Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кобальт никель, определение полярографическо

    Наиболее часто применяются комп-лексоны, преимущественно комплексен III. Комплексон III образует со многими ионами металлов малодиссоциирующие комплексные соединения. Титруют по предельному току определяемого иона. Определяются висмут, железо, никель, свинец,-цинк, медь, марганец, кобальт, ртуть, кадмий, индий. Устойчивость комплексов этих металлов с комплексоном III различна, поэтому титруют при определенной кислотности среды. Амперометрическое титрование возможно, для определения полярографически неактивных веществ, когда ни титруемый ион, ни реагент не дают диффузионный ток. Для этого в анализируемый раствор вводят специальный ион-индикатор, способный к электродной реакции. Индикатор реагирует с реагентом после того, как прореагируют определяемые ионы. Титрование в этом случае проводят при потенциале, соответствующем предельному току индикатора. Например, при амперометрическом титровании алюминия раствором фторида в качестве индикатора применяют раствор соли железа [c.165]


    Каталитические волны при восстановлении на ртутном капельном электроде некоторых органических веществ в присутствии ионов никеля [490—500] или кобальта использованы для полярографического определения малых количеств никеля [317]. [c.134]

    Вследствие образования комплексоната ртути комплексон можно обнаружить полярографически по анодной волне, как было подробно рассмотрено на стр. 73. Высота волны в широком диапазоне значений pH пропорциональна концентрации свободного комплексона. При связывании комплексона каким-либо катионом высота волны уменьшается по мере увеличения концентрации катиона. Это наблюдение использовал Мишель [И] для амперометрического определения некоторых катионов, например марганца, кобальта, никеля, кадмия, цинка и магния. Все определения [c.393]

    Никель может быть успешно определен полярографическим методом с применением в качестве фона пиридина при потенциале полуволны — 0,8 в. Кобальт на этом фоне дает четкую волну за никелем, которая не мешает его определению. [c.216]

    Высокозарядные ионы металлов способны восстанавливаться ступенчато и давать несколько полярографических волн. Это характерно, например, для анионов хромата, молибдата, вольфрамата, ванадата, катионов железа (П1), кобальта и др. На рис. 25.8 показано восстановление хромат-ионов в растворе гидроксида аммония. Первая волна соответствует восстановлению хромат-ионов до хрома (П1), вторая — переходу хрома(И1) в хром (И). Высшая степень окисления образует волну при более положительном потенциале, чем средняя (или низшая) степень окисления. Это явление иногда используют для устранения влияния посторонних ионов. Так, никель (И восстанавливается легче кобальта (И) и мешает определению последнего. В этом случае можно сначала окислить кобальт до трехвалентного, например пероксидом водорода в аммиачном растворе. Полярогра- [c.502]

    Полярографическое определение кобальта после отделения железа карбонатом бария [1013, 1358, 1406]. Этот метод применим при приблизительно равных количествах кобальта и никеля. Сталь растворяют в соляной кислоте, окисляют двухвалентное железо азотной кислотой, раствор выпаривают досуха и растворяют остаток в 1 мл 6 N раствора соляной кислоты. К полученному раствору прибавляют раствор хлорида аммония и взвесь карбоната бария, железо и хром осаждаются в виде гидроокисей. Далее прибавляют раствор желатины и полярографируют часть фильтрата или отстоявшегося [c.191]


    Полярографическое определение кобальта в никеле [957]. Навеску никеля сплавляют с перекисью натрия, и плав растворяют в воде. Аликвотную часть фильтрата подкисляют соляной кислотой, прибавляют 5 г хлорида аммония, 40 мл концентрированного раствора гидроокиси аммония, 3 г сульфита натрия, [c.202]

    Определение кобальта в титане и титановых сплавах. Сводка методик определения примеси кобальта и примесей других элементов (всего 28 элементов) приведена в работе [1420]. Для полярографического определения кобальта (также меди, никеля, марганца и хрома) в титановых сплавах [1071] навеску материала разлагают смесью растворов фтористоводородной и хлорной кислот и удаляют основную массу титана гидролитически, выпаривая раствор почти досуха. Оставшийся в растворе титан удаляют осаждением пиридином, а хромат — осаждением раствором хлорида бария. Далее полярографируют ко- [c.206]

    Никель и кобальт обладают очень близкими химическими свойствами, восстанавливаясь почти при одном и том же напряжении. Для определения никеля в присутствии кобальта, например в продуктах кобальтового производства, удобно полярографировать оба элемента в растворе гидроокиси аммония и хлористого аммония или пиридина и его хлористоводородной соли. Кобальт связывается этими веществами сильнее, чем никель, и на полярограмме получается отдельная волна никеля. Влияние меди и никеля при определении цинка легко устранить прибавлением раствора цианистого калия. Цианидный комплекс меди настолько устойчив, что не дает полярографической волны. Раствор трилона можно применить для раздельного определения железа и меди. [c.219]

    Работа 2. Полярографическое определение никеля и кобальта при совместном присутствии [c.250]

    Никель и кобальт представляют собой элементы с близкими химическими свойствами и постоянно сопутствуют друг другу в рудах и минералах. Эти элементы часто приходится определять в рудах, сталях, сплавах, шлаках и других природных и технических материалах. Главная трудность полярографического определения обоих элементов при совместном присутствии заключается в том, что восстановление их ионов происходит при очень близких [c.250]

    Румынские исследователи посвятили целую серию работ разработке полярографического метода анализа минеральных остатков нефтей на ванадий, медь, кадмий, никель, кобальт, марганец, железо [117—121]. Предел обнаружения, например, для меди и кадмия 1,5-10 и 4,8-10 соответственно. Предложено определение [122] полярографическим методом содержания меди, кадмия и свинца в нефти. Точность метода 8,5%. [c.46]

    Полярографический методы анализа широ ко используют в хи мико-аналитических лабораториях предприятий цветной метал лургии для определения меди, никеля, кобальта, цинка, висмута кадмия, сурьмы, олова и других металлов в рудах, металлах, полупродуктах и отходах производств . В тех же лабораториях эти методы, естественно, используют и для анализа производственных сточных вод. Для анализа сточных вод других производственных процессов их применяют редко .  [c.18]

    Комплексон совершенно не оказывает влияния на высоту, форму и наклон этой волны. В отсутствие комплексона определению урана мешают катионы, восстанавливающиеся вблизи области восстановления уранилового комплекса. В присутствии комплексона марганец, никель, кобальт и цинк определению не мешают, так как их комплексы в этих условиях полярографически не выявляются [117]. [c.151]

    Полярографическое определение кобальта в присутствии никеля [c.156]

    Малюга Д. П. Полярографическое определение меди, кадмия, никеля, цинка и кобальта в породах, почвах, природных водах [c.185]

    Малюга Д. П. Полярографическое определение меди, никеля, кобальта, цинка и кадмия при совместном их присутствии. ЖОХ, [c.185]

    Мешающие влияния. Достаточно положительный потенциал полуволны полярографической волны меди позволяет определять медь в очень малых концентрациях в водах, где в больших концентрациях присутствуют кадмий, никель, кобальт, цинк и другие элементы. Определению мешает кислород, удаление которого предусматривается. Кроме того, мешают большие количества хроматов, кобальта ( II), таллия (iIi), дающие полярографические волны в области восстановления меди (I). [c.399]

    В указанных условиях опыта определению молибдена не мешает присутствие вольфрама, никеля, кобальта, цинка и марганца, которые полярографически не проявляются. Мешают висмут, таллий и в большом избытке свинец, железо и медь. На поляро-граммах 2—4 изображены, во-первых, отдельно волны молибдена, во-вторых, волны молибдена в присутствии вольфрама и свинца. [c.225]

    С практической точки зрения лучше всего полярографиро-вать кобальт в растворе смеси пиридина и хлорида пиридиния при рн 5,4, так как на этом фоне волны никеля и кобальта хорошо разделены (потенциалы полуволн отличаются приблизительно на 0,3 в) и при равных или соизмеримых концентрациях обоих элементов их легко измерить. Железо при указанной величине рн осаждается в виде гидроокиси и не мешает определению также не мешают небольшие количества меди и марганца. Применяя пиридиновый фон, можно полярографировать не только в водных, но и в этанольных растворах, где волны кобальта и никеля хорошо выражены кобальт восстанавливается на 0,22 в раньше никеля. Исследование полярографического поведения кобальта в растворах оксикислот [148, 150] показало, что в растворе тартрата при pH 6,3 волна кобальта хорошо выражена и что этот фон пригоден для совместного определения кобальта и никеля волны обоих элементов хорошо разделены. При увеличении концентрации тартрата натрия волна никеля вообще не появляется, что дает возможность определять кобальт в присутствии больших количеств никеля. [c.165]


    Разделения с применением ртутного катода при постоянной силе тока, хотя и непригодны для электрогравиметрических определений, однако часто используются как вспомогательное средство при выполнении анализа другими методами. Касто приводит обзор различных методов электролитического удаления примесей металлов из урана. Особенно интересная методика, разработанная Фурманом и Брикером, заключается в количественном осаждении различных металлов на небольшом ртутном катоде. Ртуть удаляют дистилляцией, а остаток анализируют полярографическим или колориметрическим методом. Такая же методика может быть применена для выделения следов примесей из других металлов, например алюминия, магния, щелочных и щелочноземельных металлов, которые, подобно урану, при электролизе в кислом растворе не образуют амальгам. Паркс, Джонсон и Ликкен применяя несколько небольших порций ртути, удаляли из растворов большие количества тяжелых металлов, а именно меди, хрома, железа, кобальта, никеля, кадмия, цинка, ртути, олова и свинца, и сохраняли в нем полностью даже небольшие количества алюминия, магния, щелочных и щелочноземельных металлов для последующего определения этих элементов подходящими методами. [c.350]

    Хелатометрическое титрование металлов нитрилотриуксусной кислотой (NTA). II. Титриметрическое определение кобальта(П) и свинца амперометрическое определение никеля переменноточное полярографическое титрование меди. [c.62]

    Определение меди, кадмия, цинка, кобальта, никеля. Водный слой от предыдущего определения (см. п. 3) нейтрализуют щелочью до pH = 9. Добавляют в делительную воронку 3 мл 4М тетраборатного буфера (pH = 9,1), 2 ыл 0,1М ОДФПК и проводят двукратную экстракцию хлороформо.м (по 10 мл). Хлороформный слой отделяют, определяя медь, кадмий, цинк, кобальт и никель полярографически. [c.394]

    Никель, кобальт, медь, цинк, марганец и кадмий образуют с комплексоном П1 в сильноаммиачном растворе очень прочные комплексные соединения, которые полярографически не проявляются. Если к такому раствору прибавить раствор, содержащий ионы кальция, то катионы будут вытеснены из комплексов в порядке, обратном их вхождению в комплекс, и перейдут в аммиачные комплексы. На этом принципе основаны способы определения цинка и кобальта в солях никеля, определение кальция при избытке цинка (по волне цинка судят о содержании кальция). [c.84]

    В. Штерн и С. Полляк - использовали полярографический метод для исследования промежуточных продуктов, образующихся при процессах, протекающих в двигателях внутреннего сгорания. Исследованию кинетики кристаллизации сви1П1,а из пересыщенных растворов и определению растворимости малорастворимых солей посвящена работа Т. А. Крюковой " , определению растворимого сульфата свинца—работа И. В. Тана-наева и И. Б. Мизецкой , процессу осаждения гидроокисей свинца, никеля, кобальта и определению произведения их растворимости - работа П. И. Коваленко " и др. [c.112]

    Ион кобальта (II) характеризуется способностью образовывать растворимые комплексные соединения в избытке аммиака, экстрагирующиеся органическими растворителями комплексные соединения с роданид-ионом. Селективными реактивами, позволяющими определять кобальт в присутствии других элементов (меди, никеля, железа), являются оксинитрозосоедпнения. В зависимостп от содерл<ания кобальта в анализируемом объекте (оно колеблется от десятых долей до десятков процентов) применяют титриметрические, фотометрические, полярографические и атомно-абсорбционные методы. Сравнительно редко прибегают к гравиметрическим п люминесцентным методам определения содержания кобальта. [c.68]

    Полярографическое определение кобальта после осаждения железа пиридином [993]. Метод позволяет определять наряду с кобальтом также медь и никель. Сталь растворяют в концентрированной соляной кислоте, окисляют двухвалентное железо азотной кислотой н раствор выпаривают досуха. Остаток обрабатывают соляной кислотой и осаждают железо и хром пиридином с таким расчетом, чтобы pH раствора было около 5—5,5. Прибавляют раствор желатины, отбирают пипеткой аликвотную часть раствора над осадком и полярографируют Волна кобальта появляется при потенциале —1,07 й, ей предше ствуют волны меди при —0,25 в и никеля при —0,78 в. [c.192]

    Методика полярографического определения висмута, меди, свинца, кадмия, индия, цинка, никеля, кобальта, марганца на полярографе переменного тока с прямоугольной формой напряжения заключается в следующем. 2—10 г металлической сурьмы растворяют в минимальном количестве царской водки (на 5 г тонкого порошка не более 45 мл) и выпаривают до 5—8 мл. Прибавляют ИМ соляную кислоту из расчета, чтобы сурьма была связана в устойчивый хлорокомплекс типа ЗЬС1в и концентра- [c.196]

    Разработана методика полярографического определения микропримесей висмута, меди, свинца, кадмия, цинка с применением в качестве электролита 0,05 М H l-f-0,5 М КС1. Помимо указанных элементов может быть также определен и индий с чувствительностью I-IO" %. На фоне 0,05 М NHi l + 0,02 М (NH4)2Tart-1-0,2 М NHiOH с чувствительностью 2—5-10 % могут быть определены никель, кобальт и марганец. [c.199]

    Определение ионов металлов. Благодаря соответствующему выбору фонового электролита, pH и лигандов практически любой металл может быть восстановлен на ртутном капающем электроде до амальгамы или до растворимого иона с более низкой степенью окисления. Во многих случаях получают полярографические волны, пригодные для количественного определения этих веществ. Такие двухвалентные катионы, как кадмий, кобальт, медь, свинец, марганец, никель, олово и цинк, можно определить во многих различных комплексующих и некомплексующих средах. Ионы щелочно-земельных элементов — бария, кальция, магния и стронция — дают хорошо выраженные полярографические волны при приблизительно —2,0 В относительно Нас. КЭ в растворах, содержащих иодид тетраэтиламмония в качестве фонового электролита. Цезий, литий, калий, рубидий и натрий восстанавливаются между —2,1 и —2,3 В отн. Нас. КЭ в водной и спиртовой среде гидроксида тетраалкиламмония. Опубликованы данные полярографического поведения трехзарядных ионов алюминия, висмута, хрома, европия, галлия, золота, индия, железа, самария, урана, ванадия и иттербия в различных растворах фоновых электролитов. [c.457]

    Полярографическое определение металлических примесей в висмуте не представляется возможным проводить без их предварительного отделения. Так, определение свинца проводят после его электролитического отделения в виде РЬОа с дополнительной очисткой от висмута тиомочевиной [36]. Описан метод отделения висмута от свинца путем растворения висмута в ртути, микропримесь переводят в водный раствор и полярографируют [37], Медь отделяют рубеановой кислотой [38] в присутствии цитрата калия и ЫН40Н, удерживающих в растворе висмут и другие элементы. Селен определяют методом осциллографической полярографии [27] после осаждения его в элементарном виде с коллекторами. Показано, что возможно отделить 1—10 мкг 8е от 2—10 г В1. Достигнута высокая чувствительность определения—10- %. Условия электролитического выделения висмута из азотнокислых растворов были подробно изучены при определении свинца, кобальта, кадмия и цинка [25] на фоне роданида калия, а также никеля [39], молибдена и ванадия [40]. [c.327]

    Стромберг А. Г. Теория и практика полярографии и амальгамной полярографии в особенности. Автореферат дисс., представленной на соискание учан. степени д-ра химических наук. Свердловск, 1951. 16 с. (Уральск, политехи, ин-т). На правах рукописи, 1075 Стромберг А. Г. Амальгамная полярография. Определение коэффициентов диффузии металлов в ртути. ДАН СССР, 1952, 85, Л Ь 4, с. 831—834. Библ. 5 назв. 1076 Стромберг А. Г. и Зелянская А. И. Полярографическое определение кобальта в присутствии никеля. Каталитическое выделение водорода в присутствии ко.мплексов кобальта с диметилглиоксимом. ЖОХ, [c.48]

    Гехт И. И., Сенюта В. И., Гринман И. Г. Полярографическое определение кобальта и никеля в ру.дах. Бюлл. Всес. н.-и. ин-та минерального сырья. (М-лы научно-методические и производ. лабор. геол. управлений М-ва геологии [СССР]), 1952, № 7 (111 , с. 20—24. Стеклогр. 3511 Гинзбург К. Е. Методика колориметрического определения фосфорной кислоты в лимоннокислых вытяжках из почв. Почвоведение, 1952, № 12, с. 1126—1132. Библ.  [c.144]

    Казахское геологическое управление]. Полярографический метод определения меди и цинка в рудах. Полярографический метод определения кадмия и цинка в рудах, содерн<ащих не более 0,1 % меди. Полярографический метод определения свинца в рудах, содержащих барий. Полярографический метод определения олова в рудах. Ускоренный колориметрический метод определения никеля и кобальта из одной навески (посредством колориметрического титрования или шкалы эталонных растворов). Бю.тл. Всес. н.-и. ин-та минерального сырья. (М-лы научно-методические и про- извод, геол. управлений М-ва геологии [СССР]), 1951, № 9(101), с. 2—22. Стеклогр. 4081 Казначей П. Я. Ускорение анализа гальванически осажденного сплава. Зав. лаб., [c.163]

    Ускоренное полярографическое определение меди, никеля и кобальта в рудах, не содержащих цинка. Бюлл. Всес. н.-и. ин-та минерального сырья. (М-лы научно-методические и производ. лабор. геол. управлений М-ва геологии [СССР]), 1952, №2 (106), с. 22—35. Библ. 5 назв. Стеклогр. 5622 Спеддинг, Фойт, Глэдроу, Слэйт. Церий и иттрий. [Хроматографическое разделение]. В сб. Хроматографический метод разделения ионов. М., Изд-во иностр. лит-ры, [c.216]

    Для определения в воздухе рабочей зоны (в производствах цветной металлургии) меди, никеля и кобальта (ПДК этих металлов равны 1 0,05 и 0,5 мг/м соответственно) также используют полярографическую методику, основанную на восстановлении диметилглиоксиматных комплексов этих металлов на ртутном капающем электроде на фоне 0,1 н хлоридно-аммиач-ного раствора в присутствии сульфита натрия в переменно-токовом режиме. Потенциал восстановления меди —0,25 В, никеля -0,86 В, кобальта —1,02 В. [c.333]


Библиография для Кобальт никель, определение полярографическо: [c.186]   
Смотреть страницы где упоминается термин Кобальт никель, определение полярографическо: [c.208]    [c.104]    [c.189]    [c.491]    [c.165]    [c.166]    [c.124]    [c.167]    [c.78]   
Физико-химические методы анализа Издание 2 (1971) -- [ c.270 ]

Физико-химические методы анализа (1971) -- [ c.270 ]




ПОИСК





Смотрите так же термины и статьи:

Кобальт III определение полярографическое

Кобальт определение

Никель определение



© 2025 chem21.info Реклама на сайте