Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фазовое в растворах полимеров

Рис. 2.3. Фазовые диаграммы состояния растворов полимеров состав - температура Рис. 2.3. <a href="/info/18072">Фазовые диаграммы состояния</a> <a href="/info/728">растворов полимеров</a> состав - температура

    Излагаются основные понятия современной теории адгезии и фазовых переходов. Предложена модель адгезии на межфазной границе раствор полимера - субстрат , как расширение двумерного поверхностного газа в поле межмолекулярных сил субстрата. Показаны особенности фазовых переходов и адгезии в полимерных смесях. Изложены результаты экспериментов по изучению влияния хаоса компонентного состава на характеристики фазовых переходов в многокомпонентных высокомолекулярных системах. Установлено, что концентрационный хаос искажает критические константы фазовых переходов, определяемые из классов универсальности. Обнаружен эффект пространственно-временного совмещения фазовых переходов в многокомпонентных высокомолекулярных системах с концентрационным хаосом. Учебное пособие предназначается для студентов и аспирантов химических, химико-технологических и инженерных специальностей вузов и может быть рекомендовано специалистам в области технологии, физики и химии полимеров, композиционных материалов, текстильной промышленности и нефтехимии. [c.2]

    Фазовые переходы в расплавах и растворах полимеров [c.26]

    Цель работы Получение фазовых диаграмм для нескольких фракций полистирола в циклогексане и определение 0-температуры раствора полимера. [c.108]

    Наибольшие успехи метода спиновых меток связаны с исследованием растворов полимеров. Спектры ЭПР как зондов, так и меток весьма чувствительны к фазовой структуре растворов полимеров. Спиновые зонды различного химического строения использованы для изучения фазового разделения растворов поливинилацетата (ПВА) в метаноле и полистирола (ПС) в декалине [212]. Первая из систем исследована также методом спиновых меток, концентрация которых составляла 1—2 на цепь. Концентрация зондов не превышала 10 спинов/см . Растворы имели концентрацию с от 1 до 50 % (масс). [c.291]

    Фазовое равновесие полимеров играет важную роль в ряде процессов, например в процессах 1) смешения полимеров с пластификаторами, мономерами и другими жидкостями 2) испарения мономеров из растворов 3) смешения различных полимеров 4) плавления полимеров. Вплоть до настоящего времени ни для одного из этих процессов не дано достаточно хорошего количественного термодинамического описания, хотя работы в этом направлении ведутся и сейчас. Тот факт, что полимеры, как правило, не подвергаются многостадийным процессам разделения, не способствовал экономическому стимулированию исследований их фазового поведения. Кроме того, решение данной проблемы в определенной степени усложняется разнообразием возможных состояний полимеров. Это могут быть смеси, молекулярные массы компонентов которых соответствуют некоторому определенному диапазону, и аморфные стекловидные или каучукоподобные вещества, или же в зависимости от температуры и предыстории они могут иметь более одной кристаллической формы. Будет уместно процитировать замечание Бонди [190] относительно того, что его обзор литературы по термодинамике фазового поведения полимеров отражает недостаточный современный уровень знаний по этому вопросу. [c.455]


    В предыдущих главах было показано, что механические и электрические свойства полимеров в сильной степени зависят от их строения, фазового и физического состояния. Эти же факторы влияют и на термодинамические свойства растворов полимеров. Поэтому целесообразно рассмотреть термодинамические закономерности процесса растворения высокоэластических, стеклообразных и кристаллических полимеров. [c.366]

    В процессе исследования. свойств смесей полимеров неоднократно проводились экспериментальные работы по определению их совместимости. При этом особое внимание уделялось термодинамическим характеристикам (изменение теплоты и свободной энергии при смешении, расслаивание растворов полимеров) или показателям фазового состояния смеси полимеров. Наиболее сложным явился вопрос, что может служить мерилом фазового состояния, ведь даже низкомолекулярные жидкости содержат ассоциированные молекулы, В связи с указанным представления об однофазной системе, как системе, где смеси компонентов раздроблены до молекулярных размеров, неточны.]р меси полимеров являются одно- фазными, когда они обладают полной структурной однородностью, характеризуются одной областью стеклования, поэтому для практической оценки наличия полной или ограниченной термодинамической совместимости решающее значение имеют точные физические методы определения температурных областей релаксационных переходов в полимерах и их смесях. [c.13]

    Френкель и сотр. [21] обобщают работы по фазовым равновесиям в системе полимер—растворитель и дают термодинамический критерий концентрированных и разбавленных растворов. Было предложено рассматривать фазовые диаграммы в двух приближениях. Первое равновесное приближение позволяет лишь в общих чертах предсказать характер структуры на любом участке системы. Такое рассмотрение основано на полной аналогии между простыми бинарными смесями и растворами полимеров в низкомолекулярных жидкостях. Сущность аналогии заключается в том, что хотя и принимается во внимание принципиальное различие между свободными энергиями смешения простых жидкостей и систем, содержащих полимеры, но на диаграмме это различие выражается лишь в резкой асимметрии бинодалей. [c.64]

    В метастабильных растворах полимеров упрочняющее действие выделившихся полимерных образований существенно зависит от их морфологии, фазового состояния и механических свойств [518, 519, 523]. Так, если речь идет о полимере, способном к кристаллизации, то при выделении из раствора его структура зависит от дисперсности наполнителя, и полимер может выделяться и в аморфном состоянии вследствие затрудненности кристаллизации в тонких пристенных слоях, и узких зазорах между частицами наполнителя [520]. [c.263]

    В связи с этим вполне оправдана попытка изложить некоторые общие положения о структуре и свойствах концентрированных растворов полимеров и особенно об агрегатных и фазовых переходах, происходящих при переработке растворов в изделия. Именно эти переходы обусловливают в существенной степени свойства получаемых изделий. Даже при поверхностном рассмотрении свойств волокон н пленок, полученных из растворов двумя различными путями (испарением растворителя и так называемым осаждением полимера при введении нерастворителя), обнаруживается их резкое различие. Более детальное изучение этих различий, выяснение их причин, а следовательно, и отыскание методов регулирования свойств изделий требуют исследования физико-химических закономерностей указанных превращений и переходов. [c.13]

    Наиболее существенные отличия фазового равновесия в системе полимер — растворитель от равновесия пары низко молекулярных жидкостей обусловлены своеобразием свойств второй фазы, т. е. фазы, более богатой высокополимерным веществом. Дело в том, что растворы полимеров обладают очень высокими вязкостями, достигающими даже для умеренных концентраций значений порядка 10 —10 пз. При концентрациях полимера выше 50% вязкость измеряется уже миллионами пуаз, [c.44]

    Парциальный мольный объем растворенного в полимере газа может быть оценен на основе теории фазового равновесия в растворах полимеров, в частности, по решеточной модели Флори и Хиггинса. Краткий обзор работ в этой области и некоторые расчетные соотношения приведены в [2]. Напомним, что вели-ЧИНЗ V т имеет тот же порядок, что парциальный мольный объем жидкой фазы растворенных газов, т. е. 30—50 см /моль, поэтому при давлениях в напорном канале до 5 МПа окажется, что У,т°°Р/Р7 <1. Следовательно, влияние давления на константу Генри незначительно и может быть учтено в виде поправки [2]. [c.98]

    Показаны особенности фазовых переходов и адгезии в сложных высокомолекулярных системах. Изложены результаты экспериментов, проведенных на кафедре технологии полимерных материалов УТИС и в лаборатории новых материалов и методов ИПНХП АН РБ по изучению влияния хаоса компонентного состава на хара1гге-ристики фазовых переходов в многокомпонентных высокомолекулярных системах. Предложена модель адгезии на межфазной границе раствор полимера - субстрат как расширение двумерного поверхностного газа в поле межмолекулярных сил поверхности субстрата. Показана адекватность этой модели для адгезии растворов и гелей полимеров и сложных многокомпонентных адгезивов на металлических и полимерных субстратах. [c.4]


    Фазовые равновесия. В растворе полимера, как и во всякой однофазной молекулярно-дисперсной системе, всегда имеют место гомофазные флуктуации концентрации. В определенных условиях могут возникнуть гетерофазные флуктуации, которые являются зародыщами новой фазы и при небольшом изменении условий превращаются в новую пространственно протяженную фазу. В результате однофазный раствор разделяется на две фазы, одна из которых представляет собой более разбавленный, а другая — более концентрированный раствор по сравнению с исходным. Такие фазовые превращения характеризуются соответствующими изменениями термодинамических функций. [c.88]

Рис. III. 6. Записнмость температуры фазового расслоения системы полимер — растворитель от объемной доли полимера (а) и второго вириального коэффициента раствора полимера от температуры (б). Рис. III. 6. Записнмость <a href="/info/718287">температуры фазового расслоения</a> <a href="/info/74058">системы полимер</a> — растворитель от <a href="/info/321636">объемной доли полимера</a> (а) и <a href="/info/1596002">второго вириального коэффициента раствора полимера</a> от температуры (б).
    Для получения диаграмм состояния эксперимеитально путем многократного нагревания и охлаждения растворов полимеров разной концентрации определяют температуры фазового расслоения Тф.р., т. е. температуры помутнения и осветления раствора, и со-огавы образующихся двух фаз. [c.326]

    На фазовой диаграмме раствора полимера имеются две области ограниченной смещиваемости область ниже ВКТР, связанная с тета-температурой, и область выше НКТР. [c.45]

    Пространственное строение и другие свойства синтетических полимеров в растворе отвечают состоянию статистического клубка и описываются усредненными параметрами. Молекулярная поворотно-изомерная теория синтетических полимеров, являющаяся составной частью статистической физики, была разработана в 1950-е годы М.В. Волькенштей-иом [47] и позднее развита Т.М. Бирштейном и О.Б. Птицыным [48] и П. Флори [49]. Основы теории фазовых переходов полимеров были заложены в 1968 г. И.М. Лифшицем [50]. Хотя белки являются полимерами и их пространственное строение также определяется поворотной изомерией, теи не менее механизм структурной организации и особенности нативных конформаций белковых молекул не могут быть рассмотрены в рамках отмеченных теорий, базирующихся на равновесной термодинамике и конфигурационной статистике полимерных цепей. [c.101]

    Выход и молекулярный вес полимера возрастают с увеличением интенсивности перемешивания независимо от природы органической фазы [4]. При этом кинетическая область достигается при скорости перемешивания 2000— 4000 об/мин и дальнейшее ее увеличение не влияет на выход и молекулярный вес образующегося поликарбоната [5—9]. Это объясняется тем, что при увеличении интенсивности перемешивания образуется развитая поверхность и наступает равновесие между коалесценцией и дроблением капель. Этот процесс протекает при определенной частоте вращения мешалки, зависящей от природы взятой пары растворителей, их объемного соотношения и конструкции реакционного сосуда и мешалки. При фазовом числе, равном 1 для одной и той же пары растворителей и при установившемся режиме удельная поверхность раздела мало зависит от интенсивности перемешивания. Если органическая фаза не растворяет полимер, особенно необходимо интенсивное перемешивание. [c.16]

    Межмолекулярное взаимодействие (высокая энергия когезии) оказывает решающее влияние на все свойства полимеров, делая последние резко отличающимися от низкомолекулярных соединений. Энергия когезии влияет на физическую структуру, на физические, физико-химические и химические свойства (химическую реакционную способность) полимеров. Межмолекулярное взаимодействие определяет агрегатное состояние из-за высокой энергии когезии у полимеров отсутствует газообразное состояние, и при нагревании они разлагаются. Межмолекулярное взаимодействие влияет на фазовое состояние полимеров, способствуя упорядочению макромолекул, в том числе кристаллизации, с образованием надмолекулярных структур различного типа (см. 5.3). Из-за высокой энергии когезии полимеры труднее растворяются, чем низкомолекулярные соединения, и для них труднее подбирать растворители (см. 7.1). Межмолекулярное взаимодействие делает полимеры химически менее реакционноспособными по сравнению с низкомолекулярными соединениями аналогичного химического строения, так как химическому реагенту для проникновения в массу полимера необходимо преодолеть энерг ию когезии. Внутримоле- [c.128]

    Более детально растворы полимеров характеризуют диаграммами сосуществования, изображаемыми обычно в координатах Т — с (с — концентрация, обычно измеряемая в об. долях и обозначаемая фг) или — с. Разные типы диаграмм сосуществования, или фазовых диаграмм, в координатах 7 — ф2 показаны на рис. IV. 1. По аналогии с набором вандерваальсо-вых кривых, анализ энергий О позволяет строго вывести уравнения бинодали и спинодали [65]. Бинодаль определяет границу устойчивости однофазной системы спинодаль—границу полной ее неустойчивости. [c.113]

    Температура фазовых переходов полимера также зависит от метода хлорирования и содержания хлора. С увеличением содержания хлора температура стеклования растет. Полимеры, содержащие 25—357о хлора, имеют температуру стеклования от —20 до -Ь30°С (как и некоторые эластомеры), тогда как при содержании хлора 68—73% температура стеклования составляет 100— 180°С [20, 21]. При средних стеленях хлорирования температура стеклования ХПЭ, полученного в суспензии, выше, чем при хлорировании в растворе. При содержании хлора 63% и более температура стеклования ХПЭ не зависит от способа хлорирования. При содержании связанного хлора менее 35% температура стеклования ХПЭ выше температуры стеклования поливинилхлорида и сополимера этилена с винилхлоридом, но ниже температуры стеклования полихлоропрена. При содержании хлора свыше 60% температура стеклования ХПЭ выше температуры стеклования сополимера винилхлорида с винилиденхлоридом, но ниже температуры стеклования хлорированного поливинилхлорида. [c.32]

    Растворы полимеров, в том числе вискоза, с одной стороны, структурированы, что приводит к аномалии вязкости и появлению эластических свойств с другой стороны, растворы полимеров являются истинными, т. е. молекулярно-дисперсными. Это свойство проявляется, в частности, в том, что они подчиняются общим закономерностям фазовых переходов — как в отношении равновесных состояний, так и кинетики. В литературе приводятся многочисленные примеры, подтверждающие подчиняемость растворов полимеров правилу фаз [81, с. 75], поэтому нет необходимости в дополнительной дискуссии по этому вопросу. [c.197]

    Фазовые превращения кристаллизация, замораживание растворов полимеров (мриолиз) Дискретное изменение удельного объема и вознивновеяие напряжений на участках цепей по границе раздела областей с различной плотностью упакоякн Низкочастотное Взаимодействие с растворителем, изменяющим энергию связи в цепях образование свободных радикалов, ионов и т. д. [c.15]

    Рассмотрим теперь раствор полимера в плохом растворителе, в котором может произойти фазовое расслоение. Основные свойства критической точки, соответствующей этому расслоению, были обсуждены в гл. 4. Наша цель в данном разделе - проанализировать поведение коэффициента кооперативной диффузии вблизи критической точки. Мы будем следовать классическому описанию простых бинарных смесей, предложенному Кавасаки и Фереллом, привлекая лишь небольшое число специфически полимерных свойств. [c.238]

    Дебай [143—146] теоретически и экспериментально развил метод светорассеяния в применении к растворам полимеров и показал возможность использования метода светорассеяния для исследования твердых негомогенных полимерных тел. Метод светорассеяния позволяет обнаружить не только фазовые превращения в растворах полимеров, но и явления им предшествующие, а илгенно, сильную критическую опалесценцию, теоретически предсказанную Дебаем и подробно исследованную Эскиным [147-150]. [c.80]

    Выяснение механизма усиливающего действия наполнителей имеет большое значение для направленного улучшения физикомеханических свойств наполненных материалов. Механизм усиливающего действия наполнителей в пластмассах и резинах различен, поскольку последние в условиях эксплуатации находятся в вы-сокоэластическом состоянии. Следует также иметь в виду, что механизм усиления полимеров нельзя объяснить с какой-либо одной точки зрения. Для его понимания необходимо учитывать все факторы, влияющие на свойства материала химическую природу полимера и наполнителя, тип наполнителя (дисперсный, волокнистый, тканый и пр.), фазовое состояние полимера, адгезию полимера к поверхности, условия формирования наполненного полимера из раствора или распл ава или условия отверждения жидкого связующего, условия вулканизации и т. д. [c.251]

    В книге сделана попытка рассмотреть то общее, что объединяет различные виды переработки растворов полимеров, а именно физпко-химичсскис основы процессов растворения, формования и фиксации сформованных изделий, Рассмотрение ведется иа основе анализа равновесия фаз в системе полимер — растворитель. Хотя исследованию диаграмм состояния этой системы посвящено большое число публикацт , технологический аспект фазового равновесия до сих пор ие был представлен в обобщенном виде. [c.7]

    Таким образом, наблюдается интересное взаимное влияние отдельных разделов коллоидной химии в ее историческом развитии, что дает основание по-новому рассматривать соотношение типичных коллоидных систем и самопроизвольно образующихся растворов полимеров. При этом, не смешивая оба типа систем, можно установить мел<ду ними общность, но уже не иа базе гипотезы о мицеллярном строении растворов, а на базе подчиняемости группы конденсационных коллоидов законам фазового равновесия в процессе их образования. [c.23]

    На ряде эксперпментальных примеров показаны основные типы диаграмм фазового равновесия для трехкомпонентных систем с пекрнсталлизуюци1мся полимером. Кроме общих случаев равновесия, рассмотрены и частные. Так, показано, каким образом две порознь не растворяющие жидкости приобретают свойство растворять полимер. Это непосредствепно вытекает из топологического анализа тройной системы как следствие геометрии тела расслоения. Достаточно же убедительного теоретического объяснения этого явления до сих пор не дано. [c.146]

    К сказанному остается добавить, что, рассматривая растворы полимеров как термодинамически равновесные системы и соответствепно приписывая им однофаз-ность, следует иметь в виду следующее как и любое свойство спстемы, фазовое состояние определяется только по отношению к какому-либо внешнему воздействию, т. е. только в связи с каким-либо процессом, в котором участвуют фазы. Действительно, если для констатации наличия фазы мы буде.м рассматривать процесс, протекающий со скоростью большей, чем скорость распада случайно образовавшихся аееоциатов макромолекул (роев), то такие ассоциаты будут проявлять себя как фазы, и тогда концентрированные растворы поли.меров следовало бы считать двухфазными системами. Еслн же скорость процесса, при помощи которого мы констатируем наличие или отсутствие фазы, значительно меньше скорости образования и распада аееоциатов молекул, то так называемые надмолекулярные образования це будут рассматриваться как фаза, и раствор полимера следует считать однофазным. [c.150]

    Добавление нерастворителя в раствор полимера означает переход на диаграмме фазового равновесия от одной бинодали —с относительно низко расположенной критической температурой совместимости компонентов—к другой, у которой критическая температура совместимости лежит в области температуры эксперимента или превышает ее. Если в систему добавлено такое количество осадителя (нерастворителя), что критическая температура совместимости полимера с растворителем оказывается выше температуры эксперимента, то происходит распад системы на две фазы. На рис. 73 приведена схематическия объемная диаграмма состояния [c.171]


Смотреть страницы где упоминается термин Фазовое в растворах полимеров: [c.40]    [c.215]    [c.39]    [c.12]    [c.351]    [c.101]    [c.12]    [c.4]   
Фракционирование полимеров (1971) -- [ c.11 , c.13 ]




ПОИСК





Смотрите так же термины и статьи:

Растворы полимеров



© 2025 chem21.info Реклама на сайте