Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дебая—Хюккеля диссоциации

    Метод Бьеррума содержит те же упрощения, что и модель Дебая— Хюккеля, в частности в отношении точных методов подсчета энергии пар ионов на малых расстояниях, когда, несомненно, большую роль играет молекулярная структура.. Тем не менее эта теория представляет значительный шаг вперед и дает удобную основу для оценки взаимодействий между ионами. Фуосс [51] рассмотрел вопрос о произвольном выбо ре критического расстояния г в и показал, что любое расстояние, на котором сила взаимодействия ионов составляет величину около 2кТ, дает аналогичные результаты. Фуосс совместно с Краусом применили описанную выше теорию к случаю диссоциации сильных электролитов в среде с меняющейся диэлектрической проницаемостью [52]. Было получено весьма хорошее совпадение теоретических расчетов и экспериментальных определений электропроводности. [c.453]


    Состояние сильных электролитов в растворах. Сильные электролиты не только в разбавленных растворах, но и в растворах значительной концентрации практически полностью диссоциированы на ионы, т.е. а=1. Поэтому в растворах сильных электролитов вследствие большого числа ионов усиливается электростатическое взаимодействие ионов. Каждый гидратированный ион окружен роем противоположно заряженных гидратированных ионов, образующих в соответствии с теорией Дебая — Хюккеля (1923) ионную атмосферу , которая препятствует движению ионов. С увеличением концентрации раствора усиливается тормозящее действие ионной атмосферы на ионы. Электростатическое взаимодействие в значительной степени зависит также от величины зарядов и радиусов ионов, диэлектрической проницаемости среды. Поэтому определяемая на опыте степень диссоциации сильных электролитов не отражает истинной картины распада электролита на ионы. Она получила название кажущейся степени диссоциации. [c.211]

    Теория Дебая — Хюккеля исходит из представления о полной диссоциации электролита. Как и в теории Гоша, в теории Дебая — Хюккеля предполагается, что в растворе электролитов суш,ествует правильное чередование положительных и отрицательных ионов. Это предположение естественно. Нельзя представить себе раствор, в котором в одном месте сконцентрировались бы положительные ионы, а в другом — отрицательные. Происходит упорядоченное распределение зарядов. Но если в теории Гоша предполагалось, что заряды закреплены в какой-то определенной кристаллической решетке, то в теории Дебая — Хюккеля такое предположение не делается. Предполагается, что правильное чередование положительных и отрицательных ионов — это лишь следствие статистического распределения, т. е. результат свободного кинетического движения ионов и наличия у них зарядов. [c.69]

    Таким образом, при использовании теории сольватации ионов, выведены уравнения зависимости Ig 7O и Ig 7ц от свойств среды. С помощью этих выражений для Ig 7о можно в свою очередь вывести теоретически уравнения зависимости любых свойств электролитов от растворителя (растворимость, константа диссоциации, электродвижущая сила и т. д.), подобно тому, как с помощью выражения для записимости коэффициента активности 7 от копцептрации, выведенного па основании теории Дебая — Хюккеля, можно вывести выражения для зависимости любых свойств электролитов от концентрации. [c.187]


    В растворах различных веществ в жидких неводных растворителях и сжиженных газах помимо ионов, предсказываемых теорией электролитической диссоциации, имеются разнообразные ионы и молекулы, вызывающие аномалии в поведении истинных растворов, которые не могут быть объяснены ни гипотезой С. Аррениуса, ни современными теориями Дебая — Хюккеля и Л. Онзагера, поскольку предметом их не является изучение влияния растворителей на свойства электролитов. Следует отметить, что теория Бренстеда и другие теории, предметом которых было исследование влияния растворителей на силу кислот и оснований, также не объясняют аномалий в поведении электролитов в неводных растворах. Как показывают исследования, указанные аномалии обусловливаются взаимодействием растворенного вещества с растворителем. [c.391]

    Х-2-18. Константа диссоциации миндальной кислоты в водном растворе при 25°С 4,29-10 константа диссоциации п-анизидина (основание) 5,13-10 . Раствор приготовлен добавлением 0,040 моля миндальной кислоты и 0,060 моля п-анизидина к 1000 г воды при 25° С. (Только одна фаза присутствует при равновесии.) а) Определите ионную силу раствора. Используя полученный результат и уравнение Дебая — Хюккеля, найдите коэффициент активности каждого иона в растворе, б) Составьте уравнения, решения которых дадут моляльность каждой химической частицы [c.118]

    Несмотря на полную диссоциацию сильных электролитов, их электропроводность с ростом концентрации раствора уменьшается. При теоретическом обосновании этого явления Дебай, Хюккель и Онзагер исходили из того, что при наложении внешнего электрического поля, помимо поступательного движения ионов к электродам, осложняемого их тепловым движением, необходимо учитывать силы трения сольватированных ионов о растворитель, а также тормозящий эффект, возникающий вследствие электростатического взаимодействия ионов. [c.112]

    Константа диссоциации К слабых П. уменьшается при увеличении степени диссоциации а. Это вызвано тем, что с ростом а возрастает суммарный заряд полииона и для послед, диссоциации ионов необходимо совершить большую работу. Поэтому сила П. (в отличие от низкомол. электролитов, для к-рых К не зависит от а) определяется характеристич. К при а = О и производной кажущейся К по а. Этот эффект значительно снижается при возрастании ионной силы р-ра. Сильным электростатич. связыванием противоионов полиионом обусловлено уменьшение эффективного заряда цепи П., что сказывается на всех св-вах их р-ров и чем, в первую очередь, объясняется существенное отличие р-ров П. от идеальных. В р-рах, содержащих низкомол. электролиты, наблюдается эффект исключения последних из областей, занятых полиионом (т. н. донна новское распределение), что также вносит вклад в неидеальное поведение р-ров П. Электростатич. теория р-ров П. основана на Дебая — Хюккеля теории (см. Растворы электролитов). [c.469]

    В разд. 12.8 было введено понятие коэффициента I Вант-Гоффа, который определяется как отношение истинной степени диссоциации электролита к его полной степени диссоциации. Многие свойства растворов электролитов, и в том числе слабых электролитов, отклоняются от свойств идеальных растворов вследствие притяжения между ионами. Согласно теории разбавленных растворов Дебая — Хюккеля, ионы в растворе не полностью независимы друг от друга в отличие от молекул растворяемых веществ молекулярного типа. Очевидно, электрические силы взаимодействия между противоположно заряженными ионами лишают их возможности вести себя подобно полностью диссоциированным частицам. Эффект притяжения между ионами сказывается тем больше, чем выше ионные заряды. [c.266]

    При малых значениях ионной силы зависимость кажущейся константы диссоциации кислоты от ионной силы может быть рассчитана с помощью теории Дебая — Хюккеля (разд. 7.10). [c.212]

    Значение К можно получить путем экстраполяции к нулевой ионной силе с использованием теории Дебая—Хюккеля (разд. 7.10). С помощью измеренных э. д. с. соответствующих гальванических элементов и указанной экстраполяции были определены константы диссоциации целого ряда слабых кислот при разных температурах. Из температурной зависимости константы можно рассчитать величины АЯ°, А5° и АСр, относящиеся к реакции диссоциации. Значения этих термодинамических величин для некоторых слабых кислот в водных растворах при 25° С приведены в табл. 7.1. [c.220]

    Изложенная теория Дебая — Хюккеля относится к сильным электролитам. Аминокислоты — слабые электролиты. Однако при больших ионных силах коэффициенты активности аминокислот отличны от единицы и на опыте определяют не рК, а эффективные константы диссоциации [c.65]

    Константа диссоциации уксусной кислоты при 25°С равна 1.75-10" моль-л". Используя первое приближение теории Дебая-Хюккеля, рассчитайте степень диссоциации кислоты, ес.ти ее моляльность равна 0.100 моль-ki" .  [c.125]

    В случае слабых электролитов скорость реакции может изменяться вследствие изменения концентрации одного из реагентов в присутствии посторонних электролитов, влияющих на ионную силу раствора и степень диссоциации электролита. Это явление называют вторичным солевым эффектом. Для разбавленных растворов зависимость коэффициента активности от ионной силы раствора описывается предельным законом Дебая - Хюккеля  [c.145]


    Дебая-Хюккеля теория Теория электролитич. диссоциации, основанная на допущении, что эл-ты диссоциированы полностью и что противоположно заряж. ионы в р-ре находятся во взаимном электростатич. взаимод. Теория применима для разбавл. р-ров сильных эл-тов. [c.66]

    Эту методику, очевидно, можно использовать для оценки К при известном Е° она является основой метода Харнеда [11] для определения констант диссоциации слабых кислот и оснований. Применимость этого метода не ограничивается нейтральными кислотами. Однако, когда кислота заряжена, последний член в уравнении (21) может не оказаться малым. В этом случае, чтобы облегчить экстраполяцию, надо подставить подходящее приближение Дебая-Хюккеля, как это было описано выше в настоящем разделе. [c.23]

    Теория Дебая—Хюккеля исходит из представления о по.л-ной диссоциации электролита. Как и в теории Гоша, в теории Дебая предполагается, что в растворе электролитов существует правильное чередование положительных и отрицательных ионов. Это предположение естественно. Нельзя представить себе раствор, в котором в одном месте сконцентрировались бы положительные ионы, а в другом — отрицательные, Происхо- [c.160]

    Однако дальнейшее развитие электрохимии показало, что теория Аррениуса не универсальна, что ее приложение ограничивается только одним классом слабых электролитов. Было установлено, что поведение так называемых сильных электролитов не может быть объяснено с точки зрения теории Аррениуса (см. гл. I). На смену этой теории пришла электростатическая теория Дебая—Онзагера, в которой принималась полная диссоциация электролитов. Количественные выводы из теории Аррениуса оказались уже неприложимыми к сильным кислотам и основаниям. Состояние этих веществ необходимо было трактовать на основании теории Дебая—Хюккеля, хотя, конечно, эта теория не рассматривает вопроса о природе кислот. Теория Аррениуса оказалась недостаточной для объяснения ряда свойств кислот и оснований. Уже исследования инвертирующих свойств кислот, проведенные Аррениусом и Оствальдом, показали, что каталитическое действие кислот во многих случаях сильнее, чем это можно было ожидать из данных электропроводности. [c.294]

    Уравнение (10) представляет собой уравнение (9), выраженное в единицах концентрации и коэффициентов активности кислоты и основания. Для точной работы необходимы поправки на ионную силу либо путем расчета коэффициентов активности из предельных уравнений Дебая — Хюккеля, либо путем определения значений при разной ионной силе и экстраполирования к нулевой ионной силе. Для разбавленных растворов эти поправки невелики (обычно меньше 0,1 единицы рК), и когда значения р )Г сравниваются со значениями, определенными при той же концентрации, то поправки имеют тенденцию к сокращению. Константа диссоциации, полученная без поправок на ионную силу [т. е. но уравнению (10) без последних двух членов], носит название кажущейся константы диссоциации и часто обозначается ЛГ тогда [c.371]

    Однако К не является истинной константой диссоциации, поскольку поведение ионов в растворе отличается от идеального и необходимо учитывать их коэффициенты активности. Последние можно вычислить по уравнению Дебая— Хюккеля [15], согласно которому [c.265]

    Величина диэлектрической проницаемости рассматривается как переменная функция напряженности электрического поля согласно теориям Дебая — Хюккеля, Онзагера и др. Микулин считает, что сопоставление теоретических термодинамических функций с экснериментальными величинами допустимо лишь для водных растворов таких электролитов, ионы которых не образуют жидких гидратов определенного состава. Б качестве такого электролита Микулин выбрал АгКОд и получил для этой солп в соответствии с развитой им теорией линейную зависимость изобарного потенциала от концентрации (е). Пример, выбранный Микулиным для подтверждения теории, не совсем удачный, так как AgNOз является слабой солью, диссоциация которой подчиняется закону действия мас чем п объясняется линейная зависимость между термодинамическими функциями ж Vс. В дальнейших работах Микулин учитывает влияние гидратации ионов на зависимость термодинамических функций от концентраций. [c.86]

    Сплошные кривые — результаты расчетов по уравнению (V.100) с учетом изменения степени ассоциации. На рисунке приведены значения принятых величин расстояния наибольшего сближения а и констант диссоциации К. Пун-кторные линии — коэффициенты, рассчитанные по уравнению Дебая — Хюккеля.]  [c.213]

    Х-2-17. Хинин ( 20H24N2O2) — основание (Q), которое может принимать два протона. Первая и вторая константы диссоциации равны A i = 2,0-10 и /(2=1,35-10- °. Раствор приготовлен добавлением 0,10 моля хинина и 0,10 моля НС к 1,00 кг воды при 25° С. а) Определите ионную силу раствора. Использовав полученный результат и уравнение Дебая — Хюккеля, найдите приближенно коэффициент активности каждого иона Б этом растворе, б) Напишите уравнения, решения которых дадут моляльность каждой химической частицы в растворе, за исключением воды. Примите, что активность воды равна единице, в) Сделайте необходимые упрощения для определения моляльности ОН и хинина в растворе. [c.118]

    Э. возникла на рубеже 18 и 19 вв. благодаря работам Л. Гальвани и А. Вольта, в результате к-рых был создан первый химический источник тока — вольтов столб . Используя хим. источники тока, Г. Дэви в нач. 19 в. осуществил электролиз многих в-в. Законы электролиза были установлены М. Фарадеем в ЗО-х гг. 19 в. (см. Фарадея законы). В 1887 С. Аррениус сформулировал основы теории электролитической диссоциации. В 20-х гг. 20 в. зта теория была дополнена П. Дебаем и Э. Хюккелем, к-рые учли электростатич. взаимод. между ионами. В дальнейшем на основе Дебая — Хюккеля теории были развиты представления о механизме электропроводности электролитов (Л. Онсагер, 1926). Во 2-й пол. 19 в. благодаря работам В. Нернста, Дж. Гиббса и Г. Гельмгольца были установлены осн. термодинамич. соотношения Э., к-рые позволили связать здс злектрохим. цепи с тепловым эффектом протекающей на электродах р-ции. Модельные представления о строении границы между электродом и р-ром, [c.705]

    Совр. теории р-ров П. позволяют рассчитать электростатич. потенциал вблизи заряженного полииона и эквивалентную работе, совершаемой против электрич. сил гфи диссоциации П., имеющего зада] ное пространств, расположение ионогенных групп, т. е. заданную конформацию. Большинство из этих теорий является распространение теории Дебая-Хюккеля на многозарядные полионы. Характеристики рассчитывают для полиионов определенной гео.м. формы, к-рые являются моделями реальных макромолекул Так, сферич. модели используют для предсказания св-в компактных полиионов, напр, глобулярных белков, модели цилиндров и жестких стержней для жестких макромолекул, [c.44]

    Как и теоркя Дебая-Хюккеля, ур-ние Онсагера офаничено областью умеренно разбавленных р-ров. Для описания концентрир. р-ров возникает необходимость в учете некулоновской части межионного взаимод., в частности в учете ионных размеров. Для этой цели применяют методы кинетич. теорт ионных систем. К дополнит, уменьшению X приводит образование ионных ассоциатов - пар, тройников и т. п., к-рое, как и эффект неполной диссоциации, сокращает общее число своб. ионов в р-ре. Для учета этого эффекта в ур-нии Онсагера заменяют общую концентрацию ионов концентрацией своб, ионов ас (а- степень электролитич. диссоциации), что приводит к ур-нию Фуосса-Онсагера  [c.454]

    Как видно из уравнения (3-32), для экстраполяции К к бесконечно малым концентрациям удобно использовать график зависимости gK от Уц. Такой график [10] представлен на рис. 3-1. Здесь приведено изменение рЛа для диссоциации Н2РО4, АМР , ADP и АТР . Для низких концентраций зависимость р/(а от Уц находится с помощью уравнения Дебая—Хюккеля [уравнение (3-32)]  [c.211]

    Наиболее изучены водные растворы в них велика диссоциация на ионы и существенны длиннодействующие взаимодействия, но последние до некоторой степени удается предсказать с помощью теории Дебая — Хюккеля. Наиболее трудными для изучения системами следует считать промежуточные, в которых значительны концентрации ионов, а длиннодействующие силы более существенны и труднее предсказуемы, чем в водных растворах. Имеется ценная работа Гасса и Кольтгофа [60] по кислотно-основным реакциям в метаноле, где не наблюдалось ни ГОМО-, ни гетеросопряжения. Весьма обширные иссле- [c.388]

Рис. 67. Результаты расчетов коэффициентов активности одно-одновалентных солей по Викке и Эйгену Сплошные кривые—результаты расчетов по уравнению (5,100) с учетом изменения степени ассоциации. На рисунке приаедены значения принятых вели>1ин расстояния наибольшего сближения а и констант диссоциации К. Пунктирная линия — коэффициенты активности, рассчитанные по уравнению Дебая—Хюккеля. Рис. 67. Результаты <a href="/info/332583">расчетов коэффициентов активности</a> одно-<a href="/info/223747">одновалентных солей</a> по Викке и Эйгену Сплошные <a href="/info/1031574">кривые—результаты</a> расчетов по уравнению (5,100) с <a href="/info/364890">учетом изменения</a> <a href="/info/224430">степени ассоциации</a>. На рисунке приаедены значения принятых вели>1ин <a href="/info/264416">расстояния наибольшего сближения</a> а и <a href="/info/4777">констант диссоциации</a> К. Пунктирная линия — <a href="/info/2358">коэффициенты активности</a>, рассчитанные по <a href="/info/5666">уравнению Дебая</a>—Хюккеля.
    Термодинамическая устойчивость ряда комплексов ионов металлов была исследована в лабораториях Абегга, Бодлендера и Н. Бьеррума в первые два десятилетия XX в. Затем прогресс замедлился по причинам, на которые указали Мак-Бен и Ван Риссельбердже 1195], писавшие в 1928 г. Широко распространившееся за последние годы использование коэффициентов активности привело к тому, что многие исследователи полностью отказались от изучения вопроса об истинной степени диссоциации сильных электролитов... Первой задачей остается определение истинных веществ, имеющихся в растворах, и их реальных концентраций . Тем не менее кажущийся успех теории Дебая — Хюккеля в объяснении некоторых свойств загрязненной воды позволил термодинамикам и электрохимикам навсегда сохранить миф о полной диссоциации сильных электролитов. [c.14]

    В [47] отражена только чисто физическая сторона проблемы, даны поправки к теории Дебая — Хюккеля, но в стороне остаются явления гидратации как возникновения новых равновесий в растворе. Ван-Рейвен и Н. С. Спиро напротив трактуют свойства растворов как следствие сочетания неполной диссоциации электролита и образования ионных гидратов, используя закон действующих масс. Но электростатические взаимодействия ионов остаются за рамками рассуждений. В итоге согласия с опытом не получается. Д.ля понимания теплоемкости растворов неприменимой является и теория [c.233]

    В целях упропдения мы выбрали для рассмотрения случай, когда электролит является бинарным. В тех случаях, когда молекула электролита нри диссоциации образует больше двух ионов, вывод несколько усложняется. Однако конечный результат остается неизменным. Концентрационная зависимость коэффициента активности неэлектролита, растворенного в электролите, имеет тот же вид, что и соответствующая зависимость д.тя электролита, растворенного в неэлектролите. Термодинамические свойства разведенных растворов неэлектролитов в электролитах должны быть сходными с аналогичными сво11ствами растворов электролитов в неэлектролитах, вытекающими из теории Дебая—Хюккеля. [c.448]

    В разбавленных растворах, когда теория Дебая — Хюккеля справедлива и при условии полной диссоциации электролита. d b диссоциирует не полностью и зависимость Еп от Е - klog4m — 3kSfY не линейна в противоположность тому, что требует выражение (8.48). [c.288]

    Трикарбоновые кислоты образуют устойчивые растворимые комплексы с ионами кальция. Наиболее устойчив цитратный комплекс с константой устойчивости 7,94 O при ионной силе раствора, равной нулю. Чтобы можно было разделить эффекты, обусловленные комплексообразованием и вызванные адсорбцией трикарбонатных ионов на поверхности кристалла, необходимо рассчитать концентрации каждой ионной частицы в растворе. Эти расчеты проводили, как описано в работе [14], исходя из баланса масс, суммарной электронейтральности частиц, образующихся при протонной диссоциации, и констант ассоциации ионных пар фосфатов и трикарбоксилатов кальция и магния [15] методом последовательных приближений при ионной силе, равной 1. Коэффициенты активности ионов с валентностью г рассчитывали по уравнению Дебая — Хюккеля, записанному Дейвисом в виде [16] [c.21]

    Краткий обзор теории Дебая— Хюккеля дан M lnnes D. А., J. Franklin Jnst., 225, 661, 1938. Относительно точного расчета констант диссоциации на основе измерений электропроводности см. там же стр. 678 и сл. [c.90]

    Поведение полностью диссоциированных электролитов в сильно разбавленных растворах должно подчиняться уравнению Дебая —Хюккеля и уравнению Онзагера (см.). Многие соли в воде ведут себя в соответствии с этими уравнениями, однако некоторые одно-однозарядные и одно-двух-зарядные соли и большинство многозарядных солей проявляют необычно низкие мольную электропроводность и активность. Такие отклонения можно объяснить ассоциацией катионов с анионами, что приводит к образованию ионных пар. Уравнение, описываюш ее равновесие между свободными ионами и ионными парами, можно сформулировать так же, как и для слабых электролитов Ко = ТкТа /(1—а), где и 7 — коэффициенты активности катиона и аниона, а — доля электролита, присутствуюш.его в виде свободных ионов, и /(о— константа диссоциации. Используется также константа ассоциации или константа устойчивости Ка, обратная величине Ко, т. е. р/Сл=—р/Со. Необходимо учитывать, что ионные пары могут также нести заряд, например + 2СГ РЬС1 + СГ, и тогда [c.52]

    Поскольку уравнение Дебая—Хюккеля [15] выведено на основе некоторых упрощающих предположений, оно не полностью учитывает эффекты взаимного притяжения ионов малого диаметра при малых расстояниях между ними. Чтобы исправить это, Бьеррум рассчитал вероятность нахождения противоположно заряженного иона на заданных расстояниях от центрального иона. Эта вероятность вели- ка при очень малых расстояниях, когда электростатическое притяжение велико, затем оно проходит через пологий минимум и вновь возрастает с увеличением рассматриваемых объемов раствора. Минимум соответствует расстоянию д, равному г а 2 в е 12кТ. Для воды при 298 К это расстояние 0 = 3,5 10" м. Бьеррум высказал предположение, что пару ионов, удаленных друг от друга на расстояние меньшее, чем указанное выше, следует рассматривать как незаряженную ионную пару (см.), находящуюся в равновесии со свободными ионами (последние, будучи разделены расстоянием большим, чем соответствующее минимуму, должны полностью подчиняться уравнениям Дебая—Хюккеля и Онзагера). Долю ионных пар (1—а) находят путем интегрирования от а (расстояние максимального сближения ионов, или средний ионный радиус) до д. Зная (1—а), определяют константу ассоциации, которая является величиной, обратной константе диссоциации  [c.190]


Смотреть страницы где упоминается термин Дебая—Хюккеля диссоциации: [c.117]    [c.379]    [c.225]    [c.466]    [c.636]    [c.225]    [c.469]    [c.134]    [c.113]    [c.240]    [c.64]   
Химия полимеров (1965) -- [ c.594 , c.600 , c.605 , c.621 ]




ПОИСК





Смотрите так же термины и статьи:

Дебай

Дебая Хюккеля

Хюккель



© 2024 chem21.info Реклама на сайте