Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Давление газов критическое

Рис. 9.14. Зависимость отношения полных давлений газов, при вает наибольшее полное давление котором происходит запираме смеси газов, а при заданном полном давлении имеет наибольший коэффициент эжекции. Это связано с тем, что при критическом режиме разность скоростей газов на входе в камеру смешения 101 — становится минимально возможной наименьшей величины достигают и потери при смешении (см. (2)). Одновременно эжектор, рассчитанный для работы на критическом режиме, будет при заданном значении п иметь наименьшие относительные размеры смесительной камеры, т. е. наибольшее значение а. Рис. 9.14. <a href="/info/1392332">Зависимость отношения</a> <a href="/info/21561">полных давлений</a> газов, при вает наибольшее <a href="/info/21561">полное давление</a> <a href="/info/1481749">котором происходит</a> запираме <a href="/info/1289198">смеси газов</a>, а при заданном <a href="/info/21561">полном давлении</a> имеет наибольший <a href="/info/1812793">коэффициент эжекции</a>. Это связано с тем, что при критическом режиме <a href="/info/214472">разность скоростей</a> газов на входе в <a href="/info/95787">камеру смешения</a> 101 — становится <a href="/info/1450949">минимально возможной</a> наименьшей величины достигают и потери при смешении (см. (2)). Одновременно эжектор, рассчитанный для работы на критическом режиме, будет при заданном значении п иметь наименьшие <a href="/info/68361">относительные размеры</a> <a href="/info/329186">смесительной камеры</a>, т. е. наибольшее значение а.

    Из уравнения Ван-дер-Ваальса следует, что при некотором значении температуры, повышая давление газа, его можно превратить в жидкость. Однако для каждого газа существует такая температура, выше которой он никаким повышением давления не может быть переведен в жидкость. Эта температура называется критической Г р-Давление насыщенных паров, соответствующее критической температуре, называется критическим давлением Р р. Объем паров при критических температуре и давлении называется критическим объемом. В критической точке исчезает граница между газообразным и жидким состоянием. [c.45]

    В практикуме по газовой хроматографии используют различные газы. Одни газы применяют в качестве газов-носителей (водород, воздух, элементы нулевой группы, азот, диоксид углерода и др.), другие служат объектом исследования, обычно это углеводороды. Кислород, азот, водород и другие газы хранятся в стальных баллонах различной емкости под давлением. Газы, критическая температура которых лежит выше комнатной, например диоксид серы, диоксид углерода, хлор, хранятся в баллонах в жидком состоянии  [c.27]

    При отсутствии справочных данных постоянные а и й определяются по критическим параметрам газа —критическими температурой Т,ф и давлением р р- [c.153]

    И тем не менее в 60-х годах прошлого века ирландский химик Томас Эндрюс (1813—1885), изучавший диоксид углерода, сумел, меняя только давление, сжижить этот газ. Медленно повышая температуру, он установил, как при этом необходимо повышать давление, чтобы сохранить диоксид углерода в жидком состоянии. Выяснилось, что при температуре ЗГС любое давление оказывается недостаточным. При этой температуре газообразная и жидкая фазы фактически, если так можно выразиться, сплавлены вместе и поэтому неразделимы. Эндрюс предположил (в 1869 г.), что для каждого газа существует критическая температура и что при температуре выше критической сжижить газ не удастся даже при очень высоких давлениях. Следовательно, постоянные газы — это просто-напросто газы, критические температуры которых гораздо ниже температур, достижимых в лабораторных условиях. [c.121]

    При высоких давлениях роль реакций конденсации в газовой фазе приближается к роли их в жидкости. Повышение давления интенсифицирует образование при газофазных реакциях тяжелых продуктов конденсации, способных переходить в жидкую фазу и в ходе дальнейшего крекинга образующих асфальтены и затем кокс. С другой стороны, давление сильно влияет на состав жидкой и газовой фаз. Повышение давления обогащает жидкую фазу легкими продуктами, что понижает растворимость в ней асфальтенов. Одновременно при повышении давления выше критического для углеводородов, находящихся в газовой фазе (составляющего для парафиновых, циклопарафиновых, олефиновых и ароматических углеводородов С1 — Си от 20 до 50 кгс/см ), в ней растворяются тяжелые углеводороды и в тем большей степени, чем выше давление. Поэтому в зависимости от температуры и состава находящихся в реакционной зоне продуктов повышение давления может и облегчать, и утяжелять состав жидкой фазы и соответственно понижать или повышать растворимость в ней асфальтенов. Обычно давление в термических процессах не превышает 5 МПа (50 кгс/см ), эффект растворения жидких продуктов в газе в этом случае несуществен. Повышение давления облегчает состав жидкой фазы, в результате растворимость асфальтенов в ней ухудшается. [c.124]


    Б практикуме по газовой хроматографии используют различные газы. Есть газы, которые применяют в качестве газов-носителей (водород, воздух, элементы нулевой группы, азот, двуокись углерода и др.), а есть такие, которые служат объектом исследования обычно это углеводороды. Кислород, азот, водород и другие газы хранятся в стальных баллонах различной емкости под давлением. Газы, критическая температура которых лежит выше комнатной, например, двуокись серы, двуокись углерода, хлор, хранятся в баллонах в жидком состоянии при выходе из баллона испаряются. Некоторые газы хранят растворенными в жидкости, например ацетилен в ацетоне. [c.224]

    Чтобы воспользоваться этим уравнением для определения коэффициентов фугитивности, необходимо найти мольный объем пара и. Поскольку это уравнение прямо неразрешимо относительно и, приходится решать квадратное уравнение, которое, при некоторых условиях, имеет только мнимые корни. Такая ситуация возникает, когда температура и давление газа достигают критических значений. Тем не менее уравнение в форме разложения по объему до второго члена применимо. Члены разложения высокого порядка существенны только при температуре и давлении, близких к критическим. [c.129]

    Критическая температура нефтепродуктов определяется по кривым, приведенным па рис. 6, 4, критическая температура нефтяных газов — по кривой рпс. 12. 2, 5 критическое давление газов — по кривой рис. 12. 3. [c.264]

    Формула (I, 171) применима при давлениях газа, меньших критического. Влияние давления на теплопроводность зернистого слоя показано в работе Шотте (рис. 1-57, 1-58, 1-59). [c.70]

    На рис. 18-1 в графической форме описано поведение веществ при давлениях выше критического давления, Р р т. При нагревании кристаллического вещества ниже его температуры плавления, оно слабо расширяется, а по достижении этой температуры плавится, превращаясь во флюид. Поскольку молекулы вещества до и после плавления соприкасаются друг с другом, плавление сопровождается относительно небольшим возрастанием молярного обмена вещества. Выше температуры плавления молярный объем вещества возрастает сначала медленно, а затем быстрее, пока вещество не приобретет свойств идеального газа, которые подчи- [c.120]

    Ожижение газа возможно лишь при охлаждении его ниже критической температуры. При более высоких температурах газ не может быть превращен в жидкость ни под каким давлением. Для ожижения газа при температуре, равной критической (7 =7 р.), давление его должно быть равно или больше критического, т. е. Р Ркр- Для ожижения газа при давлениях ниже критического (рдолжна быть ниже критической [75]. [c.41]

    Ацетилен представляет собой бесцветный газ критическая температура его равна 36,5°, а критическое давление 61,6 ат. Температура плавления его прн давлении 891 мм равна —81,5° при нормальном давлении твердый ацетилен испаряется, не плавясь. Чистый газ почти не обладает запахом отвратительный запах технического ацетилена обусловлен загрязнениями (сероводородом, фосфористым водородом). [c.78]

    Молекулярная масса Рис. 2. График для определения критической температуры газов. Рис. 3. График для определения критического давления газов. [c.19]

    Влияние высоких давлений на вязкость было определено опытным путем. Установлено, что отношение вязкости при давлении р к вязкости [Д. при той же температуре, но при нормальном давлении является для всех газов однозначной функцией приведенной температуры Тлр = Т/Тир (отношение данной абсолютной температуры к абсолютной критической температуре) и приведенного давления Рпр=р/Ркр (отношение данного давления к критическому давлению)  [c.22]

    Как видно из формулы (35), критическая напряженность электрического поля зависит только от диаметра коронирующего электрода и давления газа. [c.19]

    Затем задаются желательным давлением газа р внутри маточника. Это давление, очевидно, должно быть больше, чем рз. Однако учитывая значение критической скорости истечения газов из отверстий (см. гл. четвертую, 12), целесообразно принять р( из условия [c.240]

    Режим истечения газа действительно будет дозвуковым, сколь бы велик ни был подогрев в камере заданное полное давление газа, снижающееся в процессе подвода тепла, недостаточно для создания звуковой скорости истечения в атмосферу. Если бы полное давление р было большим, например р = 2,4-10 Н/м , то из последней формулы следовало бы г(Хз) = 0,390 это значение меньше критического, так как 7-(1) = 0,429. Следовательно, при таком давлении режим истечения был бы критическим и Хз = 1,0. [c.251]

    При достаточно низком противодавлении на критическом режиме поток смеси может остаться сверхзвуковым и на выходе из диффузора. Это может представлять интерес в тех случаях, когда используется скоростной напор потока смеси или возникающая при истечении реактивная сила полное давление смеси при этом будет значительно выше, чем при < 1. Однако в обычных схемах работы эжектора требуется получить возможно большее статическое давление газа на выходе из эжектора. Для этого сверхзвуковой поток, полученный на выходе из камеры смешения при критических режимах работы эжектора, необходимо перевести в дозвуковой. Принципиально здесь возможно применение сверхзвукового диффузора, где торможение будет происходить без скачков или в системе скачков с небольшими потерями. Обычно, однако, в эжекторах применяются конические диффузоры дозвукового типа, в которых сверхзвуковой поток тормозится с образованием скачка уплотнения. Если считать скачок уплотнения прямым, то легко видеть, что минимальные потери полного давления в нем будут тогда, когда скачок располагается непосредственно перед входным сечением диффузора, т. е. возникает в сверхзвуковом потоке с приведенной скоростью Я,з. [c.532]


    Будем рассчитывать эжектор для работы на наивыгоднейшем критическом режиме. Ввиду того, что отношение полных давлений газов По = 12 достаточно высокое, а коэффициент эжекции небольшой, здесь целесообразно подобрать оптимальное сверхзвуковое сопло для эжектирующего газа. Для полного расширения эжектирующего газа сопло должно быть спроектировано на отношение давлений (к = 1,4). [c.550]

    Если адсорбирующийся газ находится при температу )е ниже критической, то нередко наблюдают полимолекулярную адсорбцию, особенно при давлении газа вблизи давления насыщенных паров его конденсированной фазы. Полимолекулярную адсорбцию в простейшем случае можно описать следующей системой химических уравнений  [c.284]

    Определить плотность и массу диоксида углерода (кг), содержащегося в сосуде вместимостью 1 л под давлением 2,216-10 Па и 300° С с учето-м коэффициента сжимаемости газа. Критические параметры СО2 найти по справочнику. [c.17]

    Коэффициенты фугитивности реальных газов можно вычислить с помощью метода соответственных состояний, согласно которому коэффициенты фугитивности различных газов при одинаковых значениях приведенной температуры и приведенного давления приблизительно одинаковы. Приведенной температурой и приведенным давлением называются отнощения соответственно абсолютной температуры и давления к критическим значениям этих величин. [c.102]

    Расчет коэффициентов активности можно проводить, как описано на с. 107—109, либо по диаграммам, построенным при использовании принципа соответственных состояний, по которому коэффициенты активности различных реальных газов равны при одинаковых значениях приведенных температур 7/7 кр и давлений р/ркр, где Ткр и ркр —значения температуры и давления в критической точке данного вещества (см. с. 161). [c.168]

    Давление паров, отвечающее критической температуре, называют к р и-тическим давлением Р р. Удельный объем газа при критических температуре и давлении называют критическим объемом В критической точке исчезает прерывность между газообразным и жидким состояниями. [c.61]

    На кривой равновесия жидкость — пар ОС имеется еще одна замечательная точка. Это точка С, в которой кривая ОС прекращается при более высоких температуре и давлении эта линия не существует. Дело заключается в том, что вдоль линии ОС с ростом температуры плотность жидкости уменьшается (тепловое расширение), а плотность насыщенного пара возрастает вследствие очень быстрого роста его давления. Таким образом, все свойства обеих сосуществующих фаз сближаются, и при температуре, при которой эти фазы перестают различаться (обе фазы аморфны, они имеют одинаковую плотность, поверхность раздела между ними исчезает), теплота перехода падает до нуля. Эта точка называется критической (Д. И. Менделеев, первым предсказавший это явление, называл критическую точку точкой абсолютного кипения). Для каждого вещества критическая точка характеризуется своими значениями критической температуры, критического давления и критического молярного объема. Для воды эти значения таковы Т р = 647,31 К, р р = = 2,212 10 Па, V ,,= 56 см /моль. Выше критической температуры существует только одна аморфная фаза. Лучше всего называть ее не газом и не жидкостью, а флюидной фазой. Однако кристаллические фазы (например, лед) выше этой температуры, конечно, могут существовать, и поэтому линия равновесия твердая фаза — аморфная фаза (флюид) простирается выше (линия ОВ на рисунке). [c.112]

    Согласно этой модели над поверхностью твердого тела существует такое потенциальное поле сил, что потенциал убывает с расстоянием от поверхности, но не так быстро, как предполагал Ир. Ленгмюр. Если над поверхностью находится газ, то его молекулы притягиваются к поверхности. Совокупное действие силового поля и теплового движения приводит к тому, что концентрация газа по мере приближения к поверхности возрастает. Если температура ниже критической температуры адсорбтива, то на каком-то расстоянии от поверхности давление газа станет равным давлению насыщенного пара и газ будет конденсироваться в жидкость. Этот процесс и называется адсорбцией. Таким образом, адсорбционные силы совершают обратимое изотермическое сжатие газа от давления р (вдали от поверхности, где адсорбционными силами можно пренебречь) до р, непосредственно над слоем сжиженного газа, т. е. адсорбционной пленки. Работа адсорбционных сил Ш, отнесенная к 1 моль адсорбата (адсорбционный потенциал е), очевидно, равна  [c.223]

    Ограниченная взаимная растворимость газов возникает при очень высоких давлениях, когда отступления газов от идеальности чрезвычайно велики. Впервые экспериментально расслоение газов наблюдалось в системе азот —аммиак. Из рис. V. 25, где представлены изотермы взаимной растворимости газов при различных давлениях, следует, что существует значение давления, ниже которого газы смешиваются неограниченно. Такое давление соответствует критическому состоянию. С ростом давления составы равновесных фаз становятся все более различными. С ростом температуры область расслоения уменьшается, хотя состав критических фаз изменяется мало. [c.294]

    Заметим, что между газом и жидкостью, как и между жидкостью и твердым аморфным телом, нет принципиальной разницы. Все они изотропны, т. е. их свойства (в отличие от кристаллических тел) одинаковы по всем направлениям. Различаются эти фазы лишь величиной сил взаимодействия между молекулами. Поэтому не во всех случаях можно различить понятия жидкость и газ . Когда в системе эти фазы существуют одновременно и отделены поверхностью раздела (при температурах и давлениях ниже критических) в условиях, изображаемых точками, лежащими на кривой равновесия, мы определяем более конденсированную фазу как жидкость, а менее конденсированную как газ. Но кривая равновесия между газом и жидкостью имеет конец в точке К, координаты которой соответствуют критической температуре Ткр и критическому давлению Ркр. Изменяя состояние системы по пути, лежащему за критической точкой К, т. е. не пересекая кривую равновесия, мы все время будем иметь однородное тело, которое с равным основанием можем называть жидкостью или газом. [c.131]

    Шведский инженер Лаваль впервые предложил сопло, в котором суживающаяся часть дополняется расширяющимся конусом с углом 10—12°. Это сопло получило название сопла Лаваля. В сул<и-вающейся части сопла Лаваля пар или газ расширяется от начального давления до критического, причем в минимальном сечении устанавливается критическая скорость. В расширяющейся части сопла обеспечивается дальнейшее плавное расширение пара или газа до давления окружающей среды без отрыва потока от стопок сопла и образования вихрен. При этом пар или газ вытекает из сопла Лаваля со сверхзвуковой скоростью. Эти сопла широко применяют в паровых и газовых турбинах и реактивнбй техники. [c.36]

    Рпс. 12. 3. График зависимости критического давления газа от молекуляриого веса. [c.264]

    Для характеристики условий полного перехода различных газонефтяных смесей в газовую фазу при разных температурах приведены кривые зависимости давления схождения этих смесей (Рсу) от температуры (рис. 19). Под давлением схождения в нефтяной литературе понимают то давление при данной тем1пературе системы, при котором константы фазового равновесия всех ее компонентов становятся равными единице. В. термодинамике это давление называют критическим давлением системы при дайной температуре. Оно отличается от истинного критического давления, характерного для системы при ее,критической температуре. Кривые (см. рис. 19) построены по материалам, полученным при изучении фазового равновесия ряда систем, состоящих из широких нефтяных фракций и газа, при пх весовом соотношении 1 1 и при температурах 60, 100, 130 и 160° С. На основе этих данных были рассчитаны константы фазового равновесия (/( УВ нефти и экстраполированы до [c.39]

    Условием перехода во взвешенное состояние является превышение некоторой критической скорости г кр потока. В этот мoмeнt статическое давление слоя равно падению давления газа при движении через неподвижный слой (с максимальной порозностью бкр). Статическое давление  [c.141]

    Критическая температура метана, как видно из табл. 22, равна — 95,5 С, и, следовательно, метан в недрах может присутствовать только в газовой фазе. Одпаг о частично метан может растворяться в нефти, что, впрочем, едва ли может значительно изменить состав газа. Критичес15ая температура этана уже -1-35 , а давление при критической температуре 46,8 атм. Так кахс многие нефтяные месторождения характеризуются температурами порядка 30—40°, очевидно, что этап, и тем более его гомологи, могут находиться в нефти в виде растворов, из которых этан должен выделяться при понижении давления. Эти отношения хорошо иллюстрируются составом газа, выделяющегося из нефти в различные периоды эксплуатации. Вначале, когда давление высоко, газ практически состоит из метана, но по мере [c.72]

    Из этой теории следует, что полное давление в критическом сечении теплового сопла, как и в механическом сопле, проходит через минимум. Плотность заторможенного газа, прямо пропор-цпональная полному давлению и обратно пропорциональная температуре торможения, достигает в критическом сечении минимального значения. [c.208]

    Это значение Яг ограничивает область докритического истечения эжектирующего газа из сопла при всех больших значениях Яг истечение газа будет происходить под сверхкритическим перепадом давлений Р Р1,. Если в сопле эжектирующего газа отношение давлений превышает критическое значение, то скорость истечения газа из сужающегося сопла достигает скорости звука (Я1 = 1), и струя покидает сопло со статическим давлением, более высоким, чем давление окружающего сопло потока эжектируемого газа. При этом равенство давлений р ж р2 ш вытекающее пз него соотношение (24) между возможными значениями Я1 и Яг не соблюдаются. То же будет и в случае применения в эжекторе сопла Лаваля с неполным расширением при этом с некоторого значения По на срезе установится постоянная скорость (Я] = Яр1), не зависящая от статического давления в эжектируемом потоке. При постоянном значении Я1 = 1 (нерасширяю-щееся сопло) или Я1=Яр1>1 приведенная скорость эжектируемого газа Яг может иметь различные значения. Однако произвольно выбирая значение Яг для подстановки в расчетные уравнения, нельзя заранее быть уверенным, что такой режим работы эжектора реально осуществим. Имеется предельное значение Ягтш, ограничивающее область возможных режимов реальны лишь режимы, соответствующие Яг Ягт . Ниже в 4 этот вопрос рассмотрен подробнее. [c.517]

    Метан — газ, не обладающий цветом и запахом т. пл. — 184° С, т. кип. — 164° С. Подожженный на воздухе метан горит слабо светящимся пламенем. В. воде метан растворим мало— 100 объемов воды растворяют лишь 5,56 объемов метана при 0° С, в органических растворителях растворяется лучше в 100 объемах спирта при 0° С растворяется 52,3 объема метана. Вес одного литра метана 0,7168 г. Теплотворная способность 39748 дж1лА. Метан относится к трудно сжимаемым газам критическая температура его — 82,5° С, критическое давление 45,7 атм. [c.465]

    Кривая, соединяющая предельные точки кривых По = onst, является линией критических режимов. Реальными являются лишь режимы, соответствующие области характеристики между этой линией и осями координат. С увеличением отношения давлений По критическая линия приближается к оси ординат и при некотором значении Потах пересекается с ней. Эта точка, в которой коэффициент эжекции равен нулю, а степень повышения давления достигает максимально возможного для данного эжектора значения, соответствует режиму запирания эжектора. Изменение режима работы реального эжектора может происходить более сложньш образом, с одновременным изменением как полных давлений газов на входе, так и давления на выходе, и определяется выбранным способом регулирования режима. Смещение lij iiiit, соответствующей рабочему режиму, на поле характеристик эжектора в каждом случае может быть определено расчетом по методу, изложенному в 3. [c.527]

    Точка В характеристики соответствует такому режиму, когда в сечении запирания эжектируемый поток становится звуковым (А,2 = 1). После этого, действительно, дальнейшее снижение противодавления не изменяет расхода газов через эжектор. Постоянные предельные значения, не зависящие от противодавления, принимают коэффициент эжекции п и параметры смеси газов — приведенная скорость Аз и полное давление Pg. В случае дозвукового течения (Лз < 1) при этом был бы постоянным коэффициент сохранения полного давления в диффузоре Од = /(Аз),. а следовательно, и полное давление газа на выходе из диффузора Pi = ОдРз. Другими словами, все режимы работы эжектора, соответствующие противодавлению, меньшему критического значения, при Яз < 1 выражались бы одной точкой характеристики S(p4 = onst, и = onst). Однако экспериментальные данные показывают, что характеристика эжектора не обрывается в точке В снижение противодавления на критическом режиме всегда приводит к падению полного давления смеси нри постоянном значении коэффициента эжекции (ветвь ВС). Легко убедиться, что это возможно только при сверхзвуковой скорости потока на входе в диффузор. Действительно, при Аз > 1 диффузор работает [c.531]

    При перемещении по кривой давления пара над жидкостью в область высоких температур и давлений свойства газа и жидкости все более сближаются и наконец наступает критическое состояние, при котором различия между жидкостью и газом исчезают. Достижение критического состояния отображается на кривой критической точкой, которой отвечают строго определен ные критическое давление и критическая температура. В кри тической точке все термодинамические свойства сосуществую щих фаз становятся одинаковыми, поэтому система в критиче ской точке безвариантна. Выше критической точки ни при ка ком давлении не происходит разделения вещества на две фа зы —жидкую и газообразную. [c.26]


Смотреть страницы где упоминается термин Давление газов критическое: [c.358]    [c.110]    [c.117]    [c.126]    [c.112]    [c.235]    [c.240]    [c.23]    [c.15]    [c.38]   
Машинный расчет физико химических параметров неорганических веществ (1983) -- [ c.107 , c.108 ]




ПОИСК





Смотрите так же термины и статьи:

Газы критические температуры давления

Давление критическое

Давление критическое Критическое давление

Давление критическое газа

Давление критическое газа

Давление критическое различных газо

Инертные газы критические давления и температур

Критическое давление и температура различных газов и жидкостей



© 2025 chem21.info Реклама на сайте