь карбоната бария, железо и хром осаждаются в виде гидроокисей. Далее прибавляют раствор желатины и полярографируют часть фильтрата или отстоявшегося [c.191]

    Полярографическое определение кобальта в никеле [957]. Навеску никеля сплавляют с перекисью натрия, и плав растворяют в воде. Аликвотную часть фильтрата подкисляют соляной кислотой, прибавляют 5 г хлорида аммония, 40 мл концентрированного раствора гидроокиси аммония, 3 г сульфита натрия, [c.202]

    Определение кобальта в металлической меди. Описана следующая методика полярографического определения кобальта (также и марганца) в металлической меди [686]. 10—30 г рафинированной или черновой меди растворяют в азотной кислоте и осаждают ионы свинца серной кислотой. Фильтрат подвергают электролизу с платиновыми электродами при катодном потенциале —0,51 в по отношению к ртутно-сернокислому стандартному электроду в 1 Л растворе серной кислоты. Раствор упаривают досуха, прибавляют к остатку фильтр с сульфатом свинца, выжигают бумагу в муфеле при возможно более низкой температуре, прокаливают 10 мин. при 400°С, охлаждают, приливают 10 мл 0,1 М раствора фторида натрия, содержащего [c.203]

    Определение кобальта в титане и титановых сплавах. Сводка методик определения примеси кобальта и примесей других элементов (всего 28 элементов) приведена в работе [1420]. Для полярографического определения кобальта (также меди, никеля, марганца и хрома) в титановых сплавах [1071] навеску материала разлагают смесью растворов фтористоводородной и хлорной кислот и удаляют основную массу титана гидролитически, выпаривая раствор почти досуха. Оставшийся в растворе титан удаляют осаждением пиридином, а хромат — осаждением раствором хлорида бария. Далее полярографируют ко- [c.206]

    Определение кобальта чаще всего заканчивают при помощи нитрозо-К-соли [184, 403, 491—493, 605, 652, 797, 912, 1015, 1037, 1128, 1185, 1242, 1378, 1389 или измерением оптической плотности неводных растворов комплексов кобальта с нитрозонафтолами [428—430, 575, 1138, 1283]. Полярографические методы определения кобальта применяются реже [214, 1369]. Используются спектральные методы определения кобальта [530, 541, 567, 637, 1365, 1407, 1464]. [c.210]

    Для концентрирования кобальта из вытяжек почв и растительных материалов применяют осаждение 8-оксихинолином при pH 5,1—5,2 [1294], используя как коллектор 8-оксихинолинат железа или алюминия. Известны методы полярографического определения кобальта в почвах и растительных материалах после обогащения дитизоном [1369] или посредством рубеановодородной кислоты [214]. [c.212]

    Описан метод определения кобальта нитрозо-К-солью после концентрирования кобальта (и меди) осаждением рубеановодородной кислотой (184], полярографического определения кобальта после обогащения экстракцией дитизонатов [1369] и др. Методы с использованием нитрозо-К-соли описаны и в других работах (529, 911, 912, 1000, 1165, 1359]. [c.214]

    Никель и кобальт обладают очень близкими химическими свойствами, восстанавливаясь почти при одном и том же напряжении. Для определения никеля в присутствии кобальта, например в продуктах кобальтового производства, удобно полярографировать оба элемента в растворе гидроокиси аммония и хлористого аммония или пиридина и его хлористоводородной соли. Кобальт связывается этими веществами сильнее, чем никель, и на полярограмме получается отдельная волна никеля. Влияние меди и никеля при определении цинка легко устранить прибавлением раствора цианистого калия. Цианидный комплекс меди настолько устойчив, что не дает полярографической волны. Раствор трилона можно применить для раздельного определения железа и меди. [c.219]


    Работа 2. Полярографическое определение никеля и кобальта при совместном присутствии [c.250]

    Полярографический метод. Этот метод определения кобальта основан на восстановлении Со " , связанного в комплексные ионы до ме-314 [c.314]

    Было предложено быстрое полярографическое определение а-целлюлозы, основанное на ее способности подавлять максимум кобальта [227]. [c.379]

    П е н идиллии может быть определен полярографически косвенным путем. Сам он не образует каталитическую волну, но при действии щелочи, а затем кислоты получается диметилцистеин, который образует каталитическую волну в аммиачном растворе соли кобальта . [c.498]

    Для определения одного только калия его предварительно выделяют в виде калий-бортетрафенила, который растворяют в Ы,К -диметилформамиде и полярографируют при потенциале — 1,55 в на фоне иодида тетрабутиламмония. Таким способом определяют 0,08- 3 мг калия с удовлетворительной точностью [1206]. Осадок калий-бортетрафенила можно прокалить, и образовавшийся метаборат калия определить полярографически. Рекомендуется осадить калий в виде нитрокобальтиата, осадок растворить, и в растворе определить кобальт полярографически. Если считать, что осадок имеет состав Ki,84Nai.i6[ o(N02)6], то 1 мг кобальта соответствует 1,22 мг калия [2197, 2210—2282]. [c.104]

    Mn(II) протекает обратимо [1080, 1081], точно так же как и на фоне раствора формамида в iM растворе МаСЮд [1089]. На фоне более концентрированных растворов формиата натрия в присутствии Na2S04 и КВг восстановление протекает необратимо. Zn(II) и Ni(Il) не мешают определению. Детально изучено восстановление Mn(II) в цианидной среде [1264, 1509]. В 1,5 N растворе K N Мп(И) дает одну резко выраженную волну с, = — 1,33 б (нас. К.Э.). В 0,5—1 N растворе K N появляется вторая волна с = —1,8 б, которая обусловлена, по-видимому, восстановлением продукта гидролиза [Мп ( N)OH]. Для аналитических целей рекомендуют применять 1,5 N раствор цианида калия. На этом основан метод определения Мн(И) в сталях в присутствии u(II), Сг(Ш), Fe(II), которые не дают полярографических волн в 1,5 растворе цианида калия. Определению мешает кобальт, так как его волна накладывается на волну марганца [299]. [c.76]

    Полярографическое исследование пероксидов циклогексанона, метилциклогексанона и др., применяющихся в качестве инициаторов отверждения полиэфирных смол, проведено Фроловой с сотр. [79, с. 235]. Ими была показана возможность определения некоторых из пероксидов кетонов в полиэфирной смоле во время ее отверждения в присутствии нафтената кобальта. Фон 0,03 М Li l в смеси бензола с метанолом (3 7). [c.166]

    Ион кобальта (II) характеризуется способностью образовывать растворимые комплексные соединения в избытке аммиака, экстрагирующиеся органическими растворителями комплексные соединения с роданид-ионом. Селективными реактивами, позволяющими определять кобальт в присутствии других элементов (меди, никеля, железа), являются оксинитрозосоедпнения. В зависимостп от содерл<ания кобальта в анализируемом объекте (оно колеблется от десятых долей до десятков процентов) применяют титриметрические, фотометрические, полярографические и атомно-абсорбционные методы. Сравнительно редко прибегают к гравиметрическим п люминесцентным методам определения содержания кобальта. [c.68]

    Соединения с органическими кислотами и спиртами. Комплексы с органическими кислотами имеют значение для фотометрических, полярографических, гравиметрических, титримет-рических методов определения кобальта, а также для маскировки. [c.25]

    Метод определения кобальта с нитрозо-К-солью по чувствительности превосходит полярографический метод [794, 1444] и сопоставим с нейтронноактивационным методом, но в то же время быстрее последнего. [c.140]

    С практической точки зрения лучше всего полярографиро-вать кобальт в растворе смеси пиридина и хлорида пиридиния при рн 5,4, так как на этом фоне волны никеля и кобальта хорошо разделены (потенциалы полуволн отличаются приблизительно на 0,3 в) и при равных или соизмеримых концентрациях обоих элементов их легко измерить. Железо при указанной величине рн осаждается в виде гидроокиси и не мешает определению также не мешают небольшие количества меди и марганца. Применяя пиридиновый фон, можно полярографировать не только в водных, но и в этанольных растворах, где волны кобальта и никеля хорошо выражены кобальт восстанавливается на 0,22 в раньше никеля. Исследование полярографического поведения кобальта в растворах оксикислот [148, 150] показало, что в растворе тартрата при pH 6,3 волна кобальта хорошо выражена и что этот фон пригоден для совместного определения кобальта и никеля волны обоих элементов хорошо разделены. При увеличении концентрации тартрата натрия волна никеля вообще не появляется, что дает возможность определять кобальт в присутствии больших количеств никеля. [c.165]

    Полярографическое определение кобальта в рудах и концентратах [142] на фоне пиридинового буферного раствора. Навеску анализируемой руды обрабатывают концентрированными соляной и азотной кислотами и удаляют последние выпариванием с раствором хлорной кислоты. К су.хому остатку добавляют воду, 6 мл концентрированной соляной кислоты, 10 мл пиридина и раствор разбавляют водой до 100 мл (pH раствора 6,4). К 10 мл полученного раствора прибавляют 1 мл 1%-ного раствора желатины, разбавляют до 25 мл 0,5 М раствором трика-лиевой соли этилендиаминтетрауксусной кислоты, вводят около [c.182]

    Полярографическое определение кобальта после осаждения железа пиридином [993]. Метод позволяет определять наряду с кобальтом также медь и никель. Сталь растворяют в концентрированной соляной кислоте, окисляют двухвалентное железо азотной кислотой н раствор выпаривают досуха. Остаток обрабатывают соляной кислотой и осаждают железо и хром пиридином с таким расчетом, чтобы pH раствора было около 5—5,5. Прибавляют раствор желатины, отбирают пипеткой аликвотную часть раствора над осадком и полярографируют Волна кобальта появляется при потенциале —1,07 й, ей предше ствуют волны меди при —0,25 в и никеля при —0,78 в. [c.192]

    Кобальт в чистых металлах обычно определяют фотометрически. Описано определение кобальта в виде роданидного [775], антипиринроданидного [1518] комплексов, комплексов кобальта с 1-нитрозо-2-нафтолом [1188, 1321, 1401], ннтрозо-Н-солью [88, 204, 205, 233, 316, 343, 1081, 1082, 1387, 1445, 1499], комплексоном П1 [1200] и монометиловым эфиром о-нитрорезорцина[1417]. Полярографический метод используется реже. Обычно кобальт полярографируют на фоне буферных аммиачных [957] или пиридиновых [1071] растворов. При определении кобальта в меди также полярографируют в растворе фторида натрия [686]. Полярографическое определение примесей других металлов в металлическом кобальте см. [263, 826]. [c.199]

    Определение кобальта в сплавах цветных металлов и в карбидах. а) Полярографическое определение кобальта в воль-фрамо-кобальтовых сплавах [520] сводится к следующему. [c.207]

    Определение кобальта в водах. При определении кобальта в воде главное внимание обращается на метод концентрирования. Кобальт определяют спектральным методом после выделения экстракцией диэтилдитнокарбаминатов и 8-оксихинолинатов тяжелых металлов (1189], а также дитизонатов [234, 1116]. Применяется также полярографическое определение после экстракции дитизонатов [821]. Описаны предварительное отделение кобальта и его концентрирование при анализе минеральных вод пропусканием через колонку с анионитом определение заканчивают спектральным методом [179]. Для определения кобальта в морской воде рекомендуется метод с 1-нитрозо-2-нафто-лом [1472]. [c.216]

    Первая группа косвенных методов определения кальция основана па полярографировании катионов, вытесненных кальцием из их комплексонатов. Предлагают [502] определять кальций по вытеспешюму им из комплексоната катиону кобальта. Ва и Мп не мешают определению, но мешают Mg и Sr. Фосфат устраняет влияние стронция. Магний искажает форму полярографической волны. Для определения кальция можно воспользоваться комп-лексонатом свинца. Выделившиеся ионы свинца при pH 5,7 полярографируют до —0,7 в. Кальций определяется при этом со [c.105]

    Коваленко П. И., Багдасаров К- Н,, Бызова Р. П., Электролитическое отделение висмута от малых количеств свинца и кобальта, кадмия и цинка и полярографическое определение микропримесей, сб. Физико-химические методы анализа и контроля производства . Изд. РГУ, Ростов/Дон, 1961, стр. 33—41. [c.91]

    Разделения с применением ртутного катода при постоянной силе тока, хотя и непригодны для электрогравиметрических определений, однако часто используются как вспомогательное средство при выполнении анализа другими методами. Касто приводит обзор различных методов электролитического удаления примесей металлов из урана. Особенно интересная методика, разработанная Фурманом и Брикером, заключается в количественном осаждении различных металлов на небольшом ртутном катоде. Ртуть удаляют дистилляцией, а остаток анализируют полярографическим или колориметрическим методом. Такая же методика может быть применена для выделения следов примесей из других металлов, например алюминия, магния, щелочных и щелочноземельных металлов, которые, подобно урану, при электролизе в кислом растворе не образуют амальгам. Паркс, Джонсон и Ликкен применяя несколько небольших порций ртути, удаляли из растворов большие количества тяжелых металлов, а именно меди, хрома, железа, кобальта, никеля, кадмия, цинка, ртути, олова и свинца, и сохраняли в нем полностью даже небольшие количества алюминия, магния, щелочных и щелочноземельных металлов для последующего определения этих элементов подходящими методами. [c.350]

    Методика полярографического определения висмута, меди, свинца, кадмия, индия, цинка, никеля, кобальта, марганца на полярографе переменного тока с прямоугольной формой напряжения заключается в следующем. 2—10 г металлической сурьмы растворяют в минимальном количестве царской водки (на 5 г тонкого порошка не более 45 мл) и выпаривают до 5—8 мл. Прибавляют ИМ соляную кислоту из расчета, чтобы сурьма была связана в устойчивый хлорокомплекс типа ЗЬС1в и концентра- [c.196]


Смотреть страницы где упоминается термин Кобальт III определение полярографическое: [c.491]    [c.74]    [c.29]    [c.165]    [c.208]   
Комплексоны в химическом анализе (1960) -- [ c.229 ]




ПОИСК





Смотрите так же термины и статьи:

Кобальт и никель, определение, полярографическое

Кобальт никель, определение полярографическо

Кобальт определение

Полярографические методы анализа Определение висмута, меди и свинца в азотнокислом кобальте Давыдовская

Полярографический метод определения меди, никеля и кобальта

Полярографическое определение кобальта в присутствии никеля

Полярографическое определение никеля и кобальта при совместном присутствии



© 2025 chem21.info Реклама на сайте