Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо III оксихинолинаты

    Осаждение оксихинолином применяют для определения магния в присутствии алюминия и железа без предварительного отделения этих элементов, а также для определения магния в присутствии кальция. В первом случае магний осаждают оксихинолином из щелочного (N OH) раствора, содержащего виннокислые соли. Железо и алюминий образуют в щелочном растворе с виннокислым натрием устойчивые комплексные соединения, из раствора которых оксихинолин не осаждает этих элементов. Отделение от кальция основано на сравнительно хорошей растворимости оксихинолината кальция в горячем аммиачном растворе, в то время как оксихинолинат магния при этих условиях не растворяется. Последний метод не имеет особых преимуществ по сравнению с обычным методом отделения магния от кальция, так как и в этом случае требуется двукратное [c.398]


    Описан экстракционно-фотометрический метод одновременного определения алюминия и железа. Принцип метода состоит в том, что хлороформный экстракт оксихинолинатов алюминия и железа фотометрируют при 390 при 470 ммк. Метод использован для определения алюминия и железа в титане и ванадии [187]. Аналогичный вариант применен для определения алюминия и железа в магнии [188]. Экстракция оксихинолината железа и фотометрирование экстракта использованы для определения железа в крови [189]. Ванадий экстрагируют хлороформом в виде оксихинолината при pH 3,5—4,5 и полученный экстракт фотометрируют при 550 ммк [190]. Методики экстракционно-фотометрического анализа в виде оксихинолинатов разработаны для определения цинка и кадмия в присутствии больших количеств кальция [191], кальция в солях, технических продуктах и породах [192], олова в железе и стали [193], урана в присутствии тория, лантана, иттрия или самария [194] и в висмутовых сплавах [195]. Цинк и магний в форме оксихинолинатов легко экстрагируются метил-изобутил кетоном. Экстракты имеют максимумы светопоглощения [c.243]

    Оксихинолинаты железа(1П), алюминия(1П), марганца(П) извлекаются хлороформом также при различных значениях pH водной фазы оксихинолинат железа(1П) — при рН= 2—3, оксихинолинат алюминия — прп pH = 5, оксихинолинат марганца(П) — при pH = 10. Изменяя значение pH водного раствора, можно селективно извлекать из него указанные катионы хлороформом. [c.255]

    В этих условиях устойчивость оксихинолината алюминия значительно выше устойчивости его комплексоната, поэтому алюминий осаждается количественно. При использовании этого метода от алюминия отделяются многие металлы благодаря образованию цианид-ных комплексов и комплексонатов. Железо должно быть восстановлено до Ре (II). Для восстановления феррицианида применяют сульфиды [793], сульфиты [645, 702, 916, 1109, 1250] или просто кипячение щелочных растворов [585, 1061, 1196]. Лучшим восстановителем служат сульфиты. Определение 2—20 мг алюминия возможно в присутствии 0,5—1 г следующих элементов Ag, Аз (III), Аз (V), Аи, Сс1, Се (III), Се (IV), Со, Си, Ре (II), Ре (III), Ое, Н (I), Н (II), Ьа и РЗЭ, Mg, Мп,Мо (VI), N1, РЬ, Рс1, Pt, 5Ь (V), 5е (IV), 5е (VI), 5п (IV), Те (IV), Те (VI), Т1 (I), Т1 (III), Ш (VI), 2п и щелочноземельные металлы. Не мешает до 50 мг при больших количествах [c.82]

    Отделение от алюминня и железа. Поскольку железо и алюминий часто встречаются вместе в природных объектах, описаны способы, позволяющие отделять их одним приемом от кальция. При осаждении кальция в виде оксалата в присутствии цитрата аммония железо и алюминий полностью остаются в растворе. Железо и алюминий можно осадить оксихинолином или тан-нином при pH 5,9, кальций при этом останется в растворе (он не образует оксихинолинатов до pH 6). [c.163]


    Предложены методы одновременного определения алюминия и железа в одном растворе [2,281, 282, 458, 459, 949, 991, 992]. Оксихинолинаты экстрагируют при pH 5,2—5,5 оптические плотности измеряют соответственно при 390 и 470 нм. Оксихинолинат  [c.121]

    Регулирование pH раствора Fe Экстракция оксихинолината железа при pH 2 2,5 илн 2,8 [276, 697, 750 869. 983, 1098] [c.122]

    По данным Риса [1082], не мешают также до 20-кратных количеств Со, N1, Сс1, 5п, В1, Т1, Мо (VI) и и (VI) не дают флуоресценцию Се, РЬ, М , Hg, Ag, ТЬ, Ш [1233]. Ре, Т1 и V гасят флуоресценцию оксихинолината алюминия. Равные количества титана не мешают, а железо до 5 мкг/мл практически также не влияет. Ванадий мешает больше, чем титан и железо. Галлий и индий не мешают лишь при содержании 15 и 3% от количества алюминия. При использовании различной чувствительности растворов оксихинолинатов алюминия и галлия к различным участкам возбуждающего излучения удалось определять их при совместном присутствии [651]. [c.136]

    Отделить железо от молибдена [1143] можно совместным их осаждением 8-оксихинолином и осторожным растворением 8-оксихинолината трехвалентного железа в холодной 2 N НС1 (при нагревании растворяются заметные количества 8-оксихинолината молибденила). Способность 8-оксихинолинатов никеля, кобальта, марганца и трехвалентного хрома растворяться в [c.121]

    Для обогащения следов молибдена и большого числа других элементов при их спектральном определении применяют экстракцию в форме 8-оксихинолинатов и дитизонатов хлороформом [749]. Таким же путем отделяют мешающие элементы (железо) при спектральном определении молибдена и других элементов, когда в распоряжении аналитика имеется спектрограф малой разрешающей силы [750]. [c.154]

    Ранее рекомендовалось определять бериллий в сплавах весовым методом в виде Ве(0Н)2 после отделения меди, а затем алюминия и железа в виде 8-оксихинолинатов [55, 666, 719]. [c.176]

    Для удаления железа (например при анализе крови) рекомендовали электролиз с ртутным катодом [577] или экстракцию 8-оксихинолината. [c.186]

    Границы pH полного экстрагирования хлороформом 8-оксихинолинатов некоторых металлов следующие железо 1,9—3,0, алюминий — 4,3—4,6, висмут—4,0—5,2, кобальт — 6,8 и выше, [c.77]

    Для концентрирования кобальта из вытяжек почв и растительных материалов применяют осаждение 8-оксихинолином при pH 5,1—5,2 [1294], используя как коллектор 8-оксихинолинат железа или алюминия. Известны методы полярографического определения кобальта в почвах и растительных материалах после обогащения дитизоном [1369] или посредством рубеановодородной кислоты [214]. [c.212]

    Для определения магния в чугуне описаны фотометрические методы с эриохром черным Т [64, 1081]. По одному из них [64], магний определяют после отделения основной массы железа экстрагированием метилизобутилкетоном из 6 iV H I и осаждения А1, Ti, Сг, Са и остатков железа в виде оксалатов и маскирования тяжелых металлов цианидами. Метод не очень удобен, так как включает в себя несколько операций отделения и связан с применением токсичных цианидов. По другому методу [1081], тяжелые металлы отделяют осаждением в виде оксихинолинатов, затем следы металлов удаляют экстракцией их диэтилдитиокарбаминатов метод очень продолжительный и мало приемлем для массовых анализов. [c.209]

    Многие осадки, содержащие анионы органических кислот, например ди-метилглиоксимат никеля, оксихинолинат алюминия, растворяются в спирте, ацетоне и других растворителях значительно лучше, чем в воде. То же наблюдается для некоторых неорганических соединений комплексного характера так, например, йодная ртуть, роданидные комплексы железа, кобальта хорошо растворяются во многих органических растворителях. В некоторых случаях растворимость веществ в органических растворителях настолько велика, что оказывается возможным извлекать вещество из водного раствора путем встряхивания с органическим растворителем. На этих свойствах некоторых соединений основаны методы экстрагирования (см. 26). [c.48]

    Разделение металлов в смеси основано на различной растворимости оксихинолинатов металлов в кислотах, а также на применении маскирующих веществ. В ряде случаев необходимо фазовое отделение в частности для определения алюминия в стали отделяют мешающие элементы электролизом на ртутном катоде. Мало влияет присутствие кальция и магния, а также присутствие следов железа. В данной задаче предлагается определение алюминия в растворах, где отсутствуют посторонние элементы. [c.166]

    Отделение мешающих элементов. Практическое значение имеют методы определения алюминия, в присутствии железа и титана, разделение алюминия и магния, алюминия и меди и др. Для определения алю , иния в первом случае предварительно осаждают железо оксихинолином из сильно уксуснокислого раствора (20% СН3СООН), содержащего винную кислоту. Винную кислоту приливают для того, чтобы связать титан в ком плекс и предотвратить гидролиз его солей. После отделения железа осаждают оксихинолином титан. Осадок оксихинолината титана образуется только в слабокислом растворе при рН>5, однако в этом случае может также осаждаться и алюминий. Для удержания алюминия в растворе туда приливают раствор щавелевокислого аммония (или малоновой кислоты). К фильтрату после осаждения титана приливают избыток гидроокиси аммония (до щелочной реакции) и осаждают алюминии оксихинолином. Этим методом можно определить все три элемента при их совместном присутствии. [c.185]


    Было изучено влияние больших количеств (2—3 М) хлорида калия и, в некоторых случаях, иодида натрия на экстракцию 8-оксихинолинатов кобальта (II), никеля, марганца (II), железа (III), олова (IV), меди и индия хлороформом и изоамиловым спиртом. В работе показано, что в ряде случаев результаты экстракции в присутствии солей заметно изменяются, однако из растворов хлорида калия (до 3 М) оксихинолинаты изученных элементов могут экстрагироваться полностью. [c.231]

    В настоящей работе приведены некоторые данные о влиянии хлорида калия и иодида натрия на экстракцию оксихинолинатов кобальта, никеля, марганца, железа, олова, меди и индия. Экстракции оксихинолинатов этих элементов в отсутствие солей посвящена большая литература (Со — [5—10], N1 — [5, 65 8, 16], Мп-[5, 8-11], Ре-[5, 8-11,22], Зп - [9, 12], Си - [5,8-15], 1п — [5, 8, 9, 17—20]). Систематическому исследованию экстракции оксихинолинатов хлороформом посвящены работы [5, 8] опубликованы два обзора литературных данных по экстракции оксихинолинатов [9, 21]. [c.52]

    Путем осаждения алюминия оксихинолином можно при определенных условиях одновременно отделить алюминий от многих ионов элементов, в том числе от иопов фтора, фосфора, железа, титана и некоторых других металлов. Крометого, осадок оксихинолината алюминия выделяется в кристаллической форме, что значительно облегчает фильтрование и промывание и уменьшает возможность загрязнения осадка различными примесями. Наконец, определение можно закончить не весовым, а объемным методом (титрованием бромноватокислым калием) и таким образом значительно ускорить анализ. [c.183]

    Влияние катионов и анионов. Осаждение оксихинолината алюминия из ацетатного буферного раствора не избирательно, не мешают в значительных количествах лишь Mg, Ве, ш,е-лочные и щелочноземельные металлы. Бы. ю проведено много исследований с целью найти способы маскирования мешающих элементов. Особенно много работ по определению алюминия в растворах, содержащих железо. Попытки осаждать железо и алюминий фракцион-но ири различных pH не дали удовлетворительных результатов [747]. [c.36]

    Для разделения алюминия и железа Берг [51, 561] использует щавелевую, малоновую, винную и салициловую кислоты в качестве комилексообразующих агентов для алюминия в уксуснокислом растворе железо осаждается в виде оксихинолината. По мнению Берга [51, 561], малые количества железа от больших количеств алюминия лучше отделять в присутствии винной кислоты, а большие количества железа от малых количеств алюминия — в присутствии [c.36]

    В присутствия малоновой или щавелевой кислоты титан количественно осаждается в виде оксихинолината и это позволяет отделять титан от алюминия [51, 128, 417]. Можно разделить А1, Реи Т , предварительно выделяя железо из сильноуксуснокислого раствора в присутствии винной киатоты и осаждая затем титан после прибавления малоновой (илн щавелевой) кислоты. В фильтрате можно осадить оксихинолинат алюминия после прибавления аммиака. Методики анализа смесей Л1 и Ре, а также А1, Ре и Т1 приводятся вмонэгра-фии Берга [51]. Определение алюминия в таких смесях рассмотрено также в работах [120, 121, 638, 995]. [c.37]

    Значительные количества Mg и Са не. мешают определению алюминия. В присутствии 420 мг Mg и 800 мг Са в осадок оксихинолината переходит <0,1 мг Mgn Са. При pH 4,7—4,9 не мешает до 10мг кадмия при pH <4,7 и >4,9 последний мешает сильно. С помощью радиоактивных изотопов показано, что соосаждаются значительные количества 1п, 0,5% Y, e и Se 1945]. Железо осаждается в широких пределах концентраций ацетатов, а цинк осаждается в незначительной степени [542]. [c.40]

    В этих условиях осаждаются Ве, В1, Оа, НГ, 1п, ЫЬ, 5Ь (Н1), Та, ТЬ, и и 2г. В присутствии скандня определяется только 80—90% алюминия. Сг (VI) осаждается неполностью в виде оксихинолината до 20 мг Сг (VI) мешает очень мало. Влияние Сг (III) значительно сильнее. Если содержание хрома < 20 мг, его влияние устраняют окислением до Сг(У1). Кроме того, хром можно связать в комплексонат кипячением с комплексоном 111 в течение 5 мин., при этом железо должно быть восстановлено кипячением с сернистой кислотой. Фториды до 1 мг не мешают, большие количества занижают результаты, даже в присутствии большого избытка НдВОз. Ортофосфаты не мешают, если не присутствует одновременно более 100 мг Ре (фосфаты препятствуют полному восстановлению Ре). Ванадий осаждается неполностью. Влияние ванадия меньше при рН<9. Титан полностью осаждается в виде оксихинолината при pH 9 и ниже, при pH >9 осаждение неполное. [c.83]

    Влияние анионов. Большие количества хлоридов, нитратов и сульфатов не мешают определению алюминия [750]. Не мешают бромиды и иодиды [646]. Перхлораты не мешают до 1 М концентрации. Если ЗЮа находится в истинном молекулярном растворе, то не мешает при соотношении А12О3 ЗЮз = 1 4. В присутствии полимеризованной ЗЮг при соотношении больше 1 4 результаты завышаются на 10°/о и выше. Перед определением алюминия целесообразно обрабатывать анализируемый раствор едким натром для перевода ЗЮа в молекулярную форму [109]. Фториды уже в количестве 10 мкг мешают экстракции оксихинолината алюминия, введение борной кислоты не устраняет их влияния [646]. При определении алюминия в тории небольшие количества фторидов (до 500 мкг) не мешают, так как торий связывает фторид в прочный комплекс [957]. Согласно Джентри и Шеррингтону [750], до 0,15 г фосфатов мало влияет на определение алюминия, но > 200 л/сг фосфорной кислоты мешает восстановлению железа [646]. До 0,2 г тартрата в 50 мл раствора мешает мало [750] по другим данным, допустимо 0,3 г винной кислоты в 80 мл раствора [869]. Поэтому винную кислоту используют для маскирования небольших количеств железа [869]. 0,3 г винной кислоты маскирует 5,6 мкг железа. Некоторые авторы вводят винную кислоту для удержания алюминия в растворе в щелочной среде. В стандартные растворы в этом случае также вводят такие же количества винной кислоты. [c.121]

    Радиометрическое определение алюминия в силлиманитовых рудах и продуктах обогащения с применением Fe и Со [1071 анализ смеси оксихинолинатов А1, Ga и 1п с использованием их инфракрасных спектров [794], определение алюминия в сплавах железа по величине термоэлектрического потенциала [9011, седи-ментометрическое определение алюминия [1035] и термометрическое определение (по изменению температуры анализируемого раствора после прибавления титранта) [1137] используются редко [c.167]

    Аналогичный метод описан для определения алюминия в хромовых рудах и огнеупорах после сплавления образца с КН504 1507]. В растворе плава устанавливают pH 4—6, кипятят для образования комплексонатов Ре(1П), А1 и Сг (П1). Вводят оксихинолин, подщелачивают аммиаком, нагревают при вО"" С для осаждения оксихинолинатов Ре (И1) и А1. Спустя 10 мин. фильтруют, осадки растворяют в НС1. В растворе определяют железо и алюминий, как и при анализе марганцевых руд, но в этом случае индикатором для Ре (III) служит освободившийся из раствора оксихинолин. Присутствие последнего не мешает титрованию алюминия Сг(П ) маскируется комплексоном III и не мешает. [c.197]

    Эллиот и Робинзон [700] определяют алюминий весовым оксихинолиновым методом после удаления основной массы железа экстракцией дихлордиэтиловым )иром и отделения алюминия от многих мешающих элементов (Си, Ni, Мп, Со и др.) осаждением аммиаком в присутствии NH4 I. Осадок растворяют в кислоте и после добавления комплексона III и создания щелочной среды осаждают алюминий в виде оксихинолината. [c.210]

    Наблюдается соосаждение калия с осадками натрий-цинк уранилацетата [1949], оксалатов кальция (1765] и магния [1535]. 8-оксихинолината магния [1535], сульфида железа (1935], аммо-ний-магнийфосфата [674, 1535], фосфата кальция [1271] и других малорастворимых соединений (1073, 2651] [c.148]

    К раствору, содержащему 10—200 мкг Ре(1П), 5—40 мкг А1(1П) и 10 — 60 мкг М11(П), прибавляют 3 мл 1%-ного раствора окспхинолина в уксусной кислоте и 1 N раствор СНдСООКа до pH 2,8, экстрагируют оксихинолинат железа посредством 10 мл СНС1з. Затем к водной фазе прибавляют 3 мл [c.65]

    Экстракция оксихинолината марганца Мп(С9НбОХ)2 осуществляется хлороформом [604, 1002, 1263, 1447, 1496, 1497], четыреххлористым углеродом, бензолом [196], изоамиловым спиртом [228]. Марганец количественно экстрагируется из водной фазы 0,1 М раствором оксихинолина в хлороформе при pH 6,5—11. Уменьшение концентрации реагента в 10 раз сдвигает pH начала экстракции оксихинолината Мп (II). При более высоком значении pH оксихинолинат Мп(П) окисляется кислородом воздуха до оксихинолината Мп(1П). Для предотвращения окисления Мп(И) вводят солянокислый гидроксиламин [239, 1447]. Изучено влияние различных комплексообразователей на экстракцию оксихинолината Мп(П) хлороформом [1002, 1447] (рис. 30). Метод экстракции оксихинолината Мп(И) хлороформом нашел широкое применение для отделения и определения содержания марганца различными методами (фотометрии, нейтронной активации, пламенной фотометрии) в разных объектах [344, 684, 832, 904, 1002, 1014, 1253, 1263, 1473, 1496, 1497]. При помощи экстракции окси-хинолинатов можно разделить Ге(1П), А1(1П) и Мп(П) [1263]. Железо экстрагируется хлороформом при pH 2,8, алюминий — при pH 5,6, а марганец — при pH 10. Для отделения марганца от Ха, К, Са и Зг при анализе нефтяных продуктов на содержание марганца методом пламенной-фотометрии применяют экстракцию его оксихинолината хлороформом [903]. Экстракция марганца в виде 8-оксихинолината хлороформом была применена также для определения его в уране и алюминии [1253]. [c.123]

    В ряде работ по определению рения в производственных растворах для отделения рения от примесей последние осаждаются щелочью [752] или соосаждаются с гидроокисью железа [516]. Большие количества молибдена отделяют экстракцией хлороформом в виде 8-оксихинолината. Из щелочных растворов рений извлекают экстракцией ацетоном [327, 752]. В растворах, содержащих нитрат-ионы, например, в растворах, полученных при растворении молибденовых концентратов в HNO3, определение рения проводят сиектрофотометрическим методом с тиосалициловой или тиогликолевой кислотами [516]. [c.251]

    А. И. Бусев титровал 8-оксихинолинаты висмута, меди, трехвалентного железа и других металлов броматом калия, определяя точку эквивалентности а.мперометрическн. Метод дает удовлетворительные результаты. [c.171]

    Относительно большое количество индия определяют гра-15иметрическими и титриметрическими методами. Очень точные результаты дают методы, основанные на взвешивании индия в форме сульфида и 8-оксихинолината. Хорошие результаты получают при взвешивании индия в форме окиси после осаждения аммиаком, пиридином или цианатом калия. Выбор метода зависит в основном от сопровождающих элементов. Осаждение сероводородом позволяет отделить индий от ряда элементов, в том числе от железа и алюминия, а осаждение цианатом калия— от цинка и других элементов. Однако при определении этими методами небольших количеств индия в присутствии других элементов возникают затруднения. [c.11]

    При определении индия по флуоресценции 8-оксихинолината индий можно отделить от мешающих элементов пропусканием раствора сульфосалицилатных комплексов через колонку с катионитом СБС [5, 27а, 28]. Сульфосалицнловая кислота с железом, висмутом, молибденом, медью, цинком, оловом, алюминием, свинцом, кадмием и сурьмой образует комплексы анионного типа, а с галлием и индием — катионного типа. Вследствие этого индий и галлий адсорбируются катионитом, а все остальные элементы переходят в фильтрат. Индий и галлий извлекают из колонки промыванием 2 н. H I, раствор упаривают досуха (для удаления галлия) и далее определяют индий, как было описано. [c.134]

    Оксихинолин при pH 5,1—5,2 позволяет осуществить концентрирование около 0,001 мг Со, N1 и Мо и около 0,4 мг Си и 2п при анализе почвенных экстрактов и растительных материалов [1322]. Функцию коллектора выполняют 8-оксихинолинаты железа и алюминия при этом достигается 500-кратное обогащение. Отфильтрованный осадок высушивают, осторожно прокаливают при 450°С определение навванных элементов заканчивают в полученном концентрате спектральным методом. Ощибка единичного определения редко превышает 10%. [c.154]

    Иногда прибегают к отделению основного компонента теми или иными методами. Например, при определении магния в металлических 2г, Ге и Си предварительно отделяют 2г осаждением в виде миндалята, Ге — экстракцией эфиром хлоридного комплекса, Си — электролизом [704]. Для выделения малых количеств магния применяют методы соосаждения, например соосаждают магний на оксихинолинате железа [704]. [c.166]

    Ре (III), V (V), Си (II) и Мо (VI) образуют окрашенные, но нефлуоресцирующие растворы, что приводит к заниженным результатам при определении галлия. Мешающее действие железа и ванадия устраняют восстановлением их солянокислым гидроксиламином. Оксихинолинат титана нерастворим в хлороформе в условиях определения и образует эмульсию. Ослабляет флуоресценцию галлия также и цинк. Фтор понижает чувствительность реакции, если одновременно не присутствуют эквиваленг-ные количества алюминия. Цитраты замедляют реакцию, а небольшие количества фосфатов лишь слабо влияют на ее чувствительность. [c.109]

    Наконец, следует отметить попытки увеличить избирательность экстракционно-фотометрических методов путем подбора специфических растворителей. Перспективы этих попыток еш е неясны, так как обычно последовательность металлов в ряду, например, оксихи-нолинатов, диэтилдитиокарбаминатов и т. д., остается одной и той же при замене одного растворителя другим. В связи с этим некоторая специфичность в действии экстрагентов наблюдается иногда лишь по отношению к растворителям, которые вообще слабо экстрагируют данную группу соединений. Тем не менее отдельные попытки дали интересные результаты. Так, хлороформ растворяет многие оксихино-линаты, в том числе и вольфрамовый комплекс. Однако четыреххлористый углерод, который вообще хуже растворяет оксихинолпнаты, практически вовсе не растворяет оксихинолината вольфрама, но растворяет комплексы железа, алюминия, титана и др. [c.223]

    ИЛИ оксихинолината железа имеется более широкий интервал оптимальных условий. Наконец, нри экстракции хлоридных, нитратных и других комплексов этой группы значительно возрастает влияние посторонних солей — высаливателей. Труднее и теоретическое исследование, так как обычно в растворе образуется смесь нескольких соединений с разлпчьшм количеством координированных аддендов. [c.224]

    Так, гидрок сид алюминия используют как коллектор при со-осажденни Fe, Сг, Bi, Sn и РЬ гидроксид железа — для соосаждения V сульфид серы — для соосаждения РЬ, Zn, Мо карбонат кальция — для Мо, W, V, Ag и др. Следы Zr, Ti и V молаго выделить из раствора, в котором имеется (или вносится) Fe(III) в количестве порядка миллиграммов, путем осаждения купферо-ном. По такому же методу для соосаждения Си(П) в качестве коллектора используют осадок оксихинолината свинца(П), [c.403]

    Эти же авторы показали [10] возможность экстракционного разделения в.к.с. (в том числе экстрагирующихся при одном pH) путем надлежащего выбора органического растворителя. Так, 8-оксихинолинаты свинца и железа отделяются от оксихинолината таллия (I) путем экстракции бензолом при pH 9. Оксихинолинат таллия (I) экстрагируется затем при том же pH изобутиловым спиртом. Аналогичным путем разделяются 8-оксихинолинаты и теноилтрифторацетонаты иттрия и стронция, 8-оксихинолинаты индия и таллия (I). [c.229]

    Ю. А. Золотов и Н. М. Кузьмин [26] детально исследовали экстракцию 8-оксихинолината железа (П1). При ионной силе 0,5 (H IO4—Na lOi) и температутре 25 + 0,5°Сбыла изучена экстракция этого элемента (2-10 г-ион л) растворами 8-оксихинолина в бензоле, хлороформе, изоами- [c.235]

    Калвин и Уилсон [51] впервые указали на возможную стабилизацию хелатов Си(П) с -ди-кетонами, -кетоэфирами и -ок-сиальдегидами, но использованная этими авторами модель предусматривает смещение электронов в неправильном направлении [12, 154]. Их аргументы были исправлены путем рассмотрения дативных -связей, образуемых ионом металла, на примере некоторых бцс-пиридиновых комплексов Ag (I) [205] и многочисленных замещенных 8-оксихинолинатов [154]. Небольшие отклонения от линейных зависимостей могут быть объяснены путем учета я-донорных или акцепторных свойств заместителей в лиганде. Устойчивости З цианпиридинсеребра (I) и 5-циан-8-оксихинолинатов железа (И) повышены по сравнению с устойчивостями комплексов с протоном, так как цианогрупиа является хорошим я-акцептором. По той же причине устойчивость комплексов последнего реагента с Ее(1П) понижена, так как можно показать, что я-связь должна смещать электроны в обратном направлении [290]. Более того, отклонения от линейных зависимостей, по-видимому, больше для комплексов Ag(I), где я-связи должны быть более существенными, чем для комплексов Ре(П). Большие отклонения наблюдаются, если замещение в лиганде вызывает структурные изменения. Увеличение сопряженной системы, например, при переходе от дипиридила к фенантролину или от салицилового альдегида к 2-окси-1-наф-тальдегиду сравнительно мало влияет на о-электронную плотность у основных центров, но сильно понижает я-плотность. Поэтому происходит [c.60]

    М растворы солей Ва, Sr, Са,Mg (экстракция хлороформом) [33]. При химико-спектральном или фотометрическом определении примесей ряда элементов в щелочах высокой чистоты экстракцию диэтилдитиокарбамипатов проводили из весьма концентрированных растворов КС1, KNO3, Na l [30,31]. Как показано в работе [34], большие количества хлорида калия не препятствуют практическому использованию экстракции оксихинолинатов для концентрирования примесей кобальта, никеля, марганца, железа, олова, меди и индия, содержащихся в едком кали особой чистоты (хотя, вообще говоря, экстракция оксихинолинатов в присутствии хлорида калия изменяется). [c.8]


Смотреть страницы где упоминается термин Железо III оксихинолинаты: [c.124]    [c.207]    [c.135]    [c.155]   
Фотометрический анализ (1968) -- [ c.118 , c.132 ]




ПОИСК





Смотрите так же термины и статьи:

Дезинфицирующие агенты железо оксихинолинат



© 2024 chem21.info Реклама на сайте