Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Известняк определение железа

    Метод фотометрии пламени можно распространить на неводные растворы. Если растворитель обладает горючими свойствами, то он несколько повышает температуру пламени, в то время как вода понижает эту температуру. Этот метод особенно удобен для тех металлов, которые можно селективно извлечь из водного раствора посредством органического растворителя полученный экстракт можно непосредственно распыливать в пламени. Примером такого анализа является определение железа в цветных сплавах и известняке посредством экстрагирования ацетилацетоном из подкисленного раствора [5]. Железо определяют при длине волны 372 ммк. Эта эмиссионная линия в шесть раз сильнее, если железо растворено в ацетилацетоне, а не в воде. [c.107]


    Присутствие в известняках углистых веществ часто делает точное или даже приблизительное определение железа (II) невозможным. Несмотря на это, даже в присутствии углистых веществ могут быть иногда получены приемлемые результаты, если количество этих веществ невелико и при растворении породы в кислоте не получается окрашенный раствор. Но даже и тогда можно определить только переходящее в раствор железо, которое присутствовало в породе преимущественно (если не полностью) в виде карбоната. Иногда известняки содержат двуокись марганца,. которая также мешает определению. [c.968]

    Выплавка стекла. Стекло может быть прозрачным или полупрозрачным, бесцветным или окрашенным. Оно является продуктом высокотемпературного переплава смеси кремния (кварц или песок), соды и известняка. Для получения специфических или необычных оптических и других физических свойств в качестве присадки к расплаву или заменителя части соды и известняка в шихте применяют другие материалы (алюминий, поташ, борнокислый натрий, силикат свинца или карбонат бария). Цветные расплавы образуются в результате добавок окислов железа или хрома (желтые или зеленые цвета), сульфида кадмия (оранжевые), окислов кобальта (голубые), марганца (пурпурные) и никеля (фиолетовые). Температуры, до которых должны быть нагреты эти ингредиенты, превышают 1500 °С. Стекло не имеет определенной точки плавления и размягчается до жидкого состояния при температуре 1350—1600 °С. Энергопотребление даже в хорошо сконструированных печах составляет около 4187 кДж/кг производимого стекла. Необходимая температура пламени (1800— 1950 °С) достигается за счет сжигания газа в смеси с воздухом, подогреваемым до 1000 °С в регенеративном теплообменнике, который сооружается из огнеупорного кирпича и нагревается отходящими продуктами сгорания. Газ вдувается в поток горячего воздуха через боковые стенки верхней головки регенератора, которая является основной камерой сгорания, а продукты сгорания, отдав тепло стекломассе, покидают печь и уходят в расположенный напротив регенератор. Когда температура подогрева воздуха, подаваемого на горение, снизится значительно, потоки воздуха и продуктов сгорания реверсируются и газ начнет подаваться в поток воздуха, подогреваемого в расположенном напротив регенераторе. [c.276]

    Технологический процесс переработки железной руды, угля, известняка и углеводородных топлив в конечный продукт может быть разбит на 3—4 основные стадии, которые осуществляются раздельно с получением определенного продукта, на следующей стадии перерабатываемого в продукт нового вида. Различные стадии процесса могут проходить в одной технологической установке. Это будет способствовать не только экономии энергии и расходов на транспортировку, но и упрощению технологического процесса. Основные технологические стадии при производстве чугуна и стали следующие подготовка сырья (коксование угля, обжиг известняка, производство железорудного агломерата и окатышей) производство чугуна (доменная выплавка, производство губчатого чугуна за счет прямого восстановления железа) стали (в мартеновских и электродуговых печах, бессемеровских и основных кислородных конвертерах) проката (непрерывное литье заготовок, прокатка сортовой стали, производство труб, поковки). [c.303]


    Осаждение гидроокисей. Осаждение гидроокисей широко применяется и в качественном, и в количественном анализе для открытия, отделения и определения катионов. В некоторых случаях разделение катионов основано на амфотерном характере некоторых окислов металлов. Так, например, железо отделяют от ванадия, молибдена, алюминия и т. п. элементов, обрабатывая раствор избытком ш,елочи. В других случаях разделение элементов основано на различной растворимости гидроокисей. Так, при анализе многих руд, металлов, шлаков, известняков и т. п. материалов, для отделения алюминия и железа от марганца, магния, кальция и других элементов используют то обстоятельство, что гидроокиси большинства трехвалентных металлов значительно менее растворимы, чем гидроокиси многих двухвалентных металлов. Слабые основания, как, например, гидроокись аммония, пиридин (С Н Н) и др., количественно осаждают гидроокиси алюминия и железа, тогда как ионы кальция, магния и многих Других двухвалентных элементов остаются в растворе. [c.94]

    Для производства цемента смесь глины с известняком в определенных количественных соотношениях обжигают в специальных печах при 1400—1500 °С. Полученную спекшуюся массу размалывают в тонкий порошок. Цемент — сложный силикат, в состав которого В основном входят элементы Са, А1, Fe, Si, О. Ценным свойством цемента является его способность при замешивании с песком и водой спустя некоторое время образовывать камневидную массу, обладающую большой механической прочностью. Из цемента, песка, щебня, гравия, воды и некоторых других добавок получают важный строительный материал бетон. Он хорошо сцепляется с железом, образуя прочную массу. Бетон, армированный железом, называется железо-бетоном. [c.368]

    Определение кальция в известняке. Важным косвенным окислительно-восстановительным методом анализа является определение кальция в известняке. Компонентами доломитного известняка являются карбонаты кальция и магния, но обычно присутствуют еще в небольших количествах силикаты кальция и магния, а также карбонаты и силикаты таких элементов, как алюминий, железо и марганец. Кроме того, большинство образцов содержит также в небольших количествах титан, натрий и калий. [c.325]

    Например, параллельные определения СаО в известняках и доломитах редко дают расхождения меньше чем на 0,5% (при содержании СаО около 40%), тогда как железо в рудах (при содержании около 70%) легко может быть определено с точностью до 0,05%. [c.311]

    Основные контрольные точки 1—анализ раствора поваренной соли на содержание хлор- и сульфат-ионов и ионов кальция, магния и железа 2 —анализ известняка ыа содержание карбоната кальция 5—анализ аммиачной воды на содержание аммиака, сероводорода, углекислого газа 4 — анализ кокса на влагу и золу 5 —анализ извести на содержание окиси кальция и карбоната кальция 6 — определение двуокиси углерода, окиси углерода и кислорода в газах 7 — анализ известкового молока на содержание СаО 8 —анализ жидкостей на содержание свободного и связанного аммиака и углекислого газа, ионов хлора, кальция 9 — анализ газов на содержание аммиака и углекислого газа / -—определение влаги и хлора в бикарбонате // — анализ готового продукта на содержание карбоната, хлорида, сульфата натрия и потерь при прокаливании. [c.202]

    Здесь приняты во внимание только известняк и доломит, в которых определяют главным образом кремнекислоту, закись железа, глинозем, известь, магнезию, реже фосфор, марганец и серу. Анализ не отличаете от анализа руд. Для определения извести и магнезии из-за высокого содержания последних следует брать соответственно малые навески. Зато для остальных веществ, которые в большинстве случаев встречаются лишь в небольших количествах, надо брать в работу навески побольше (1—3 г). [c.57]

    А. В. Виноградов отмечает ряд недостатков приведенного выше хода анализа по Кольтгофу (стр. 219). При малом содержании магния и относительно большом количестве кальция (что имеет место в природных известняках) приходится брать большую навеску пробы, и тогда при добавлении едкой щелочи в таком количестве, чтобы свести к минимуму растворимость Mg(0H)2, может выпасть осадок гидроокиси кальция. Кольтгоф не указывает далее, как произвести отделение железа, алюминия и т. п. катионов, мешающих определению, как нейтрализовать раствор перед определением и т. д. Вызывает возражение также и метод отбирания пипеткой 50 мл прозрачной жидкости непосредственно из общего объема в 100 мл в этих условиях трудно не захватить частицы осадка гидроокиси магния. А. В. Виноградовым был разработан метод определения магния в известняках, в котором устранены эти недостатки метода Кольтгофа. [c.221]

    Определение железа и алюминия. При анализе силикатов, известняков, некоторых руд и других горных пород эти элементы часто определяют гравимеФрическим методом в смеси с титаном, марганцем и фосфатом как сумму так называемых полуторных оксидов. Обычно после отделения кремниевой кислоты в кислом растворе приводят осаждение сульфидов (меди и других элементов) и в. фильтрате после удаления сероводорода осаждают сумму полуторных оксидов аммиаком в аммиачном буферном растворе. Осадок гидроксидов промывают декантацией и переосаждают, после чего фильтруют, промывают и прокаливают. Прокаленный осадок содержит оксиды ЕегОз, АЬОз, ТЮг, МпОг. Иногда анализ на этом заканчивается, так как бывает достаточным определить только сумму оксидов и не требуется устанавливать содержание каждого компонента. При необходимости более детального анализа прокаленный осадок сплавляют с пиросульфатом калия для перевода оксидов в растворимые сульфаты и после растворения плава определяют в растворе отдельные компоненты — железо титриметрическим или гравиметрическим методом, титан и марганец — фотометрическим и фосфор — гравиметрическим (марганец и фосфор анализируются обычно из отдельной навески). Содержание алюминия рассчитывают по разности. Прямое гравиметрическое определение же- [c.165]


    Железо. Химики-аналитики редко считали нужным прибегать к потенциостатической кулонометрии для определения железа в обычных случаях. Однако Милнер и Эдварс [101] нашли удобным для определения железа в силикатах и некоторых сплавах производить потенциостатическое окисление железа (И) до железа (III) при потенциале 0,665 в в 1 и. растворе НС1 после предварительного перевода всего железа в двухвалентное состояние путем восстановления при потенциале 0,265 в на платиновых электродах. При использовании такой методики удавалось с достаточной точностью определять количества железа порядка мпкрограммов в полевом шпате, доломите, известняке и магнезите. Мейтес [3] использовал потенциостатический метод для количественного удаления железа из растворов электролитов путем выделения его на ртутных катодах при потенциале —1,75 в. [c.56]

    Ченг, Курц и Брэй [17] были первыми, применившими ком-плексометрическое определение железа при анализе известняков. [c.445]

    Работа 3. Определение железа в известняках метадом уравнивания [c.59]

    Способы, применяемые для определения механических примесей и наполнителей, не всегда дают возможность различать их между собой. Наиболее распространенный в СССР способ определения механических примесей с разложением смазки кислотой (ГОСТ С479-53) не дает возможности открыть такие механические примеси, растворимые в соляной кислоте, как, например, известняк, мел, часто присутствующие в кальциевых консистентных смазках, приготовляемых с омылением известью, а также гипс, железо и пр. Поэтому за последнее время получили распространение и некоторые другие способы (в том числе и без разложения соляной кислотой), также впрочем не свободные от недостатков. [c.743]

    Свойства минералов клинкера учитываются при вычислении соотношения между известняком и глиной, которое определяет минералогический состав портланд-цементов. Для корректировки состава в смесь известняка и глины добавляют иногда окислы железа в виде пиритных огарков или руды и кремнезем в виде трепела. Изменяя минералогический состав клинкера, получают многие виды специальных цементов, например, сульфатостойкий цемент, не разрушающийся в морской воде. Он содержит в ограниченном количестве Сз5 и С3А, содействующие вредному влиянию сульфат-иона. Подобным же образом рассчитывают состав тампонажного цемента (много Сз5 и строго определенное количество С3А) низкотермичного (мало Сз5 и СзА) и дорожного (много Сз5 и С4АР) цементов. Белый портланд-цемент, применяемый для облицовки зданий, готовят из сырья, не загрязненного РезОз. [c.242]

    Определен температурный интервал спекообразования и показана возможность получения высокого извлечения глинозема и металлического железа при спекании различных по составу разновидностей бокситов с известняком в присутствии восстановителей. [c.268]

    Пример 2. Для определения магния в известняке взята навеска g= 1,2456 г. После отделения кремневой кислоты, железа, алюминия и кальция был осажден магний в виде MgNH4P04, который прокаливанием был превращен в Mg2P207 масса прокаленного осадка а = 0,0551 г. Найти процентное содержание магния в известняке. [c.461]

    Фосфор содержится в черных металлах, куда он попадает из железных руд и известняков, употребляемых в качестве флюсов. Фосфор здесь обычно присутствует в виде фосфида железа РезР, который растворяется в феррите и уменьшает растворимость углерода в железе. Фосфор вызывает хрупкость стали, особенно при одновременном увеличении содержания в ней углерода. В большинстве марок стали содержится менее 0,1% фосфора. При его определении фосфид необходимо переводить в фосфат при помощи подходящего окисляющего растворителя. Фосфор также содержится и в цветных металлах, например в фосфористой бронзе, которая употребляется при изготовлении подшипников. [c.10]

    Марганец находится в железно-магнезиальных минералах почти во всех горных породах, хотя в результате изменения этих пород он бывает, иногда в более или менее окисленном состоянии, особенно на поверхности известняков и песчаников. Марганец чаще встречается в породах, богатых железом, чем в породах с высоким содержанием магния, и редко присутствует в количествах, превышающих 0,5%. Чаще всего он встречается в силикатах, окисях и карбонатах и ре ке — в сульфидах, фосфатах, воль-фраматах и ниобатах. Наиболее распространенными марганцевыми минералами являются двуокись марганца — пир-олюзит МдОа и п с и-ломелан МпзМпО -иНаО. Марганец широко применяется в промышленности, и методы его определения имеют первостепенное значение. [c.493]

    Объемное определение в присутствии ванадия. Описанные дальше способы основаны на предположении, что ванадий присутствует только в очень малых количествах, как это бывает в силикатных породах, глинах и кремнистых известняках. В таких случаях в найденном общем содержании железа будет небольшая ошибка, независимо от того, какой был применен восстановитель (см. Железо , стр. 441). Принимая во внимание вышеуказанное, рекомендуется в присутствии небольшого количества ванадия пользоваться только методом восстановления сернистым ангидридом (см. Железо , стр. 444) даже при отсутствии титана. Когда количество ванадия известно, можно внести поправку, предполагая, что весь ванадий содержится в исследуемом осадке, что, однако, нуждается в доказательстве. Ряд авторов подтверждает выпадение ванадия в осадок вместе с алюминием и железом при осаждении аммиаком или ацетатом аммония, но имеются указания и на то, что нри повторном осанедении аммиаком, [c.957]

    Фельд [25] нашел, что бисульфиды железа образовались при нагревании сернистого железа и серы, находящихся в воде в виде суспензий. Такое превращение-происходит в кислой среде, в то время как щелочная среда препятствует реакции. Хорошо известно, что при определенных видах кровли (например, в случае кровли из известняка) уголь того же нласта имеет меньшее содержание серы, в особенности пиритной, чем уголь под сланцевой кровлей. Пирит легко образуется при действии сероводорода на железо в присутствии гниющего органического материала, и образование пиритных трубок вокруг корешков, которые росли на лессовой почве, является относительно быстрым про цессом. [c.74]

    При выборе условий получения спектров, пригодных для обнаружения элементов, следует учитывать специфические особенности качественного спектрографического анализа (разд. 5.2.1). Эти условия зависят от того, нужно ли определять общий химический состав неизвестной пробы или необходимо установить только присутствие в ней одного или нескольких элементов. Первый случай относится к общему качественному спектрографическому анализу, в котором благоприятные условия обнаружения создают для больщин-ства элементов. Спектральный анализ является наиболее удобным способом качественного анализа, так как дает более богатую информацию по сравнению с другими аналитическими методами. Оче видно, что такой общий метод анализа не может обеспечить оптимальные условия для всех элементов и для всех анализируемых проб. В то же время именно универсальный характер этого метода позволяет установить компонентный состав неизвестного материала, Чаще всего основное вещество анализируемой пробы известно, например при определении примесей в известняке или доломите или следов элементов в литейном железе. В этом случае можно подобрать более подходящие и благоприятные аналитические условия для данного типа материала и определяемых элементов. Если определяют известные элементы в материале с известным основным компонентом, то можно применить специфические методы анализа, например использовать явление фракционной дистилляции или в качестве источника света — плазму с контролируемой температурой. Эти методы, однако, будут рассмотрены вместе с другими методами количественного анализа, хотя их можно использовать также для качественного обнаружения элементов (разд. 5.2.4). [c.21]

    Лебедев Б. Н. Основные вопросы в методике исследования золотосодержащих руд. Научно-техническая конференция работников заводских и аналитических лабораторий предприятий цветной металлургии Казахстана и республик Средней Азии, Алма-Ата. 15—20октября 1946 г., 1947, с. 42- 52. 4599 Лебедева А. Д. Определение свободной окиси кальция в портланд-цсментовых клинкерах. Цемент, 1948, № 1, с. 16—19. 4600 Лебедева А. Д. Фотоколориметрические методы определения содержания окисей железа, титана и марганца в известняках, шлаках и цементах. М., Промстройиздат, [c.181]

    Разложение известняка начинается при температуре около 600 °С. Достаточная скорость диссоциации достигается лишь при тем1пературе выше 900—950 °С. Поэтому в зоне обжига в известково-обжигательных печах поддерживают температуру в пределах 1000—1300 °С в зависимости от состава исходного материала. Примерная температура обжига карбонатлого сырья при небольшом количестве примесей 1300°С, при более значительном количестве примесей 1050—1150 °С. Повышать температуру обжига можно только до определенного предела. Повышение температуры сверх этого предела, вследствие наличия в обжигаемом материале примесей (кремнезема, окислов железа, глинозема и др.), взаимодействующих с СаО, приводит к спеканию массы. Образуются так называемые козлы , прилипающие к поверхности футеровки печи, нарушается нормальный ход обжига и ухудшается качество извести. Чем больше таких примесей, тем медленнее протекает обжиг и меньше выход извести. [c.432]


Смотреть страницы где упоминается термин Известняк определение железа: [c.544]    [c.372]    [c.491]    [c.793]    [c.376]    [c.211]    [c.194]    [c.458]    [c.507]    [c.880]    [c.470]    [c.380]    [c.445]   
Химико-технические методы исследования Том 2 (0) -- [ c.363 ]




ПОИСК





Смотрите так же термины и статьи:

Известняк



© 2025 chem21.info Реклама на сайте