Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диоксид метаноле

    Метанол и этанол используются в огромных количествах в качестве растворителей и сырья для химического синтеза. Промышленный синтез метанола осуществляется из диоксида углерода и водорода [c.293]

    Более широкие экспериментальные исследования по окислению диоксида серь на ванадиевом катализаторе, обезвреживанию отходящих газов от вредных примесей и сжиганию пропан-бутановых смесей на оксидных катализаторах, процессов синтеза аммиака, метанола и других показали эффективность использования способа с реверсом в технологии. На базе этих экспериментов уже внедрен в промышленность способ с реверсом реакционной смеси. Экспериментам предшествовало теоретическое предсказание принципиальной возможности осуществления и эффективности процесса с реверсом для обратимых экзотермических реакций. Численные расчеты по различным вариантам математической модели процесса позволили спланировать работы на опытно-промышленных установках и рассчитать характеристики этих промышленных агрегатов. [c.307]


    Побочно образуются диметиловый эфир (за счет дегидратации метанола), метан (как продукт гидрирования метанола и СО), диоксид углерода и вода  [c.528]

    Для осуществления эндотермической реакции диссоциации метанола используется трубчатый реактор (рис. 2). Температура реакции 275—350 °С сырьем является парообразный метанол, содержащий достаточное количество водяного пара для превращения монооксида углерода в диоксид и сдвига равновесия реакции. В результате отмывки диоксида углерода в скруббере с алкиламином получается весьма чистый водород. Когда оборудование перестраивалось для целей мирного времени, в схему процесса была добавлена стадия превращения остаточного монооксида углерода в метан, который, как уже говорилось, безвреден для большинства процессов гидрирования. [c.150]

    Рис, 1. Зависимость выхода метанола от с) ммарной концентрации оксида диоксида углерода в свежем газе [c.67]

    Отличительной особенностью процесса синтеза метанола на медьсодержащих катализаторах является присутствие в исходной газовой смеси слабого окислителя — диоксида углерода для поддержания стабильной работы катализатора. [c.165]

    Очищенный от пыли и смол синтез-газ направляют на дальнейшую обработку. В настоящее время вместо ранее применяемого комбинирования различных абсорбционных и адсорбционных процессов (грубая очистка, тонкая очистка при повышенной температуре, очистка в колоннах с активным углем) используется очистка холодным метанолом, которая позволяет в одну ступень отделить газ от примесей, отравляющих катализатор, а также избавиться от избытка диоксида углерода. [c.108]

    Для экстракции возможно применение метанола, диоксида углерода в сверхкритическом состоянии, смесей растворителей с последующей тепловой обработкой, позволяющей увеличить площади поверхности и объемы пор регенерируемого сорбента [225]. [c.375]

    В первом, содержащем диоксид серы, пиридин и метанол, пробу растворяют, а титруют вторым, которым является мета-нольный раствор иода. Каждый из этих растворов более устойчив и менее гигроскопичен, чем их смесь. Титр реактива Фишера устанавливают по раствору воды в метаноле, по чистой воде, по различным устойчивым кристаллогидратам, наиболее подходящим из которых является дигидрат тартрата натрия. [c.281]


    Для метилового спирта характерно большинство обычных реакций первичных спиртов, кроме реакции дегидратации до алкена. Окисление с хорошим выходом дает формальдегид, муравьиную кислоту и диоксид углерода. При ферментативном окислении в живом организме метанол превращается в формальдегид, что и обусловливает его высокую токсичность  [c.79]

    Из других органических веществ перманганатометрическое определение возможно для ряда оксикислот, например гликолевой, молочной, яблочной, винной, лимонной можно также титровать салициловую кислоту, метанол, фенол, пирокатехин, гидрохинон, пирогаллол, нитрофенолы, пикриновую кислоту и некоторые другие вещества. Окисление происходит до конечного продукта — диоксида углерода. Те.м не менее окисление происходит очень медленно, и поэтому применяют следующий прием. К анализируемому раствору прибавляют избыток раствора щелочи и избыток раствора перманганата. Ожидают некоторое время пока окисление закончится, затем раствор подкисляют серной кислотой и определяют избыток введенного перманганата каким-либо способом. Можно, например, прибавить после подкисления избы- [c.410]

    Титриметрический метод. Реагент Карла Фишера состоит из иода, диоксида серы, пиридина и метанола. Реакция между иодом и диоксидом серы может происходить только в присутствии воды  [c.638]

    Окисление этилена метанола нафталина о-ксилола диоксида серы Синтез  [c.110]

    Уменьшение количества стадий производства и переход к циклическим (замкнутым) системам можно считать двуединым направлением в развитии химических производств, приводящим к снижению затрат на капитальное строительство и уменьшению себестоимости продукции. Так, например, в настоящее время формальдегид производится окислением метанола, а метанол синтезируют из смеси СО и На, получаемой конверсией метана (природного газа) с водяным паром. Ведутся исследования по прямому окислению метана до формальдегида, т. е. по замене трехстадийного способа одностадийным. Соответственно снизятся капитальные затраты и повысится производительность труда обслуживающего персонала. Эффективность циклической системы можно рассмотреть на примере производства серной кислоты контактным способом (см. ч. 2, гл. IV). Ныне серная кислота производится по схеме с открытой цепью аппаратов, через которые последовательно проходит газовая смесь. Окисление диоксида серы происходит в пять стадий, абсорбция триоксида серы — в две стадии. Переход к циклической системе с применением кислорода и повышенного давления позволит снизить количество аппаратов в системе в 3 раза, в частности применять одностадийное окисление диоксида серы. При этом резко снизится количество диоксида серы в отходящих газах, т. е. одновременно решается экологическая проблема. Разумеется, далеко не все производства целесообразно переводить к одностадийным или к циклическим, но искать такие пути надо. [c.19]

    Абсорбция метанолом ( ректизол -процесс) — более вигод-ный метод, его можно использовать при температуре до —60 °С, когда резко повышается поглотительная способность метанола. Так, при —60 °С и давлении около 0,4 МПа в 1 г метанола может раствориться до 600 см диоксида углерода. Избирательность метанола по отношению к диоксиду углерода значительно выше, чем воды. Диоксид углерода из раствора выделяют понижением давления м повышением температуры. [c.48]

    Фирмой Дюпон (Канада) для производства полупродуктов получения найлона — адипиновой кислоты и гексаметилен-диамина— разработан новый процесс очистки концентрированных сточных вод, богатых азотсодержащими соединениями, путем биологической нитрификации — деиитрификациц. В разработанном процессе предусматривается сочетание аэробного и анаэробного окисления. Нитрификация протекает в аэробных условиях в присутствии диоксида углерода, причем аминный и аммиачный азот биоокисляется до нитритов и нитратов. Денитрификация протекает в анаэробных условиях в среде биораз-лагаемого продукта (обычно метанола). При этом нитраты восстанавливаются до нитритов и в конечном счете до газообразного азота. Поступающие на очистку стоки имеют следующую характеристику содержание общего органического углерода — 3000 мг/л NO2 , N0 3, NH4+ в пересчете на азот соответственно 800, 90 и 230 мг/л органического азота в пересчете на азот —240 мг/л, БПК —6000 мг/л. Процесс позволяет удалять 98% органических веществ и 80—90% общего азота сточных вод. [c.105]

    Реакция конверсии водяного газа. Реакция конверсии водяного газа была обнаружена как побочная реакция при кар-бонилировании метанола на родиевом катализаторе уже в ходе лабораторных исследований и разработки процесса [4, 16]. Она состоит во взаимодействии монооксида углерода и воды с образованием водорода и диоксида углерода. С умеренными скоростями она также протекает в растворе уксусной кислоты в отсутствие активных метильных групп в каталитической системе при условиях, близких к условиям карбонилирования метанола. Сотрудники Рочестерского университета наблюдали протекание этой реакции с измеримыми скоростями на данной каталитической системе при низкой температуре и давлении ниже атмосферного [17, 18]. Конверсия водяного газа — наиболее глубоко исследованная из побочных реакций, сопровождающих процесс карбонилирования метанола на родиевом катализаторе [19, 20]. [c.298]


    Для простоты рециркуляция получающихся газообразных продуктов не принималась во внимание. Ясно, что при повышении температуры конверсия монооксида углерода значительно снижается, тогда как конверсия диоксида углерода возрастает. При использовании синтез-газа с высоким содержанием монооксида углерода превращение диоксида углерода в метанол протекает лишь в небольшой степени. Так как конверсия СОг не является кинетически благоприятной, то суммарное образование метанола практически полностью определяется превращением моноокснда углерода. [c.217]

    Цель расчета по модели - определение влияния цйклическог зменения входных параметров на выход целевого продукта. Исследования проводились в следующих направлениях 1) выбор канала для нанесения возмущений 2) выбор фор кШ возмущающих воздействий 3) влияние изменения концентрации диоксида углерода в газовом потоке на входе в реактор а) на температурный режим потока б) на температуру в слое катализатора в) на качество образующегося метанола (с точки зрения образования примесей и увеличения концентрации воды). Выбор канала для нанесения возмущений выполнен с учетом возможности изменения параметров в промьппленных условиях. Для интенсификации процесса выбран расход диоксида углерода, который приводит к изменению концентрации Oj во входном потоке. Расчет технологических режимов выполнялся для случаев синусоидальной, прямоугольной и трапециевидной форм возмущающих воздействий. Анализ полученной информации показал целесообразность использования симметричных прямоугольных волн д.чя увеличения выхода метанола по сравнению с традащионным стацнон шы.ч режимом. При этом изучалось влияние периода возмущающих воздействий и их амплитуды. Установлено, что прирост производительности по метанолу в большей степени зависит от периода цикла, чем от амплитуды. Расчеты показали, что рабочий диапазон изменения температуры и расхода СО2 при реализации циклических режимов совпадает с диапазоном, определенным стационарными условия 1и проведения процесса. [c.65]

    Исследовалось влияние на выход метанола суммарной концентрации оксида и диоксида углерода в свежем газе для фиксированного отношения концентраций Ссо /Ссо2 =4. При этом осуществлялось увеличение суммарной кон-цетрации Ссо + Ссог за счет водорода, концентрация инертного компонента -азота сохранялась постоянной, С =10 % об. В данной зависимости было установлено наличие максимума (рис.1). [c.67]

    Все созданные на сегодняшний день совмещенные схемы работают по схо- eNn принципу. Так, японской фирмой Japan Gas hemi al разработан проект совместного производства аммиака и метанола [3], согласно которо.му из конвертированного газа вначале получают метанол. При этом за счет переработки оксида углерода концентрация СО в газе снижается. Далее остаточный оксид углерода окисляется кислородом воздуха и гидрируется до метана. Газовая смесь, очищенная от диоксида углерода, поступает на синтез аммиака. По схе- [c.211]

    Процесс поглощения проводят при 40—45°С. Образовавшиеся в результате абсорбции карбонаты и гидрокарбонаты разлагаются в десорбере с выделением СО2 нагренанием до 120°С. Этот абсорб-ционно-десорбционный процесс (см. рис. И) применяется также в производстве диоксида углерода (сухого льда) из топочных газов. В качестве поглотителей СО2 также могут применяться органические вещества метанол, пропиленкарбонат С4Н6О3, сульфо-лан 4H8SO2. [c.87]

    Аппараты этой конструкции были применены для процесса глубокой дегазации жидкости, содержащей оксид и диоксид углерода, метан, водород, азот, метанол, при давлении 0,5 МПа на крупнотонажном агрегате производства метанола АМ-750 (поставка английской фирмы Деви-Маки ). [c.267]

    В составе газа газификации помимо оксида углерода и водорода присутствуют соединения, содержащие серу и аммиак, которые являются ядами для катализаторов последующих синтезов, а также фенолы, смолы и жидкие углеводороды. Эти соединения удаляют на следующей за газогенератором ступени очистки. В промышленных процессах газификации для очистки синтез-газа от сернистых соединений и диоксида углерода применяют методы физического и химического поглощения этих компонентов. В качестве поглотителей используют метанол, пропиленкарбонат, N-метилпирролидон, сульфолан и дии-зопропаноламин, диметил- и полиэтиленгликоли, этаноламины и др. [95], [c.92]

    Превращение биомассы в топлива, пригодные для непосредственного использования, осуществляется термохимическими или биохимическими процессами. К термохимическим процессам переработки относятся прямое сжигание, пиролиз, газификация и экстракция масел, к биохимическим — ферментация и анаэробное разложение. Перед переработкой биомасса обычно проходит стадии подготовки, включающие измельчение, сущку и др. При переработке биомассы в моторные топлива наибольший интерес представляет газификация с получением синтез-газа (преобразуемого затем в метанол или углеводороды), а также ферментация с получением этанола. Процесс получения синтез-газа во многом аналогичен газификации угля (см. раздел 3.2). При газификации древесины при 300 °С в присутствии кислорода образуется в основном диоксид углерода. При повышении температуры до 600 °С получают смесь, в которой помимо СОг присутствуют водород, оксид углерода, метан, пары спиртов, органических кислот и высших углеводородов. Выход газообразных продуктов при этом не превышает обычно 40% (масс.) на сырье. В связи с меньшими энергетической плотностью и теплотой сгорания биомассы газификация ее менее эффективна, чем газификация угля. Поэтому, несмотря на проводимые во многих странах исследовательские и конструкторские [c.121]

    В настоящей работе были рассмотрены возможности организации циклических режимов для агрегатов производспва метанола. В качестве воздействия было выбрано количество диоксида углерода, дозируемого в исходную смесь. Подобрана амплитуда и периодичность воздействий. Результаты работы прошли промышленную аппробацию на действующих схемах производства. [c.126]

    Примером эффективного применения нодомегричеокого титрования является метод К. Фишера, который используют для определения содержания воды в неводных системах. Коричневый раствор титранта готовят из иода, диоксида серы, пиридина и метанола в молшых соотношениях 1 3 10 50. Эта смесь нестабильна в присутствии воды вследствие протекания реакции (Ру-пиридин)  [c.177]

    Своеобразно иодометрическое определение воды в органических растворителях и других материалах с помощью реактива Фишера, состоящего из иода, диоксида серы и пиридина в метаноле. Анализируемую пробу помещают в метиловый спирт и определяют воду титрованием указанным реактивом. Реакция титрования пр0 (0дит в две стадии. Упрощенно она может быть представлена схемой [c.281]

    Следует подчеркнуть, что понятие степень окисления является ( рмальным и обычно не дает представления об истинном заряде рассматриваемого атома в соединении. Во многих случаях степень окисления не равна также валентности данного элемента. Например, для углерода в метане СН , метаноле СНзОН, формальдегиде СНаО, муравьиной кислоте НСООН и диоксиде углерода СО1 степени окисления углерода составляют соответственно -4, -2, О, +2 и +4, в то время как валентность углерода (число связей атома) во всех этих соединениях равна четырем. [c.49]

    Высшие спирты и углеводороды, получаемые при взаимодействии оксида или диоксида углерода с водородом в синтезе Фишера — Тропша или в виде побочных продуктов при синтезе метанола, широко используются (особенно в ГДР) как источники получения гидрофобных радикалов. [c.65]

    В результате исследований, проведенных совместно с различными министерства.ми, были разработаны и уже внедряются в промышленность нестационарные методы окисления диоксида се1)ы в производстве серной кислоты, обезвреживания отходящих газов промышленных производств от оксида углерода и различных органических веществ, получения высокопотенциальной теплоты из слабоконцентрированных топлив и газов. Ведутся работы по синтезу метанола, аммиака, конверсии природного газа и оксида углерода, метанироианию, получению серы из сероводорода и другим процессам. Особенно интенсивно протекает внедрение нестационарных методов окисления на предприятиях цветной металлургии, где [c.260]

    Исследование процесса дегидратации метанола проводили в интервале темпера-1ур 200 - 400 с нри объемной скорости подачи сырья I ч . Показано, что селективность по ДМЭ при температуре 250 - 350 °С достигает значений 98- 100 % в присутствии практически всех исследованных систем, при этом наибольшую активнос1ь проявили катализаторы, содержащие диоксид кремния и алюмокальциевый цемент. [c.118]

    Простейщий альдегид - метаналь - используют наружно как антисептик в виде слабых водных растворов для дезинфекции рук, кожи и инструментов В промышленности его получают окислением метанола (350 °С, катализаторы - оксиды Fe/Mo) либо метана (600 °С, катализатор - диоксид азота)  [c.32]

    В целях повышения эффективности производства аммиака в 1966-1970 гг. введены в действие производства иа основе парокислородной noj влиянием 2—3 МПа высокотемпературной (Куйбыщев, Гродно) и каталити ческой конверсии (Невннномысск, Новгород, Гродно), Для очистки газа о диоксида углерода применяли, в частности, растворы поташа с добавко активатора — диоксида мышьяка (процесс фирмы Монтекаткни ), охлаж денного метанола (процесс фирмы Лурги ), а для выделения оксида угле рода — промывку газа жидким азотом. [c.424]

    H,Ы -диоксида] в присут. метанола и г>н каталитич. кол-ва КОН. Д.-бактери- цидный препарат. Применяется для лечения различных (гл. обр. тяжелых) форм гнойной бактериальной инфекции и раневой газовой инфекции. Нарушает синтез ДНК в микробной клетке действует на штаммы баетерий, устойчивые к др. антибактериальным в-вам. [c.73]


Смотреть страницы где упоминается термин Диоксид метаноле: [c.90]    [c.47]    [c.46]    [c.138]    [c.212]    [c.212]    [c.85]    [c.38]    [c.60]    [c.211]    [c.259]    [c.115]    [c.282]    [c.335]   
Справочник азотчика Издание 2 (1986) -- [ c.292 ]




ПОИСК





Смотрите так же термины и статьи:

Диоксид

Диоксид углерода метанола

Диоксид углерода применение в синтезе метанола

Равновесие метанол диоксид углерода

Уксусная кислота получение из метанола и диоксида углерода



© 2024 chem21.info Реклама на сайте