Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ассоциация ионов молекул

    Некоторые из соотношений, к которым приводит эта теория, будут указаны в 159. В целом же теория при большой сложности математических соотношений применима только для растворов с концентрацией, не превышающей 0,01—0,05 н. В. К. Семенченко указал (1922), что при более высоких концентрациях может происходить ассоциация ионов, когда противоположно заряженные ионы сближаются и влияют друг на друга, хотя не так сильно, как при типичном образовании молекул. [c.393]


    Образование зародышей. Зародыши, или центры кристаллизации, образуются в пересыщенных или переохлажденных растворах самопроизвольно. По современным воззрениям, зародыши возникают за счет образования ассоциаций частиц при столкновении в растворе отдельных ионов (молекул) растворенного вещества и постепенно достигают субмикроскопических размеров. Зародыши находятся в подвижном равновесии с раствором и видимой кристаллизации не происходит. Такой скрытый период начала кристаллизации называют индукционным. [c.634]

    Электростатическая теория позволяет рассчитать ряд свойств растворов сильных электролитов, которые находятся, однако, в удовлетворительном согласии с опытом лишь для весьма малых концентраций раствора, порядка 0,01 М и менее. Ряд фактов эта теория объяснить не может. Все это связано с неточностью принятых допущений. При малых расстояниях между ионами силы их взаимодействия не могут быть сведены лишь к электростатическим. Учет взаимодействия ионов с растворителем не должен игнорировать молекулярную структуру растворителя простым введением диэлектрической проницаемости. Характер этого взаимодействия зависит от строения и других индивидуальных особенностей ионов электролита и молекул растворителя и изменяется с разбавлением раствора. Представление о полной диссоциации электролита должно быть дополнено учетом ассоциации ионов и образования комплексных ионов и молекул. [c.214]

    АССОЦИАЦИЯ ИОНОВ КЛЯ МОЛЕКУЛ [c.33]

    АССОЦИАЦИЯ ИОНОВ ИЛИ МОЛЕКУЛ — образование в растворах из простых ионов или молекул более сложных частиц — ассоциатов. Различают А. нонов н ассоциацию молекул. Ионные ассоциаты образуются за счет. электростатических сил в соответствии с законом Кулона. Простейшими ассоциата-ми являются ионные пары, состоящие из двух ионов, или ионные тройники , состоящие из трех ионов, например - [c.33]

    В книге уделено большое внимание вопросам сольватации ионов и молекул, вопросам кислотно-основного и межионного взаимодействия, особенно ассоциации ионов. [c.6]

    Чисто физическая теория Фуосса и Крауса, объясняющая аномальную проводимость образованием ионных двойников и тройников за счет куло-новского взаимодействия, была шагом вперед, но она не явилась общей теорией, так как в ней не было учтено то обстоятельство, что ассоциация ионов связана не только с кулоновским, но и с химическим взаимодействием между ионами и молекулами растворителя. [c.9]


    При более высоких концентрациях и в средах с более низкими диэлектрическими проницаемостями возникает ассоциация ионов. Ассоциация ионов или неполная диссоциация будет одинаково сказываться на свойствах электролитов. В обоих случаях необходимо учесть равновесие между ионами и- молекулами с помощью константы, которая, например, для бинарного электролита запишется  [c.124]

    Жидкий безводный H N-сильно ионизирующий растворитель, растворенные в нем электролиты хорошо диссоциируют на ионы. Его относительная диэлектрическая проницаемость при 25 С равна 107 (выше, чем у воды). Это обусловлено линейной ассоциацией полярных молекул H N за счет образования водородных связей. [c.372]

    Для неводных растворов электролитов характерно явление аномальной электрической проводимости, которое заключается в том, что при увеличении концентрации электролита эквивалентная электрическая проводимость в растворителях с низкими диэлектрическими постоянными проходит через минимум, за которым следует плавный подъем (рис. 118). Аномальная электрическая проводимость объясняется ассоциацией ионов электролитов. Ассоциация наиболее отчетливо проявляется в растворителях с низкой диэлектрической постоянной и приводит к появлению в растворе комплексных молекулярных и ионных соединений. Появление в растворе ионных пар наряду с обычными молекулами приводит к более быстрому падению электрической проводимости. В концентрированных растворах возможно образование ионных тройников. Представление об ионных тройниках позволяет объяснить минимум на кривой [c.273]

    В теоретической и практической химии ЩЭ большое значение имеют их гидроокиси, относящиеся, как известно, к числу оснований, наиболее сильных из существующих и называемых щелочами (растворимые гидроокиси). Причиной отсутствия заметной ассоциации в разбавленных водных растворах ионов M+ aq и ОН -ая с образованием ионных молекул или даже ионных пар типа [Na+ aq] [OH- aq] является, как и в случае растворов солей, слабое поляризующее действие однозарядных катионов ЩЭ. В ряду Ы—Сз оно ослабевает (если раствор разбавлен и анион не проявляет дополнительного эффекта поляризации). Таким образом, самым сильным из неорганических оснований нужно считать СзОН. Соли, отвечающие этому основанию, гидролизуются в минимальной степени. По силе основных свойств с СзОН могут конкурировать только основания, в которых роль однозарядного катиона играют очень большие по размерам органические частицы. Примером могут быть производные четвертичных аммониевых оснований. [c.16]

    Прямой процесс является диссоциацией молекул на ионы, а обратный — ассоциацией ионов в молекулы. При установившемся равновесии на основании закона действующих масс (см. гл. VI, 5) можно записать  [c.156]

    Как константа равновесия, зависит от температуры. При повышении температуры вследствие увеличения энергии поступательного движения всех молекул в растворе можно ожидать усиления процесса диссоциации однако сольватные оболочки ионов становятся менее прочными, что способствует протеканию обратного процесса — ассоциации ионов в молекулы. Поэтому зависимость от температуры является сложной и проходит через максимум при определенной температуре. Так, значение уксусной кислоты принимает максимальное значение (1,76 10" ) при 23 °С. [c.209]

    Коллоидные растворы занимают по степени дисперсности промежуточное положение между истинными растворами или, иначе говоря, молекулярно- и ионно-дисперсными системами и грубодисперсными системами. Поэтому они могут быть получены либо путем ассоциации (конденсации) молекул и ионов истинных растворов, либо раздроблением частиц грубодисперсных систем. Методы получения коллоидных растворов представлены двумя группами методы конденсации и дисперсионные методы. В отдельную группу может быть выделен метод получения коллоидных растворов с помощью пептизации. [c.294]

    Водородные соединения (гидриды) элементов VIA-подгруппы НаЗ получают синтезом из простых веществ (или действием сильных кислот на халькогениды). В водных растворах они проявляют слабые кислотные свойства. Диссоциация гидридов усиливается при переходе от амфотерной воды к теллуроводороду, что прежде всего объясняется увеличением радиусов ионов Э (см. табл. 28). Кроме того, полярные молекулы воды склонны к ассоциации с образованием водородных связей. Летучесть гидридов элементов VIA-подгруппы сильно увеличивается от воды к сероводороду, но снова уменьшается у селеноводорода и теллуроводорода. Относительно более низкая летучесть воды обусловлена опять-таки сильно выраженной ассоциацией ее молекул в жидком состоянии с образованием водородных связей. Прочность [c.372]


    Бродский указал, что данный эффект нельзя объяснить в рамках представлений Фаянса, так как не может быть никакой ассоциации иоиов в бесконечно разбавленных растворах. Он считал, что взаимное влияние ионов в растворах может происходить без их ассоциации, путем деформации окружающих ионы молекул воды. [c.205]

    На процесс электролитической диссоциации и обратный процесс — ассоциации, ведущий к образованию (из ионов) молекул, сильно влияет изменение концентрации растворов электролитов. При разбавлении растворов степень электролитической диссоциации электролитов увеличивается. [c.93]

    Кислород является очень сильным электроотрицательным элементом и поэтому электроны, принадлежащие атомам водорода, смещены в молекуле воды к атому кислорода. В результате атомы водорода приобретают положительный заряд, а атом кислорода — отрицательный. Такие молекулы, у которых в одной части сконцентрирован отрицательный заряд, а в другой — положительный, называются полярными. Полярность молекул воды является причиной образования гидратной оболочки ионов нрн растворении в воде электролитов, и ассоциации ее молекул, т. е. объединения их в димеры и более сложные ассоциаты (рис. 9). Однако полярность молекул воды не является основной причиной их ассоциации. [c.27]

    Характерная для ряда летучих гидридов ассоциация их молекул происходит в основном за счет образования водородных связей (IV 3 доп. 3). Связи эти могут быть симметричными (т. е. с центральным положением водорода относительно обоих координированных им атомов) и несимметричными. При прочих равны условиях первые характеризуются значительно меньшей общей длиной (т. е. расстоянием между ядрами координированных атомов) и гораздо больщей энергией, чем вторые. В случае кислородных производных несимметричная водородная связь О—Н--0 (иногда называемая гидроксильной) обычно имеет длину около 275 пм, а симметричная 0 Н- -0 — около 250 пм. Несимметричные водородные связи встречаются гораздо чаще, чем симметричные. Хорошим примером последних может служить связь в ионе HF (VII I доп. 6). [c.478]

    Чем меньше значение диэлектрической проницаемости растворителя, тем сильнее взаимодействуют в нем ионы (в большей степени протекает процесс ассоциации ионов), тем труднее диссоциируют молекулы, и следовательно, хуже электропроводность растворов. Так, один [c.104]

    В р-рах сильных электролитов нри новышении конц. в результате ассоциации ионов могут возникать ионные пары, [ ройники и т. д. В приближении чисто электростатич. взаимод. между ионами константа диссоциации К контактных, т. е. не разделенных молекулами р-рителя ионных пар, образованных однозарядными ионами с радиусами г+ и г , равна  [c.699]

    Видно, что ассоциация ионов происходит с диффузионной константой скорости порядка 10 лДмоль с). Перенос протона с кислоты на молекулу воды требует энергии (Д(7 > 0) и поэтому происходит, в соответствии с Ка, быстрее или медленнее. Для ориентировочной оценки константы скорости переноса протона в переходных состояниях О...Н—О, N...H—О, N...H—в водных растворах можно пользоваться следующим правилом к я 10 лДмоль с) при рКа > О, к < 10 лДмоль с) при рКа < 0. [c.493]

    Отсутствие у ноинон связи направленности и насыщаемости обусловливает склонность ионных молекул к ассоциации, т. е. к соедииению их друг с другом. При высоких температурах кинетическая энергия движения молекул преобладает над энергией их взаимного притяжения поэтому в газообразном состоянии иоиные соединения существуют в основном в виде иеассоципрованных молекул. Но при понижении температуры, при переходе в жидкое и, особенно, в твердое состояние ассоциация ионных соединений проявляется сильно. Все ионные соединения в твердом состоянии имеют не молекулярную, а ионную кристаллическую решетку см. гл. V), в которой каждый ион окружен несколькими ионами противоположного знака. При этом все связи данного иона с соседними ионами равноценны, так что весь кристалл можно рассматривать как единую гигантскую молекулу . [c.151]

    Известно, что главным фактором, определяющим растворимость различных соединений в паре, является их взаимодействие с молекулами среды. Степень взаимодействия зависит от электролитической характеристики растворяемых соединений. Степень диссоциации растворенного вещества сильно влияет на его ассоциацию с молекулами воды. К тому же диссоциация молекул воды на ионы Н+ и 0Н в надкритическом паре, начиная с плотностей около 0,2— 0,3 г/см , значительно выше, чем у жидкой воды. Имеются спектроскопические доказательства ассоциации воды с растворенными ионами и комплексами при высоких температурах и давлениях, которые достаточно стабильны и поэтому существуют также в надкритическом паре [Fran k Е. U., 1970]. [c.61]

    Мицелла - агрегат из длиноцепочечных дифильных молекул или ионов ПАВ, образующийся самопроизвольно в их растворах при определенной концентрации, зависящей от природы полярной группы и, особенно, от длины углеводородной цепи молекулы. В водных растворах ассоциация части молекул (ионов) происходит в результате сцепления углеводородных цепей, а в неводных (неполярных) средах - за счет полярных функциональных групп. [c.67]

    Первые количественные исследования природы растворов МПАВ принадлежат Мак Бэну. На основании результатов исследования осмотических свойств и электропроводности растворов мыл Мак Бэн впервые (в 1913 г.) сформулировал представления об образовании в них мицелл путем ассоциации индивидуальных молекул или ионов мыла. В дальнейшем развитие теории мицеллообразования связано с именами Г. Гартли, В. Харкинса, П, Дебая. Огромный вклад в эту область внесли работы П. А. Ребиндера и его научной школы. [c.36]

    Эйген и Викке предположили, что это обстоятельство является следствием ассоциации ионов. Они пытались установить, насколько ассоциация ионов снижает коэффициенты активности. Они, как и мы, нашли ионный коэффициент активности равный у, и решили уравнение для 1п 7, приняв определенные значения а. При этом у, они рассматривали не как функцию 1/с, а функцию 1/са, т. е. предположили, что только некоторая часть электролита находится в виде ионов. Они учитывали также изменение энергии, связанное с разбавлением недиссоциированных молекул, и с изменением степени диссон иации электролита при разбавлении. [c.213]

    Можно было бы ожидать, что в апротоиных растворителях соотношения в силе кислот наиболее просты, так кaIi кислоты пе вступают во взаимодействие с растворителями. Одпако в этих растворителях в связи с их низкой диэлектрической проницаемостью, сильно развиты процессы ассоциации менеду молекулами и между ионами, которые весьма осложняют ожидаемые простые соотношения. [c.283]

    Однако влияние этих равновесий на силу кислот сказывается только в концентрированных растворах. В разбавленных растворах, в которых определяются термодинамические константы, реакция (IV) обычно проходит до конца, а реакция (V) практически еще не начинается. Напрймер, в очень концентрированных водных растворах молекулы азотной кислоты ассоциированы, при добавлении воды ассоциаты уступают место продуктам взаимодействия азотной кислоты с водой состава HN0з H20 и НКОз-ЗНзО одновременно изменяется степень ассоциации воды. При дальнейшем разбавлении эти продукты диссоциируют па сольватированные ионы. Если при этом диэлектрическая проницаемость раствора невелика (смеси диоксана с водой), то образуются ионные молекулы — ионные двойники. Наличие таких ионных двойников наряду с молекулами обнаруживается на основании различия между константами диссоциации, определенными из электрохимических и оптических данных. Ионные молекулы, как и обычные, не переносят тока, но их оптические свойства близки к свойствам свободных ионов. [c.295]

    Чтобы разобраться, как влияют отдельные величины в уравнении (VII,26) на величину обычной константы, рассмотрим сначала диссоциацию кислот в средах с высокой диэлектрической проницаемостью и с малым сродством к молекулам кислоты. В таких средах не возникает ассоциация ионов Яасс = О, К р <С 1, Янест > 1 И [c.326]

    Величина К сст оснований играет ту же роль, что при диссоциации кислот. Величина К сст зависит от суммарной энергии образования водородной связи, а именно — энергии, выделяюш ейся при образовании собственно водородной связи, и энергии, затрачиваемой на деформацию (ослабление) связи протона с молекулой растворителя. В этом смысле образование водородной связи является начальной стадией диссоциаг ии основания. Однако большей энергии присоединения соответствует малая величина Каест, уменьшающая обычную константу диссоциации. Если при этом растворитель обладает низкой диэлектрической проницаемостью, заметную роль начинает играть ассоциация ионов, К р увеличивается. [c.344]

    Ассоциация ионов в растворах. Если раствор электролита содержит достаточно большое количество ионов, то между ними возникает электростатическое взаимодействие, влияющее на свойства раствора. Еще в 1890 г. И. А. Каблуковым было обнаружено явление аномальной электропроводности. Обычно с увеличением разведения в растворах слабых и сильных электролитов увеличивается как степень диссоциаций, так и подвижность ионов, т. е. увеличивается электропроводность при уменьшении концентрации электролита. Однако при исследовании растворов хлористого водорода в амиловом спирте И. А. Каблуков обнаружил аномальное увеличение электропроводности раствора при значительном повышении концентрации НС1. Позже этот факт был объяснен обра-зованием сложных комплексных ионов, растворы которых хорошо проводят электрический ток. Таким образом, для растворов характерно не только явление диссоциации, но и обратное ему явление ассоциации — соединение ионов друг с другом, а также ионов с молекулами растворенного вещества. [c.231]

    Теория П. Дебая и Г. Хюккеля обладает применимостью только при концентрациях, не превышающих 0,01...0,05 кмоль/м При более высоких концентрациях эта теория оказывается надо статочно полной, чтобы описать возникшие сложные системы Так, например, имеются данные, что при более высоких концен трацичх может происходить ассоциация ионов, когда противо положно заряженные ионы сближаются и взаимодействуют меж ду собой, хотя не так сильно, как при типичном образовании молекул. [c.195]

    Ассоциация (от лат. a osiare — соединять) — объединение простых молекул или ионов в более сложные, не вызывающие изменения химической природы вещества. Различают ассоциацию ионов и ассоциацию молекул. Образование ионных ассо-циатов основано на проявлении электростатических сил. Простейшие ионные ас-социаты состоят из двух или трех ионов и представляют собой нейтральные или заряженные частицы  [c.21]

    Сольватация (от лат. solvo — растворяю) — электростатическое взаимодействие между частицами (ионами, молекулами) растворенного вещества и растворителя. С. в водных растворах называется гидратацией. Образующиеся в результате С. молекулярные агрегаты называются сольватами (в случае воды гидратами). В отличие от С. объединение однородных частиц в растворе называют ассоциацией. Сольваты — см. Сольватация. [c.124]

    Поскольку при диссоциации АТФ - теплота выделяется (ЛЯ°= =—3,3 ккал/моль), энергетический член благоприятствует диссоциации, однако энтропийный член отрицателен и, следовательно, препятствует этому процессу [А5°=—29,4кал/(К-моль)]. Энтропийный член, напротив, существенно благоприятствует ассоциации. Почему это происходит Потому что при ассоциации освобождаются молекулы воды, гидратировавшие ионы, и увеличивается неупорядоченность. [c.227]

    Взаимодействие адсорбированных молекул на поверхности раздела фаз, приводящее к их ассоциации, — явление широко распространенное. Ассоциация ионов или молекул ПАВ в присутствии воды имеет существенные особенности по сравнению с ассоциацией газов и паров. Ассоциация ПАВ обусловлена увеличением химического потенциала, выражающего тенденцию выхода компонента из вод1Юго окружения в жидкую нсевдофазу . Стремление к уменьшению свободной энергии приводит к определенной ориентации ассоциирова1шы.ч молекул, уменьшающей разность полярностей, в результате чего ассоциат покрыт оболочкой из гидрофильных групп и имеет определенный конечный фактор ассоциации. Эго одна из существенных особенностей ассоциации ПАВ. Вторая заключается в том, что ассоциация наступает при определенной критической концентрации раствора. Эти особенности позволяют построить следующую модель строения адсорбционного слоя ПАВ с учетом ассоциации. [c.91]


Смотреть страницы где упоминается термин Ассоциация ионов молекул: [c.97]    [c.96]    [c.144]    [c.190]    [c.317]    [c.127]    [c.494]    [c.333]    [c.40]   
Физическая и коллоидная химия (1974) -- [ c.51 , c.106 ]




ПОИСК





Смотрите так же термины и статьи:

Ассоциация

Ассоциация ионов

Молекула ассоциация

Молекула ионная



© 2025 chem21.info Реклама на сайте