Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аммиак теплота испарения

    При оценке аварийного положения в случае утечки сжиженного газа в атмосферу в каждом конкретном случае необходимо учитывать возможность пожаров и взрывов, а также интоксикации людей ядовитыми газами и продуктами их сгорания. Масштабы пожара, взрыва и поражения людей ядовитыми продуктами в любом случае зависят от количества разлитого продукта, площади распространения и испарения жидкости и объема загазованной зоны. Оборудование и технические средства для хранения сжиженного газа должны быть надежными в эксплуатации и исключать малейшие утечки жидкости и газа. Но полностью исключить возможность утечки не удается. Поэтому для предупреждения аварий необходимо учитывать возможность попадания в атмосферу сжи-л<енных газов в газообразном или жидком состоянии. Количество газообразного продукта, образующегося в результате испарения пролитой жидкости, зависит от давления и температуры в резервуаре. Количество испарившегося газа будет тем больше, чем выше температура газа в резервуаре. Например, при истечении жидкого аммиака из сферического резервуара при нормальной температуре испаряется около 10% попавшего наружу безводного аммиака. За счет теплоты испарения понижается температура воздуха в месте испарения, в результате чего образуются более тяжелые по сравнению с окружающим воздухом газовоздушные смеси, способные перемещаться на большие расстояния над поверхностью земли. [c.179]


    На основе материального баланса при известных количествах веществ, температурах (некоторые из них указаны на рис. 1-1), удельных теплоемкостях, теплотах испарения и энтальпиях реакции составляются тепловые балансы отдельных аппаратов и суммарный баланс отделения регенерации аммиака. [c.431]

    Найдите точки замерзания и кипения при обычных условиях, а также теплоты плавления и теплоты испарения аммиака (NHg). Если бы жизнь на какой-нибудь планете основывалась на аммиаке, а не на воде, с какими проблемами она бы столкнулась Какой температурный интервал был бы необходим на этой планете для поддержания жизни  [c.31]

    Поскольку при добавлении тепла происходит медленное разрушение связанных водородной связью кластеров HjO, вода имеет большую теплоемкость, чем многие из других распространенных жидкостей, за исключением аммиака. Кроме того, вода имеет необычно высокую теплоту плавления и теплоту испарения. Совокупность этих трех свойств делает воду эффективным термостатом, который поддерживает температуру на поверхности Земли в умеренных пределах. При плавлении льда поглощается огромная энергия, а нагревание воды на каждый градус требует большей затраты тепла, чем для большинства других веществ. Соответственно при охлаждении воды она выделяет в окружающую среду больше тепла, чем многие другие вещества. [c.621]

    Явление образования таких комплексов получило название ассоциации (объединение,). К ассоциированным жидкостям относятся вода, спирты, ацетон, сжиженный аммиак и др. Степень ассоциации бывает различной. Сильно ассоциированные жидкости заметно отличаются от нормальных по многим свойствам. Ассоциация вызывает увеличение теплоты испарения, уменьшает летучесть жидкости и соответственно изменяет другие свойства. [c.162]

    В пароэжекторных холодильных установках в качестве рабочего агента применяют воду, теплота испарения которой почти в 2 раза больше, чем аммиака, и в 10 раз больше, чем СО2. [c.148]

    Пример 12-12. Определить поверхность конденсатора для конденсации паров аммиака под абсолютным давлением 11,7 бар (11,9 ат). Количество паров О = 250 кг/ч. Пары поступают перегретыми с температурой Т = 100° С, Теплота испарения аммиака г =1145-10 дж/кг (274 ккал/кг . Удельная теплоемкость жидкого аммиака = 4770 дж/кг-град (1,14 ккал/кг-град). Конденсат охлаждается до Гг = 25° С. Температура охлаждающей воды = 20° С. Коэффициенты теплопередачи по зонам  [c.457]


    Если, например, для получения холода используется испарение аммиака, то его пары сжимаются в компрессоре до такого давления, чтобы они могли быть сконденсированы при последующем охлаждении водой. Например, при абсолютном давлении 12 ат аммиак конденсируется при температуре около + 30 С, которая легко может быть достигнута водяным охлаждением. При снижении давления (например, до 2 ат) полученный после конденсации паров жидкий аммиак испаряется, отнимая от охлаждаемого тела тепло, необходимое для испарения (теплота испарения). Затем пары аммиака снова засасываются компрессором. [c.525]

    В пароэжекторных холодильных машинах хладоагентом служит вода. Достоинствами воды как хладоагента являются высокая теплота испарения (почти в два раза выше, чем у аммиака), безвредность и доступность. В то же время, обладая [c.544]

    Рабочей жидкостью в газовых холодильниках является водный раствор аммиака. Попытки заменить его другими веществами оказались экономически не оправданными и безуспешными, поскольку ни один из хладагентов не обладает следующими свойствами большим и устойчивым сродством с водой (водный раствор аммиака имеет низкое давление насыщенных паров) высокой скрытой теплотой испарения раствора относительно низкой теплоемкостью (как ингредиентов, так и раствора)  [c.205]

    Здесь а — поверхностное натяжение жидкости, г — скрытая теплота испарения, — коэффициенты динамической и кинематической вязкости. Чем больше число тем эффективнее теплоноситель. Поскольку параметры, входящие в N , по-разному зависят от температуры, то функция N (7) имеет минимум, отвечающий наивыгоднейшему температурному диапазону работы термосифона. Однако эта величина не полностью характеризует теплоноситель и лишь отражает его свойства в жидком состоянии. По этому числу предпочтение следует отдать дистиллированной воде (ее скрытая теплота испарения велика 2400 кДж/кг). Однако при минусовых температурах вода замерзает. Для исключения замерзания составляется смесь воды со спиртом в процентном отношении. Аммиак обладает большим (сильно нарастающим с повышением температуры) избыточным давлением и плотностью паров теплоносителя в заданном температурном диапазоне, хотя уступает воде по значению скрытой теплоты испарения (ниже в 2 раза, чем у воды). Но аммиак токсичен, и требуется особая осторожность при заправке. Подходящим теплоносителем для термосифонов является и ацетон, но он в =5 раз уступает воде по параметру качества. [c.246]

    Для вычисления теплосодержания смеси паров воды и аммиака иногда находят теплоту испарения этой смеси как сумму теплот иснарения воды и выделения аммиака из водного раствора. Тепло выделения NH., из раствора может быть принято по данным табл. 15 (стр. 382). [c.385]

    С ассоциацией жидкого аммиака связана его большая теплота испарения (5,6 ккал/моль). 1а.к. как критическая температура КНз лежит высоко (+133°С) и при испарении его от окружающей среды отнимается много тепла, жидкий аммиак может служить рабочим веществом холодильных машин. [c.390]

    Благодаря водородным связям аммиак имеет сравнительно высокие температуры плавления и кипения, а также высокую теплоту испарения, он легко сжижается. [c.106]

    Возникновение водородной связи имеет место также и в случае аммиака. Известно, что теплота испарения жидкого аммиака, равная 23,3 кДж/моль, по существу и есть энергия разрыва водородных связей, поскольку каждая молекула аммиака имеет одну неиспользованную МО. Другим характерным примером соединений с водородными связями могут служить молекулы фтористого водорода, которые при конденсации и полимеризации связываются прочными водородными связями [c.358]

    В связи с этим теплота испарения жидкого аммиака велика (23,5 кДж/моль), так как требуётся дополнительная энергия для разрыва водородных связей, а не [c.310]

    Кажущимся недостатком жидкого аммиака как растворителя является низкая температура кипения. Однако применение его во многих случаях обеспечивает столь высокую скорость реакции, что позволяет вести процесс при температуре, не превыщающей температуру кипения. Аммиак также используется при более высоких температурах (комнатной и выще), и хотя это осложняет процесс (из-за необходимости применять автоклав), однако не создает непреодолимых препятствий. Заметим также, что теплота испарения аммиака велика, поэтому, работая с ним, можно использовать емкости, сообщающиеся с атмосферой. При этом быстрого испарения аммиака не происходит, и в больщинстве случаев можно обойтись без наружного охлаждения системы. Немаловажным обстоятельством является также то, что аммиак можно удалить при небольшом нагревании. Это облегчает процесс его регенерации, делает возможным повторное использование. Неудивительно поэтому, что многие исследователи рассматривают аммиак как перспективный нетрадиционный растворитель для экологически чистых и малоотходных технологий. [c.201]

    Аммиак имеет наибольшие преимущества но величине рабочего давления в испарителе и конденсаторе, а также скрытой теплоте испарения. При применении аммиака, даже если охлаждающая вода имеет высокую температуру, давление в конденсаторе не превышает 16 ата, а в обычных условиях работы холодильной машины составляет всего 9— [c.723]


Таблица 32 - Теплота испарения аммиака Таблица 32 - <a href="/info/3540">Теплота испарения</a> аммиака
    Данные, приведенные в таблице, указывают на большое разнообразие физических свойств хладоагентов, сочетающих отдельные достоинства и недостатки. Так, например, аммиак, применяемый в одно- и двухступенчатых машинах для получения температур от —5 до —70 °С, обладает высокой скрытой теплотой испарения, но малой плотностью паров, образует с воздухом взрывоопасные смеси, опасен для жизни при сравнительно низких концентрациях в воздухе, вызывает коррозию медных и бронзовых деталей. Диоксид углерода уступает аммиаку по теплоте испарения и температуре затвердевания, но имеет большую плотность, а также выгодно отличается негорючестью, химической инертностью и [c.734]

    В большинстве случаев электрическое поле вблизи ионной решетки несильно и быстро убывает с увеличением расстояния от поверхности. Его величину трудно оценить, так как наружные ионы ионного кристалла, видимо, несколько смещены относительно узлов решетки, причем положительные ионы смещаются внутрь, в то время как отрицательные ионы стремятся разместиться снаружи. Следует ожидать, что i/( x) будет иметь заметную величину лишь в том случае, когда дипольные молекулы адсорбата способны близко подходить к поверхности [20]. Это положение имеет место, например, для воды, спиртов, аммиака и аминов, которые сильно адсорбируются неорганическими солями и окислами. Атом водорода каждого диполя стремится войти в контакт с отрицательным ионом поверхности (таким, как 1 или ОН ), чтобы образовать относительно сильную водородную связь. Де Бур оценил значение f/( a) в случае адсорбции диполей ОН на ионах h у поверхности КС1 в —5,5 ккал моль- , что намного больше половины величины скрытой теплоты испарения воды. Когда диполи не находятся на периферии молекул, как в кетонах, эфирах и др., электростатический вклад относительно мал и преобладают дисперсионные силы. Поэтому такие молекулы будут адсорбироваться плоско на поверхности и приобретут вертикальную ориентацию только тогда, когда адсорбированный слой переполнится. [c.26]

    Теплота испарения аммиака (7) [c.72]

    Пример IX. 14. Вычислить теплоту испарения аммиака при 373 К и 61,8 атм, зная Гкр = 405,5 К и Ркр = 111,5 атм. [c.204]

    Основные научные исследования посвящены термодинамике растворов. Сформулировал (1911) законы, выражающие в количественной форме влияние теплот испарения компонентов на изменение состава пара растворов с ростом температуры (законы Вревского). Изучил (1916) зависимость теплоемкостей, теплот образования и давления паров водных растворов аммиака, хлористого и бромистого водорода от температуры. Совместно с 5. Я. Никольским создал (1929) новый метод определения скрытых теплот испарения растворов при постоянной температуре и новый способ определения парциального давления пара и степени диссоциации молекул ассоциированного компонента в парах растворов. [c.118]

    Именно наличием большого числа водородных связей в жидком аммиаке объясняется довольно высокая теплота его испарения -23,3 кДж/моль. Это в 4 раза больше теплоты испарения жидкого азота и в 280 раз больше этого значения для жидкого гелия. Большая теплота испарения жидкого аммиака не только облегчает работу с ним как с растворителем, но и позволяет использовать это вещество в качестве хладоагента в различных холодильных установках. Хранят жидкий аммиак в герметичных баллонах (давление пара над жидким аммиаком при 25 °С составляет приблизительно 110 Па). [c.20]

    Аммиак — бесцветный едкий газ (т. кип. —33,35°С). Жидкий аммиак имеет большую теплоту испарения (1,37 кДж-Г при температуре кипения), и поэтому с ним можно работать на обычном лабораторном оборудовании. По своему физическому поведению NHs напоминает воду. Он сильно ассоциирован за счет прочных водородных связей, а его диэлектрическая проницаемость ( 22 при —34°С ср. 81 для Н2О при 25°С) достаточно высока, чтобы он был прекрасным ионизующим растворителем. Самоионизация NH3 уже обсуждалась в разд. 10.3. [c.331]

    Аммиак имеет наибольшие преимущества в отношении рабочих давлений в. испарителе и конденсаторе, а также скрытой теплоты испарения. Даже при самых высоких температурах охлаждающей воды давление в конденсаторе не превышает 16 ата, а в обычных условиях работы холодильной машины составляет всего 9—14 ата, и в то же время в испарителе даже при температуре до —34° давление не падает ниже атмосферного. [c.684]

    Для молекулы NH j характерна 5/) -гибридизация, угол между связями N—Н равен 107,3" и близок к тетраэдру (см. рис. 5.3), Несвязывающее двухэлектроиное облако (.s ) вытянуто от ядра атома азота к вершине тетраэдра, поэтому NH3 обладает высокой полярностью ( 1 = 1,48). Жидкий аммиак имеет высокую теплоту испарения и используется как рабочее вещество холодильных машин. [c.307]

    При выпаривании водных растворов отводимая паровая фаза может содержать летучие компоненты, которые были растворены в исходном растворе или образовались при его нагревании. В этом случае пар становится сложнее по составу, вследствие чего для конденсации или поглощения каждой из его составных частей необходимо создавать соответствующие условия. Например, упаривание оборотного раствора (фильтровой жидкости) после отделения ЫаНСОз в содовом производстве или выпарка суспензии солей, получаемой в производстве аммофоса, сопровождаются выделением водяного пара и аммиака. При упаривании экстракционной фосфорной кислоты образуется газ, состоящий из водяного пара и фтористых соединений. Удаление из раствора неводных летучих компонентов требует дополнительной затраты теплоты в количестве, определяемом из теплоты испарения. Для увеличения степени извлечения их в газовую фазу применяют разные методы повышения коэффициентов их активности в растворе. [c.232]

    После окончания расчета данного участка переходим к другому участку регенеративных кристаллизаторов, и далее к участкам аммиачных кристаллизаторов. Порядок расчета аммиачных кристаллизаторов в основном тот же, что и регенеративных. Охлаждение раствора сырья в аммиачных кристаллизаторах происходит за счет скрытой теплоты испарения аммиака. В связи с этим температура аммиака на входе и выходе кристаллизатора остается постоянной и отвечает определенному давлению испарения. Аммиачные компрессоры холодильного отделения. могут работать на двух режимах при температуре испарения минус 35°С (Ра = 0,095МПа), при температуре минус 43 С (Ра = 0,0662МПа). Для того, чтобы аммиачные кристаллизаторы (и теплообменники) работали с некоторым запасом по холодопроизводительности (коэффициенту теплопередачи), расчеты необходимо вести при первом режиме испарения. При расчете аммиачных кристаллизаторов и теплообменников определяется расход хладагента, что позволяет сделать выбор марки аммиачного компрессора и их количество. [c.26]

    Весьма перспективно для химической технологии теплообмен ное устройство, называемое теплопроводом. Оно пред ставляет собой полностью закрытую металлическую трубу с лю быми профилями сечения, футерованную каким-либо пористо капиллярным материалом (фитилем), например, шерстяной тканью, стекловолокном, сетками, пористыми металлами, полимерами, керамикой и т. п. В полость трубы подается теплоноситель в количестве, достаточном для полной пропитки фитиля. Температура кипения теплоносителя должна обеспечивать отвод тепла (путем испарения) из охлаждаемого рабочего пространства химического реактора или другого аппарата интервал зон температуры — от какой угодно низкой до 2000 °С. В качестве теплоносителя используют металлы (Сз, К, На, Ы, РЬ, А и др.), высоко кипящие органические жидкости, расплавы солей, воду, аммиак, жидкий азот и др.). Предпочтительны жидкости с высокой скрытой теплотой испарения, большим поверхностным натяжением, низкими плотностью и вязкостью. Трубка одной своей частью располагается в зоне отвода тепла, а остальной частью — в зоне конденсации паров. Пары теплоносителя, образовавшиеся в первой зоне, конденсируются во второй зоне, а конденсат возвращается в первую зону под действием капиллярных сил фитиля. Благодаря большому количеству центров парообразования резко падает перегрев жидкости при ее кипении и значительно возрастает коэффициент теплоотдачи при испарении (в 5—10 раз). Особенностью теплопровода является очень высокая эффективная теплопроводность вдоль потока пара (на 3—4 порядка больше, чем у серебра, меди и алю.миния), что обусловлено низким температурным градиентом вдоль трубы. Мощность теплопровода определяется капиллярным давлением, компенсирующим потери напора парового и жидкостного потоков. [c.336]

    Тепловые явления. Молярные теплоты испарения аммиака, двуокиси уг.лорода и воды из типичного аммиачного раствора медной соли (смешанный формиат и карбонат меди) были вычислены [9] на основании уравнения Клаузиуса-Клаиейрона и наклона пиний (рис. 14.5), изображающих за-1 исим0сть логарифма давления от величины, обратной абсолютной температуре. Результаты, полученные для растворов, рассматриваемых на рис. 14.5 (в кал молъ)  [c.354]

    Основное направление научных работ — изучение состава органических соединений. Под влиянием Либиха занимался (с 1835) исследованием органических соединений. Впервые получил (1835) ви-нилхлорид присоединением хлористого водорода к ацетилену, синтезировал (1838) поливинилиден-хлорид. Открыл (1838) явление фотохимической полимеризации. Определил (1838) элементный состав хинина и цинхонина. Исследовал (1839) тиоэфиры и получил хлорированные метаны от моно-до тетрахлорметана. Изучал (1836—1837) действие серного ангидрида на органические вещества, Разработал (1840) способ получения меркаптанов действием гидросульфита калия на алкилгалогениды в спиртовом растворе. Провел точное определение теплоемкостей, теплового расширения и теплот испарения жидкостей и твердых тел. Наиболее точно для своего времени определил механический эквивалент теплоты составил таблицы упругости паров. Установил (1846) образование аммиака при действии электрической искры на смесь азота и водорода. Сконструировал ряд приборов воздушный термометр, пирометр, гигрометр. Занимался усовершенствованием газового освещения в Париже, Автор учебника Нача.ть-ный курс химии (1847—1849). [c.424]

    Большую теплоту испарения аммиака используют в холодильных установках. В значительной мере она обусловлена тем, что МономоЯекулярный в парообразном состоянии аммиак при сжижении, подобно воде, полимеризуется и его деполимеризация при испарении требует большой затраты тепла.  [c.653]

    Но и помимо этого, аммиак находит широкое применение в химической промышленности. Водный раствор аммиака применяют в аналитической химии как очень удобное осаждающее средство. В домашнем обиходе разбавленными врдными растворами аммиака под названием нашатырного спирта пользуются для чистки и выведения пятен. Его применяют также в медицине. Безводный аммиак благодаря своей значительной теплоте испарения играет большую роль в холодильном деле (холодильники, приготовление искусственного льда). [c.656]

    Анри Виктор Реньо (1810—1878). Родился в Аахене, учился в Париже-в Политехнической и Горной школах, затем работал у Либиха, под влиянием которого начал исследования в области органической химии (и проводил их вплоть до 1840 г.). Был профессором химии в Политехнической школе и Французском коллеже, служи управляющим Севрской фарфоровой фабрики. Его имя вошло в историю физической химии благодаря работам по удельным теплоемкостям, скрытым теплотам плавления, теплотам испарения и сжимаемости газов. В 1846 г. он сделал важное наблюдение, что при действии электрической искры на смесь азота и водорода образуется аммиак. Написал Начальный курс химии (1847—1849), получивший широкое распростране-вве (был переведен на немецкий язык Штреккером) [c.191]

    Среди водородных- соединений неметаллов V группы аммиак занш- мает такое же особое положение, как вода среди халкогеноводародов. и плавиковая кислота среди галогеноводородов. Аммиак по своим физическим свойствам во многом сходен с водой. Молекула аммиака — это резко выраженный диполь, поэтому аммиак легко сжижается. Жидкий аммиак — легкоподвижная, сильно преломляющая свет жидкость с точкой кипения — 33,4°. Скрытая теплота испарения жидкого аммиака выше, чем у других жидкостей, за исключением воды. Поэтому аммиак применяется в холодильных установках. Его диэлектрическая константа равна 22, и жидкий аммиак, подобно воде, хороший растворитель для многих веществ, в том числе и для многих солей. [c.313]


Смотреть страницы где упоминается термин Аммиак теплота испарения: [c.62]    [c.521]    [c.249]    [c.311]    [c.375]    [c.191]    [c.523]   
Производство хлора и каустической соды (1966) -- [ c.263 , c.266 ]

Инженерный справочник по технологии неорганических веществ Графики и номограммы Издание 2 (1975) -- [ c.168 ]




ПОИСК





Смотрите так же термины и статьи:

Теплота H аммиаком

Теплота испарения



© 2025 chem21.info Реклама на сайте