Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматография газо-адсорбционный метод

    На этом хроматографе, как показала практика работы газоаналитической лаборатории ВНИИНефтехима, можно анализировать сложные смеси, комбинируя методы газо-адсорбционной и газожидкостной хроматографии. Так, например, такое комбинирование возможно для анализа смеси газов, состоящей из водорода, кислорода, окиси углерода и углеводородов С1—Се. Часть этих компонентов (водород, азот, окись углерода, кислород и метан) определяется газо-адсорбционным методом на колонках, заполненных молекулярными ситами 13Х. Углеводородная часть смеси анализируется методом газо-жидкостной хроматографии. В этом случае колонка заполняется инзенским диатомовым кирпичом, на который нанесен жидкий поглотитель ТЭГНМ (эфир триэтиленгликоля и нормальной масляной кислоты). [c.61]


    Газо-адсорбционный метод этих недостатков не имеет. Основным его недостатком является лишь нелинейность изотерм адсорбции, приводящая к несимметричности пиков. Нелинейность связана с геометрической и химической неоднородностью поверхности обычных активных адсорбентов. Особенно резко она проявляется в случае сильно адсорбирующих молекул. Неоднородность и высокая адсорбционная, а иногда и каталитическая активность обычных адсорбентов ограничивают их применение в газовой хроматографии. Поэтому такие адсорбенты применяются в основном лишь для анализа газообразных веществ, не содержащих активных функциональных групп, изотермы адсорбции которых при исполь- [c.84]

    Газовой хроматографией называют хроматографический процесс, в котором подвижной фазой является газ (или пар). Варианты газовой хроматографии — газо-адсорбционная и газожидкостная хроматография, а также промежуточные методы. [c.29]

    К числу факторов, ограничивающих возможности применения метода газо-адсорбционной хроматографии, относятся 1) необратимая адсорбция 2) непостоянная активность адсорбентов 3) каталитические явления, происходящие па поверхности адсорбентов 4) чрезмерное удерживание полярных молекул. Первые два фактора обусловливают потерю активности колонки при повторном использовании. Кроме того, непостоянство активности адсорбента наблюдается, когда колонка используется в слишком широкой области температур или в случае накопления па адсорбенте загрязняющих примесей газа-носителя. Каталитические явления наблюдаются в случае соединений, подвергающихся полимеризации или перегруппировке на активных поверхностях, в результате чего происходит либо изменение времени удерживания, либо необратимая потеря вещества. Четвертый фактор делает возможным применение газо-адсорбционной проявительной хроматографии только к сравнительно инертным газам и парам. Как указывалось ранее, к некоторым полярным смесям был успешно применен вытеснительный газо-адсорбционный метод [20]. [c.38]

    При разработке теории газо-адсорбционной хроматографии и при ее практическом применении до сих пор встречались большие трудности [35], чем в газо-жидкостной хроматографии, во-первых, из-за отсутствия надежных данных о связи адсорбционной способности и химической и геометрической структур поверхности адсорбентов, что затрудняет выбор адсорбента, и, во-вторых, из-за отсутствия адсорбентов с химически и геометрически однородной структурой, вполне воспроизводимых от партии к партии и достаточно разнообразных по химической природе поверхности. Однако эти недостатки в настоящее время уже не кажутся принципиально непреодолимыми [36], в то время как отмеченные выше недостатки газо-жидкостного метода являются действительно принципиально непреодолимыми. В связи с этим в ряде работ Киселевым было обращено внимание на возможность и необходимость усовершенствования газо-адсорбционного метода путем улучшения качества адсорбентов [37—41]. [c.10]


    Основным недостатком газо-адсорбционного метода является получение несимметричных пиков. Это связано с характером самой адсорбции на неоднородных поверхностях твердых тел — нелинейностью изотермы адсорбции. Для получения симметричных пиков в газо-адсорбционной хроматографии применяются следующие способы  [c.6]

    Для успешного разделения газо-адсорбционным методом веществ (от низко- до высококипящих), анализируемых в настоящее время с помощью газовой хроматографии, необ-  [c.6]

    Метод газо-адсорбционной хроматографии (ГАХ) основан на различной адсорбируемости веществ на поверхности твердых неподвижных фаз. В газо-жидкостной хроматографии (ГЖХ) разделение основано на различной растворимости анализируемых веществ в жидкой стационарной фазе, нанесенной на твердый пористый носителЕ). Возможна также комбинация подвижная жидкая фаза — твердый сорбент — жидкостная адсорбционная хроматография (ЖАХ). Вариантами ЖАХ являются тонкослойная и бумажная хроматография. Прн использовании в качестве подвижной и неподвижной фазы жидкости реализуются различные варианты жидкостной хроматографии. [c.289]

    Для разделения смесей низкокипящих углеводородов методом газо-адсорбционной хроматографии рекомендуются силикагели марок Сз и 4. [c.56]

    В качестве примера использования газо-адсорбционной хроматографии для выделения веществ в препаративных целях можно привести фронтально-хроматографический метод очистки природного метана. Природный газ, содержащий примерно 96—98% метана и 2—4% воздуха и других углеводородов, пропускают через колонку, заполненную углем марки СКТ. Более тяжелые, чем метан, углеводороды задерживаются на угле, а метан и воздух проходят колонку не адсорбируясь. На выходе из колонки метан конденсируется в ловушке, охлаждаемой жидким азотом. Таким образом получают метан 99,9% чистоты. [c.66]

    Форма кривых зависимости Я от а для методов жидкостно-адсорбционной и газо-адсорбционной хроматографии различна (рис. [c.70]

    Газовые лабораторные хроматографы серии Цвет-100 предназначены для качественного и количественного анализа смесей органических и неорганических веществ с температурой кипения до 450°С. Действие приборов основано на использовании методов газо-жндкостной и газо-адсорбционной хроматографии на набивных, микро-246 [c.246]

    В зависимости от того, какой процесс лежит в основе метода, определяющим может быть тот или иной коэффициент. Так, для газо-жидкостной хроматографии определяющим является коэффи-иент Г. В газо-адсорбционной — коэффициент Гь При недостаточной инертности твердого носителя в газо-жидкостной хроматографии коэффициенты Г1 и Гз вносят искажения в характеристики удерживания. При хроматографировании полярных веществ на по-чярных жидких неподвижных фазах существенную роль может иг- [c.209]

    Для разделения смесей низкокипящих углеводородов методом газо-адсорбционной хроматографии рекомендуются силикагели марок Сз и С4. Силикагель марки МС-Н рекомендуется в качестве твердого носителя в газо-жидкостной хроматографии. [c.77]

    Примеры применения газо-адсорбционной хроматографии для разделения смесей и контроля производства. Хроматермография и теплодинамический метод. Концентрирование примесей. [c.297]

    В зависимости от того, какой процесс лежит в основе метода, определяющим может быть тот или иной коэффициент. Так, для газо-жидкостной хроматографии определяющим является коэффициент Г. В газо-адсорбционной — коэффициент Г1. При недостаточной инертности твердого носителя в газо-жидкостной хроматографии коэффициенты Г) и Гз вносят искажения в характеристики [c.161]

    В газовой хроматографии подвижной фазой является газ. Неподвижной фазой может быть твердый адсорбент — газо-адсорбционная хроматография (ГАХ) или жидкость, нанесенная на поверхность твердого носителя — газожидкостная хроматография (ГЖХ). Компоненты смеси при разделении должны находиться в парообразном или газообразном состоянии. Методом газовой хроматографии можно разделять вещества с температурой кипения от —200 до 400 °С. [c.353]

    Из различных методов молекулярной адсорбционной хроматографии необходимо отметить выделившуюся в самостоятельное направление газовую хроматографию хроматографию газов) . Смесь газов, проходящая через столбик адсорбента, разделяется так же, как и смесь веществ, находящихся в растворе. После поглощения промывают колонку каким-либо химически не активным газом ход вымывания отдельных компонентов совершенно аналогичен приведенному выше (см. рис. 10). Для определения концентрации вымываемого газового компонента применяют различные физические методы, например измерение теплопроводности газов. [c.70]


    Задание. Провести количественный анализ атмосферного воздуха методом газо-адсорбционной хроматографии на хроматографе Цвет-1-64 или ХЛ-3. [c.102]

    Сопоставление достоинства и недостатков газо-жидкостной и газо-адсорбционной хроматографии, возможность комбинирования этих методов для разделения конкретных смесей. [c.297]

    Лабораторный газовый хроматограф Цвет-2-65 предназначен для анализа сложных органических смесей. Для регистрации результатов анализа в этом хроматографе используется высокочувствительный пламенно-ионизационный детектор, работающий в дифференциальном режиме. Принцип работы хроматографа основан на использовании метода газо-адсорбционной и газо-жидкостной хроматографии. В нем используются набивные аналитические колонки длиной 100—300 см, внутренний диаме.р 0,4 см. Хроматограф может работать как в изотермическом режиме, так и в режиме линейного программирования температуры колонок. Испаритель обеспечивает быстрое и полное испарение жидкой смеси, так как в нем устанавливается температура, равная или выше температуры кипении наиболее высококипящего компонента пробы. Максимальная температура испарителя достигает 450°С при любой температуре термостата. [c.243]

    Задание. Определить удельную поверхность силикагеля методом газо-адсорбционной хроматографии. [c.263]

    Методы газо-адсорбционной и газо-жидкостной хроматографии особенно широко применяются для анализа сложных органических смесей. Они позволяют получить информацию о природе и количественном содержании компонентов в смеси в течение нескольких минут, причем для анализа требуются тысячные доли грамма смеси. [c.49]

    В газо-адсорбционной хроматографии (ГАХ) насадка в хроматографической колонке состоит из мелких зерен твердого адсорбента. В качестве адсорбентов применяются активированные угли, например, марок БАУ (ГОСТ 6287—52), СКТ (ТУ Д2 ГУ-942- 66), АГ-3 (ТУ 6-16-1421—69) и др., цеолиты или молекулярные сита марок NaA, СаА (ТУ 6-09-6230—69), силикагель, например, марки Силохром-3 (ТУ 13-16—70), а также синтетические полимеры, например Полисорб-Ь> (ТУ 10П-392—69), оксид алюминия, сажи и другие неорганические материалы. Методом ГАХ анализируют смеси неорганических газов, содержащих водород, азот, кислород, аммиак, диоксид серы, оксиды углерода, а также газообразные и легкокипящие углеводороды — до Q включительно. [c.51]

    Хроматография является эффективным методом разделения, анализа и физико-химического исследования веществ. В основе этого метода лежит различие в адсорбционных или иных свойствах соединений, благодаря чему они по-разному распределяются между твердым сорбентом и протекающей через его слой жидкостью (или газом). [c.346]

    Анализ многокомпонентной смеси газов методом газо-адсорбционной хроматографии [c.297]

    Однако в последние годы и в области лабораторного контроля стали довольно широко применяться средства автоматизации как для проведения самого анализа, так и для фиксации его результатов. Особенно это относится к методам газо-адсорбционной и газо-жидкост-ной хроматографии. [c.10]

    Метод разделения газов в колонках с твердым неподвижным сорбентом с последующей десорбцией компонентов промывкой колонки малоактивным газом (газом-носителем) получил название газо-адсорбционной хроматографии. [c.46]

    Наряду с газо-адсорбционной хроматографией широко применяется также газо-жидкостная хроматография. В этом методе разделения газовых смесей на индивидуальные составные части заложен тот же основной принцип, который описан выше. Однако в качестве неподвижной фазы, на которой происходит поглощение вводимого в колонку газа, в данном случае применяются различные нелетучие жидкости. Для увеличения общей поверхности поглощения жидкий сорбент наносится на крупнопористый инертный носитель (диатомовый кирпич, трепел и др.), не обладающий адсорбционной активностью по отношению к компонентам анализируемой газовой смеси. [c.46]

    Из двух основных методов газовой хроматографии — газо-адсорбцион ой и газо-ж1идкостной — для анализа низкокипящих газов преимущественное значение имеет первый. Работы по газо-жидкостной хроматографии низкокипящих газов немногочисленны и этот метод пока не получил широкого применения для анализа газов. Вариант газо-жидкостной хроматографии — капиллярную хроматографию — почти не используют для этой цели. Причины заключаются в том, что низкокипящие газы очень малорастворимы при обычных температурах и давлениях во всех Щ1ДК0СТЯХ, которые используют в настоящее время в качестве неподвижных фаз для газо-жид-костной хроматографии. Однако в по следнее время повысился интерес к низкотемпературной газовой хроматографии. Уже ряд зарубежных фирм начали выпускать хроматографы, пригодные для работы при низких температурах [5, 6], в которых колонки могут быть охлаждены до —50 или до —100 °С. В связи с этим можно предполагать, что газо-жидкостная хроматография будет применяться для анализа низкокипящих газов. [c.13]

    Газо-адсорбционная хроматография начала развиваться значительно ранее газо-жидкостной. Так, некоторые вопросы по динамике сорбции в противогазах, опубликованные в 1929 г. Н. А. Шиловым и его сотрудниками, близки к фронтальной газо-адсорбционной хроматографии. В 1931 г. Шуфтан применил газо-адсорбционный проявительный метод для разделения газообразных углеводородов, используя в качестве сорбента силикагель, а в качестве аза-носителя — двуокись углерода. В качестве детектора применялся газовый интерферометр. Разделяемые компоненты собирались в отдельные сборники и анализировались обычными классическими методами газового анализа. Позднее этот метод разделения углеводородов был усовершенствован в ЧССР Янаком и в СССР Д. А. Вяхиревым (независимо друг от друга). Метод был назван объемнохроматографическим. Он нашел применение в анализе смесей углеводородных газов. [c.83]

    Газо-адсорбционный метод этих недостатков не имеет. Основным его недостатком является лишь нелинейность изотерм адсорбции, приводящая к несимметричности пиков. Эта нелинейность связана с геометрической и химической неоднородностью поверхности обычных активных адсорбентов. Особенно резко она проявляется в случае сильно адсорбирующихся молекул. Неоднородность и высокая адсорбционная, а иногда и каталитическая активность обычных адсорбентов ограничивает их применение в газовой хроматографии. Поэтому такие адсорбенты применяются в основном лишь для анализа газообразных веществ, не содержащих активных функциональных групп, изотермы адсорбции которых при используемых в хроматографии концентрациях и температурах близки к линейным. После появления ряда работ 1947—1954 гг., в частности работ Классопа [14], Филлипса [15], Туркельтауба [16], Кремер [17], Янака [18] и Рэя [19], газо-адсорбционный метод хроматографии до начала 60-х годов рассматривался лишь как метод, дополняющий газо-жидкостную хроматографию для разделения газов и паров низкокипящих веществ, так как в этом случае разделительная способность жидких фаз благодаря малой растворимости газов недостаточна [20]. [c.8]

    В последние годы газо-адсорбционный метод начинает широко использоваться для биохимических исследований. Так, состав воздуха (азот, кислород, двуокись углерода) важно знать для изучения процессов фиксации азота, фотосинтеза и дыхания [100]. Аргон, содержащийся в воздухе в количестве до 1%, также может быть определен хроматографически, хотя его определение менее важно для биохимии, так как он неактивен. Описаны методики газохроматографического анализа газов в крови, в частности окиси углерода [1011, анализ газов в биологических жидкостях [102], анализ газов в медицине и физиологии, в почвах и удобрениях и в продуктах разложения различных органических веществ [103]. В последнем случае образуются также закись, окись и двуокись азота, аммиак и сероводород. Разделение и анализ этих газов методом газовой хроматографии представляет собой более трудную задачу. На силикагеле двуокись углерода и закись азота не разделяются, но могут быть разделены на угле [104]. [c.152]

    Хроматография — процесс, сходный с экстракцией и дистилляцией, в которых компоненты пробы распределяются между двумя фазами. Особенность, отличающая хроматографию от боль-С шинства других физических методов разделения, состоит в том, что одна из фаз неподвижна, в то время как вторая движется.. Подвижная фаза может быть как жидкой, так и газообразной, а неподвижная фаза — жидкостью или твердым веществом. Четыре озможные комбинации приводят к четырем типам хроматографии идкостной адсорбционной хроматографии, жидкостной распределительной хроматографии, газо-адсорбционной хроматографии газо-жидкостной хроматографии. Газовая хроматография, которая может быть газо-адсорбционной или газо-жидкостной, представляет собой метод разделения и определения состава смесей летучих компонентов. Этому вопросу посвящено несколько исчерпывающих книг, обзоров и статей, приведенных в конце гл. 1 после списка литературы, которые позволят читателю быть в курсе развития метода. Данная глава представляет собой краткое изложение тех особенностей газовой хроматографии, которые создают основные предпосылки интереса к газовой хроматографии с программированием температуры (ГХПТ) . Кроме того, здесь рассмотрены основные аспекты ГХПТ, главные термины и понятия. [c.17]

    Существует много разновидностей хроматографического метода. Для разделения компонентов нефти применяется в основном жидкостная адсорбционная хроматография. По этому методу разделение жидких смесей на фракции ведется в колонках, заполненных адсорбентом, чаще всего силикагелем. Исследуемую жидкость вводят в колонку. Вязкие продукты предварительно растворяют в пентане или другом растворителе. Для ускорения прохождения по колонке пробы и десорбентов применяют давление инертного газа. В процессе адсорбции выделяется тепло. Под влиянием этого тепла и каталитического воздействия самого адсорбента возможно развитие таких химических реакций с aд opбиJ oвaнны-ми веществами, как окисление и полимеризация. Во избежание этого колонку следует охлаждать. [c.58]

    Если неподвижная фаза — жидкость, нанесенная на поверхность инертного носителя, то говорят о распределительной хроматографии. Хроматография в газовой фазе, особенно вариант газо-жидкостной распределительной хроматографии, благодаря своей эффективности получила широкое применение в анализе сложных смесей газов и паров. Газо-жидкостная распределительная хроматография обладает рядом преимуществ перед газо-адсорбционной хроматографией. В случае газо-жидкостной хроматографии получают узкие, почти симметричные прояйительные полосы (пики), что способствует лучшему разделению компонентов и сокращению времени анализа. Это можно наблюдать на примере разделения углеводородов. Если методом адсорбционной хроматографии разделяют главным образом низкокипящие газообразные соединения, то с помощью газовой распределительной хроматографии можно анализировать почти все вещества, обладающие хотя бы незначительной летучестью, подобрав соответствующую неподвижную жидкую фазу и условия разделения. [c.98]

    Газовый хроматограф Цвет-1-64 представляет собой лабораторный прибор, изготовленный в обыкновенном (не взрывозащищен-ном) исполнении. Предназначен он для анализа смеси органических (с концентрацией от 1 10" до 10%) и неорганических (от ЫО" до 100%) веш,еств, кипящих до 350—400° С и не содержащих агрессивных примесей, способных разрушать стальные детали прибора. Он состоит из трех блоков 1) датчика, состоящего из термостата, катарометра, детектора пламенно-ионизационного (ДИП), испарителя жидкой пробы, газового крана-дозатора 2) блока управления БУ-2, состоящего из панели подготовки газов, усилителя ПВ-2М для ДИП, терморегулятора, блока питания детектора ДИП, блока питания катарометра 3) автоматического самопишущего потенциометра ЭПП-09. Действие прибора основано на использовании методов газо-адсорбционной и газо-жидкостной хроматографии на набивных (аналитических), микронабивных и капиллярных колонках в изотермическом режиме. [c.170]

    Действие прибора основано на использовании методов газо-адсорбционной и газо-жидкостной хроматографии иа набивных (аналитически) ), микронабивных и капиллярных колонках в изотермическом режиме. Наличие в приборе двух детекторов позволяет регистрировать результаты анализов либо с помощью пламенно-ионизапиониого детектора, либо катарометра. [c.240]

    Задание. Произвести количественный анализ смеси альдегидов кротонового, масляного, бензальдегида — методом газо-адсорбционной хроматографии на хроматографе ЬДвет-2-65 в режиме линейного программирования температуры. [c.244]


Смотреть страницы где упоминается термин Хроматография газо-адсорбционный метод: [c.85]    [c.26]    [c.60]    [c.9]    [c.146]   
Руководство к практическим занятиям по радиохимии (1968) -- [ c.144 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбционная хроматографи

Адсорбционные методы

Хроматография адсорбционная

Хроматография газо-адсорбционная

Хроматография методы



© 2022 chem21.info Реклама на сайте