Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стерические олефинов

    При обычном электрохимическом механизме, как правило, восстанавливаются частицы, адсорбированные на электроде и потерявшие часть степеней свободы, которыми они обладали в растворе. В связи с этим здесь существенную роль могут играть стерические факторы. При восстановлении сольватированными электронами восстанавливаемые частицы находятся в объеме раствора и стерические затруднения проявляются в меньшей мере. Найдено, например, что 2,3-де-метил-2-бутен, в котором двойная связь экранирована метильными группами, создающими стерические затруднения, восстанавливается сольватированными электронами в смеси гексаметилфосфотриамида и этанола почти столь же легко, как и циклические олефины. Отмечено также, что при восстановлении сольватированными электронами стереохимия продуктов восстановления иная, чем при электрокаталитическом гидрировании. [c.445]


    Присутствие бензильного атома Н благоприятствует образованию бензильного катиона, а наличие крупной молекулы олефина по стерическим причинам замедляет конкурирующую реакцию алкилирования. [c.100]

    Подавляющее большинство я-комплексов с олефиновыми лигандами активирует структурную изомеризацию, но ее скорость существенно зависит от структуры олефина. Как правило, чем больше стерические затруднения при координации, тем ниже скорость изомеризации с наибольшими скоростями изомеризуются а-олефины, затем изо-а-олефины и с еще меньшими р- и v-олефи-ны [26]. [c.114]

    В таком случае при введении малых количеств МоСЬ хлорные мостики почти не разрушаются, и некоторое торможение изомеризации вызвано стерическими затруднениями обмена олефинового лиганда с олефином, что и наблюдается в действительности. В больших количествах МоСЬ взаимодействует с хлорными мостиками это приводит к образованию одноядерных комплексов, где атом палладия связан с двумя молекулами олефина, что должно ускорять изомеризацию. Такое же ускорение происходит в присутствии спиртов, расщепляющих хлорные мостики [69]. [c.124]

    Лимитирующей здесь является первая стадия, так как олефины в присутствии такого катализатора гидрируются во много раз быстрее. Кроме того, реакция имеет первый, а пе второй порядок по водороду. Из схемы видно, что какие-либо стерические препятствия при образовании я-комплексов любыми полициклическими углеводородами маловероятны. [c.158]

    В1 связи с особой ролью реакций олефинов с радикалами в процессе глубокого крекинга в монографии рассмотрен вопрос о вычислении стерических факторов реакций присоединения и замещения радикалов с олефинами, алканами и другими молекулами, а также реакций рекомбинации и диспропорционирования радикалов. [c.8]

    Реакция присоединения активных радикалов (Н, СНз) к олефинам, при которой радикалы атакуют двойную связь, имеет малую энергию активации (1—2 ккал) и низкий стерический фактор [62, 63] (порядка 10 —10 для Н-ато-мов). [c.33]

    После перерасчета вычисленных значений стерических "факторов реакций присоединения Н к олефинам, на основании формулы (135), получаются величины, хорошо согласующиеся с опытными значениями их при комнатной температуре (та бл. 38). [c.202]

    Интересно, что реакции атомов хлора и брома с молекулой водорода имеют стерические факторы на порядок выше, чем стерические факторы в реакциях алкенильных радикалов с молекулой Нг [255]. В тоже время обратные реакции атомов Н с молекулами хлористого и бромистого водорода характеризуются такими же величинами стерических факторов, как приблизительно и реакции атомов Н с молекулами олефинов. Это указывает на преобладающую роль радикала и его строения в подобных случаях. [c.202]


    Стерические факторы реакций присоединения радикалов СНз к молекулам этилена и пропилена на два—четыре порядка ниже, чем в аналогичных реакциях присоединения Н-атомов к этим молекулам [252]. С усложнением радикала стерический фактор реакции присоединения к молекулам олефина сначала резко уменьшается, но с дальнейшим увеличением длины радикала изменяется все меньше и быстро приобретает предельно низкое значение, не изменяющееся с последующим увеличением длины цепи радикала. Так, переход от метильного к пропильному радикалу в реакции с этиленом сопровождается уменьшением стерического фактора на два порядка, но замена пропильных радикалов амиль-ными или гептильными в той же реакции с этиленом не сопровождается уже изменением порядка величины стерического фактора. [c.204]

    Реакция замещения атомов Н с олефинами и парафинами характеризуются такими же низкими значениями стерических факторов, как и реакции присоединения Н-атомов к олефинам, а именно, стерическими факторами, лежащими в пределах —10 . Поэтому распространенное представление о том, что реакции замещения в отличие от реакций присоединения обладают высокими значениями стерических факторов нельзя считать обоснованным [258], а в [c.206]

    Для рассмотренных реакций возможно также вычисление констант равновесия кинетическим методом. С этой целью можно использовать вычисленные нами значения стерических факторов реакций присоединения Н-атомов и радикалов СНз к молекулам олефинов [68, 96], а энергии активации реакций диссоциации радикалов вычислить по уравнению Н. Н. Семенова [65] для эндотермических реакций, которое дает связь между энергией активации и тепловым эффектом  [c.253]

    Значения Л-факторов реакций (18.1) показывают, что з-факто-ры этих реакций уменьшаются по мере увеличения длины цепи радикала 3 (10 10 ). Интересно отметить, что в аналогичных реакциях галогензамещенных олефинов с треххлористым метилом значения стерических факторов еще меньше и изменяются в области 10" н- 10- [271], что можно объяснить резким возрастанием атомного объема галогена. [c.180]

    Данные табл. 20.2 свидетельствуют о том, что стерические факторы реакций присоединения радикала -СНз к молекулам этилена и пропилена на один — два порядка ниже, чем з аналогичных реакций с участием атомов Н. С усложнением радикала Л-фактор реакции присоединения к молекулам олефина сначала резко уменьшается, но с дальнейшим увеличением длины радикала изменяется все меньше и быстро приобретает предельно низкое значение, не изменяющееся с последующим увеличением длины цепи радикала. Аналогичная картина наблюдается в реакциях алкильных радикалов различ- [c.180]

    ЧТО по стерическим соображениям адсорбция олефина происходит так, что с поверхностью катализатора оказывается связана менее затрудненная сторона. Тот факт, что присоединение водорода также происходит с менее затрудненной стороны, указывает, что, по-виднмому, водород, прежде чем прореагировать с олефином, тоже адсорбируется на поверхности катализатора. Вероятно, что при адсорбции молекула водорода расщепляется на атомы. Показано, что платина катализирует гомолитический распад молекул водорода [257]. На второй стадии один из адсорбированных атомов водорода соединяется с атомом углерода, в результате чего образуется алкильный радикал (который остается связанным с поверхностью катализатора, но теперь уже только одной связью) и освобождаются два реакционных центра на катализаторе. Наконец, второй атом водорода (необязательно тот, который был ранее связан с первым атомом водорода) взаимодействует с радикалом, давая продукт реакции, освобождающийся с поверхности катализатора, и при этом вакантными становятся еще два реакционных центра на поверхности. С помощью такого процесса можно объяснить все различные побочные реакции, включая водородный обмен и изомеризацию. Например, на приведенной ниже схеме указаны элементарные стадии, которые могут реа- [c.182]

    Многие реакции, проводимые в условиях кинетики первого порядка на системах, для которых элиминирование Е2 представляет собой анти-процесс, протекают очень легко, давая олефины, которые образуются при удалении чис-водорода. Например, ментилхлорид 2 (см. разд. 17.1) в реакции, протекающей по механизму Е2, дает только соединение 5, тогда как в условиях реакции Е1 получается 68 % соединения 6 и 32 % соединения 5. Поскольку стерическая природа водорода в этом случае не имеет значения, преимущественно образуется более устойчивый олефин (правило Зайцева, разд. 17.6). [c.17]

    Молекулярный механизм [34] находит главное подтверждение в стерической специфичности реакции и в том факте, что многие диено-диенофильные системы действительно образуют окрашенные комплексы (однако в высшей степени диссоциированные) в растворах. Верно и то, что ряд смесей олефинов и диолефинов, не вступающих в реакцию Дильса-Альдера, также образует аналогичные комплексы [6]. [c.181]

    Необходимо подчеркнуть, что, по всей вероятности, невозможен один ряд катализаторов с одинаковой во всех случаях каталитической активностью. Так трехфтористый бор слабо соединяется с ионом хлора, однако он проявляет большое сродство к иону фтора. По-видимому, это вызывается стерическими затруднениями ион B l весьма неустойчив, а ионы ВГГ и Al ir вполне стойки. Поэтому трехфтористый бор не катализирует реакцию циклогексилбромида с бепзолом [72], однако он весьма сильно катализирует реакцию циклогексилфторида с ароматическими соединениями [712]. Поэтому трехфтористый бор является активным катализатором по отношению к спиртам, олефинам и фторпроизводным и может занять первое место в ряду с более активными катализаторами. С другой стороны, в реакциях, использующих алкилхлориды или алкилбромиды, он не является эффективным катализатором и должен занять поэтому одно из последних мест. [c.429]


    В этой реакции, родственной реакции Виттига, вместо илидов фосфора используются фосфонатные карбанионы [489]. Эта реакция обладает следующими преимуществами во-первых, фосфонатный карбанион более нуклеофилен и реагирует в мягких условиях с самыми разнообразными альдегидами и кетона-ми во-вторых, растворимость фосфонатов в воде облегчает выделение продуктов реакции из реакционной смеси при обработке в-третьих, фосфонаты, которые получают по реакции Арбузова, дешевле и более доступны. Обычные фосфонаты, с успехом используемые в реакции Хорнера, включают заместитель К , резонансно стабилизирующий карбанион. Если Кз = Н или алкил, то олефины образуются с низким выходом. С точки зрения стереохимии образованию гранс-олефинов благоприятствуют небольшие заместители у а-углерода фосфоната. Стерические затруднения как в фосфонате, так и в карбонильном реактанте способствуют промежуточному образованию бетаина, что приводит к чис-олефинам [490, 491]. [c.257]

    В табл. 3.19 приведены реакции ССЬ с соединениями с одной двойной связью. С простыми олефинами легко достигаются выходы 75—95%, с сильно стерически затрудненными ал-кенами (например, 3,3-диметилбутеном-1) выход даже в благоприятных условиях достигает только 40%. Тетрафенилэтилен в отличие от трифенилэтилена не реагирует. [c.303]

    Температура и время реакции. Рекомендуется проводить реакцию при комнатной температуре. Обычное время реакции для стирола и циклогексена составляет 4—6 ч. Для более стерически затрудненных олефинов (3,3-диметилбутен) или электронодефицитных дезактивированных систем (полиприсоединение к циклооктатетраену) реакцию ведут гораздо дольше (от 2 до 6 сут). Хотя в этих случаях выход день ото дня возрастает, для экономии времени лучше через 1—2 сут разделить реакционную смесь и сырой продукт снова ввести в реакцию. [c.336]

    Аналогичныэ наблюдения были сделаны с 2-метилбутенами и 4-метил-пентенами 126) остаточный олефин является смесью всех изомеров с двойной связью. Было показано, что эта миграция катализируется гидрокарбэнилом кобальта [27] (разд. П1.3.Д) и усиливается с температурой. Однако индивидуальные изомеры отличаются четко различными скоростями гидрофэрмилирования, что, очевидно, связано со стерическими препятствиями [c.196]

    ОТ олефина, но также и от других лигандов комплекса, и были сделаны попытки изменить селективность путем замены части СО другими более крупными лигандами, устойчивыми при условиях гидроформилирования. Этим требованиям, по-видимому, удовлетворяют триалкилфос-фины PRj или фосфиты Р(ОЯ)з и их триарильные гомологи РАГд или Р(ОАг)з [40]. Высокая устойчивость координационных связей Со—РХ3 объясняет как повышенную стабильность этих видоизмененных катализаторов, допускающих более высокие температуры и более низкие давления СО, так и их более низкую активность. Значительное повышение селективности было найдено при гидроформилировании пропилена выход продуктов с открытой цепью удалось увеличить с 78 до 88% [41 ] кроме того, при реакции смесей стерически блокированных и не блокированных олефинов (2-метилбутен-2 и 2-метил бутен-1) реагировал только второй олефин. Есть указания, что сходные лиганды, как, например, арсикы АзЯз или цианиды R N, оказывают одинаковое влияние на гидроформилирование [42]. [c.200]

    С высшими олефинами на Pd( 0)4 группа O I присоединяется к стерически наименее защищенному концу двойной связи, и таким образом образуются изомеры с открытой цепью. Постулированы следующие промежуточные продукты  [c.203]

    Низкие скорости изомеризации р- и -олефинов объясняются не только стерическими, но и термодинамическими ограничениями, так как при температурах гомогенного катализа содержание а-олефинов в равновесной смеси мало (см. гл. 1). В тех случаях когда а-олефины удаляют из реакционной среды, скорость изомеризации р--)-а- может быть существенно увеличена. Так, в системах Циглера — Натта скорость полимеризации а-олефинов значительно выше скорости их изомеризации, в то время как для р- и V- зависимость обратная. Поэтому а-олефины в присутствии АШз+Т1С1з полимеризуются, а р-олефины при контакте с такой системой переходят сначала в а-изомеры, образующие далее полимеры. Отметим также, что, по мнению некоторых исследователей [60], изомеризация и полимеризация протекают на разных центрах катализатора. Аналогичные представления высказаны и для изомеризации, сопутствующей окислению [20, с. 36] и гидрированию [60]. [c.115]

    Трифторид бора является активным катализатором в случае применения спиртов, олефинов и фторпроизводных, тогда как с другими алкилгалогенидами он проявляет слабые каталитические свойства. Подобное различие реакционной способности объясняется тем, что ВРз из-за стерических затруднений слабо соединяется с С1 или Вг(ВС14 в отличие от Вр4 весьма несто-ек) Присоединение к ароматическим углеводородам алкилирующих агентов, имеющих несколько различных функциональных групп, даст возможность при изменении условий получать с разной степенью селективности те или иные продукты. Следует отметить, что состав алкилата при этом в значительной степени определяется природой катализаторов  [c.18]

    Реакция замещения активных радикалов менее активными, при которой радикалы атакуют более слабо связанный атом Н метильной группы молекулы пропилена или изобутилена (энергия атакуемой С Н-связи метильной группы молекулы пропилена равна 77 ккал вместо 90 ккал для той же связи в молекуле пропана [64]) и отрывают атом водорода с образованием аллильных радикалов, имеет более высокую энергию активации (порядка 10—15 ккал) и низкий стерический фактор (порядка 10- —10- ). Казалось бы, что реакции присоединения радикалов к олефинам должны преобладать над реакциями замещения, которые характеризуются более высокими величинами энергий активации и таким же низким значением стерических факторов. Поэтому механизм торможения, сопряженный с присоединением радикалов, с кинетической точки зрения должен бы иметь преимуще1ства. Однако в условиях крекинга алканов реакции замещения активных радикалов менее активными, протекают более глубоко, чем реакции присоединения радикалов, которым благоприятствуют низкие температуры. С другой стороны, алкильные радикалы типа этил-, изопроцил- и третичных изобутил-радикалов, несмотря на свою большую устойчивость по отношению к распаду, более активно по сравнению с аллильными радикалами вступают в реакции развития цепей, как пока-зы вает сравнение их реакционной опособности [65]. Малоактивные радикалы, способные замедлить скорость цепного процесса, тем не менее обладают остаточной активностью, отличной от нуля, по величине которой они могут между собой различаться [66]. Именно эта остаточная активность малоактивных радикалов, соответстоующая как бы более низкому качеству свободной валентности радикала (некоторой степени выравнивания электронного облака по всей частице радикала), является причиной того, что и малоактивные радикалы способны в соответствующих условиях развивать цепи, вследствие чего наступает предел тормозящего действия продукта реакции или добавки ингибитора. При этом скорость уменьшается с увеличением концентрации тормозящей добавки только до некоторого предела, а [c.33]

    Экспериментальные величины стерических факторов реакций присоединения Н-атомов к олефинам были определены пО измерениям эффективностей столкновений реакций присоединения Н к олефинам по методу посинения окиси молибдена или вольфрама, применяемому с целью изучения быстрых радикальных реакций [62]. Этот метод можно использовать более широко для изучения кинетики наиболее быстрых радикальных реакций с насыщенными углеводородами, наряду с методом пара-ортоводородной конверсии. Надо только учесть, что определенные опытным путем эффективности столкновений реакции присоединения Н-атомов к олефинам представляют собой суммарный результат действия стерических факторов и энергии активации. Поэтому при сравнении с вычисленными значениями стерических факторов из опытных величин эффективностей столкновений предварительно должна быть исключена доля, соответствующая влиянию энергетического фактора. При этом энергия [c.201]

    ЦИИ присоединения Н-атомов к этилену, оба метода дают согласующиеся значения нредэкспонентов реакций присоединения СНз-радикалов к олефинам. Расхождение в случае реакции этилена с Н по-видимому, связано с недоучетом стерического фактора и небольшой энергии активации реакции. [c.208]

    Рассмотрилт для начала диен 124. В его молекуле имеются две сходные двойные связи, но одна из них (а) — ди-замещенная, а другая (б) — тризамещенная. Пусть задача состоит в восстановлении либо связи а,. чибо связи б. В первом случае игра может строиться на в].1сокой чувствительности каталитического гидрирования к стерическим препятствиям, что позволяет достаточно селективно нро-гидрировать (иапример, пад палладием) менее затрудненную связь а в присутствии связи б и выйти к олефипу 125. Альтернативный результат — селективное восстановление связи б с получением изомерного олефина 126 — достигается с помощью так называемого ионного гидрирования — [c.128]

    Ранее уже указывалось, что некоторые реакции идут как син-присоединение, когда обе группы, присоединяющиеся к ненасыщенной системе, приближаются с одной и той же стороны, а другие реакции — как анты-присоединение, когда две группы приближаются с разных сторон двойной или тройной связи. Для циклических систем существуют дополнительные аспекты стерической ориентации. При сын-присоединении к несимметричному циклическому олефину две группы могут присоединиться с более или с менее затрудненной стороны двойной связи. Как правило, хотя это и не всегда так, сын-присоединение происходит с менее стерически затрудненной стороны [92]. Например, эпоксидирование 4-метилциклопентена на 76 %, идет как присоединение с менее затрудненной стороны и на 24 % — как присоединение с более затрудненной стороны [93]  [c.156]

    С помощью этой реакции в производные циклопропана можно превратить олефины всех типов (хотя в случае стерически затрудненных субстратов могут возникнуть осложнения) [788]. Даже тетрацианоэтилен, который очень малочувствителен к электрофильной атаке, реагируя с карбенами, дает производные циклопропана [789]. Реакции сопряженных диенов идут как 1,2-присоединение [790]  [c.266]

    Действительно, илиды, содержащие стабилизирующие группы или полученные из триалкилфосфинов, как правило, дают транс-олефины [513], а илиды, полученные из трпарплфосфинов и не содержащие стабилизирующих групп, часто приводят к цис-олефину или к смеси цис- и трамс-олефинов [513]. Одно из объяснений этого явления [506] основывается на упоминавшемся выше предположении, что в таких случаях стадии 1 и 2 механизма осуществляются одновременно. Если это так, то реакция илида с карбонильным соединением представляет собой [2+2]-циклоприсоединение, которое, для того чтобы быть согласованным, должно следовать [ 25-4-п2а]-пути. Как уже рассматривалось при описании реакции 15-48, такой механизм приводит к образованию стерически более затрудненного продукта, в данном случае ц с-олефина. Объяснить образование ч с-олефинов и смесей цис- и граис-изомеров даже в реакциях, протекающих через образование в качестве интермедиата бетаина, можно, если предположить, что в таких реакциях стадия 1 необратима. При этом конфигурация получающегося диастереомера определяется взаимным расположением илида и карбонильного соединения перед реакцией. После образования бетаина стереохимия олефина определяется лишь тем фактом, что элиминирование— это с н-процесс. Две обсуждающиеся возможности можно проиллюстрировать следующей схемой  [c.404]

    Конечно, атомы водорода группы СНз должны быть более кислыми, чем в группе МегСН, даже в присутствии нейтральной уходящей группы, но объяснение Хьюза и Ингольда подразумевает тот факт, что кислотность имеет значение в случае заряженных, а не нейтральных уходящих групп, поскольку заряженные группы проявляют сильный электроноакцепторный эффект, что делает разницу в кислотности более существенной, чем в случае электроноакцепторных нейтральных групп [78]. Аналогичное объяснение предложил Баннет [79]. Согласно его объяснению, переход к положительно заряженной уходящей группе вызывает сдвиг механизма в спектре в сторону механизма Е1сВ, где в лимитирующей стадии разрыв связи С—Н больше и, следовательно, кислотность имеет большое значение. Поэтому в случае нейтральной уходящей группы механизм ближе к типу Е1, более важен разрыв связи С—X, и ориентация образующейся двойной связи определяется устойчивостью олефина. Третий, совершенно отличный вариант объяснения выдвинул Браун. Согласно его версии, эффекты поля не играют никакой роли, а различие в ориентации в большой мере является проявлением стерического эффекта, вызванного тем, что заряженные группы, как правило, крупнее нейтральных. Группа СНз более открыта для атаки, чем СНгР, а группа СНКг еще менее подвержена атаке. Конечно, эти рассуждения применимы и к нейтральной уходящей группе, но, согласно Брауну, в по- [c.28]

    Здесь всегда наблюдается смн-элиминирование, так что возможен стерический контроль продукта. Таким путем можно с высоким выходом получить олефины, образование которых не является стерически выгодным, например t u -Ph H2 H== = H H2Ph [277]. В алкены можно превратить и некоторые другие пятичленные циклические производные 1,2-диолов [278]. [c.65]

    Под названием реакция Шмидта объединяются три реакции, включающие присоединение азотистоводородной кислоты к карбоновым кислотам, альдегидам и кетонам, а также к спиртам й олефинам [230]. Самая типичная из них — реакция с карбоновыми кислотами — представлена на схеме выше [231]. Универсальным катализатором является серная кислота, используются также кислоты Льюиса. Хорошие результаты получаются в том случае, когда К — алифатическая группа, особенно с длинной цепью. Если К = арил, выходы продукта могут быть любыми, причем для стерически затрудненных соединений типа мезитойной кислоты они наиболее высоки. Преимущество этого [c.159]


Смотреть страницы где упоминается термин Стерические олефинов: [c.154]    [c.150]    [c.84]    [c.165]    [c.25]    [c.211]    [c.231]    [c.24]    [c.173]    [c.180]    [c.180]    [c.190]    [c.241]    [c.257]    [c.314]   
Основы химии карбанионов (1967) -- [ c.218 ]




ПОИСК





Смотрите так же термины и статьи:

Стерические эффекты эффект заслонения в изомеризации олефинов



© 2025 chem21.info Реклама на сайте