Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Простой эфир, растворитель в реакциях

    Соединения, в которых алкильная группа связана с кислородом, образуются в результате замещения разнообразных групп при действии воды и других гидроксильных соединений. Реакции замещения можно осуществить двумя общими способами. Во-первых, реакция может быть сольволизом, при котором субстрат вступает в реакцию с молекулой нуклеофильного растворителя. На рис. 10.2 дана общая формула, а также несколько примеров реакций сольволиза алкилгалогенидов, приводящих к получению спиртов и простых эфиров посредством реакции замещения. [c.204]


    При синтезе простых эфиров по реакции Вильямсона алкилгалогенид нагревают с алкоголятом или фенолятом в алканоле или инертном растворителе [c.314]

    В большинстве случаев реакцию проводят в среде абсолютированного эфира, реже — тетрагидрофурана или другого простого эфира (анизол, ди-н-бутиловый эфир), а также диметил-анилина. Применение этих веществ позволяет в случае необходимости повысить температуру реакционной массы. Все эти растворители — апротонные вещества, обладающие нуклеофильными свойствами. Реакцию можно проводить также в бензоле или циклогексане и даже в отсутствие растворителей, но при повышенных температурах и давлении. [c.254]

    Для получения эфира нагревают суспензию алкоголята в галогенопроизводном или раствор алкоголята и галогенопроизводного в соответствующем растворителе, например в спирте. Выбирая исходные вещества для синтеза несимметричных простых эфиров, необходимо принимать во внимание вероятность протекания побочных реакций. Например, для синтеза этил-трет-бутилового эфира возможны две пары исходных веществ бромистый этил и трет-бута-лат натрия, а также трет-бромистый бутил и этилат натрия  [c.101]

    Наиболее широко в качестве растворителя для проведения реакций с алюмогидридом лития применяют диэтиловый эфир, в котором он достаточно хорошо растворим. В других простых эфирах с более высокой температурой кипения алюмогидрид лития растворяется хуже, в бензоле, толуоле, хлороформе он нерастворим вовсе. Если возникает необходимость проведения реакции при относительно высокой температуре, то используют ТГФ, глим или диглим, реже - диоксан. Использовать температуру выше 100 °С, однако, нежелательно, так как становится заметным термическое разложение алюмогидрида лития  [c.118]

    В то время как литий не вступает во взаимодействие с растворами 2-хлортиофена в простом эфире или бензоле, натрий дает в обоих этих растворителях две четко различающиеся реакции [72]  [c.288]

    Высшие простые эфиры, применяемые в качестве специфических высококипящих растворителей в гриньяровских синтезах, могут быть получены нагреванием спиртов с концентрированной серной кислотой. Однако достигаемые при этом выходы простых эфиров весьма невелики, так как первоначально образующиеся алкилсерные кислоты легко распадаются до олефинов одновременно протекают реакции полимеризации, окисления и др. [1]. [c.21]


    К числу простых эфиров относятся два важных растворителя, используемых при проведении органических реакций. Их тривиальные названия глим и диглим-. [c.183]

    Простые эфиры реагиру. ст с галоидами очень энергично уже при обычной температуре, однако этиловый эфир может служить в качестве растворителя для реакции бромирования, проводимой при температуре около 0°. [c.178]

    Реакции МФК легко протекают в малополярных апротонных растворителях. Их диэлектрические проницаемости изменяются от 8,9 (дихлорметан), 4,7 (хлороформ) и 4,2 (диэтиловый эфир) до 2,3 (бензол) и 1,9 (гексан). Хотя растворимость обычных неорганических солей в этих растворителях пренебрежимо мала, органические четвертичные аммониевые, фосфоние-вые и другие ониевые соли, так же как и замаскированные органической оболочкой соли щелочных металлов, часто достаточно растворимы, особенно в дихлорметане и хлороформе. В этих растворителях концентрация свободных ионов незначительна и доминируют ионные пары. Вследствие слабого взаимодействия между ионными парами и молекулами растворителя реакция с электрофилами в органической фазе идет ыстро, и некоторые обычно слабые нуклеофилы (например, ацетат) оказываются сильными. Так, например, в гомогенных растворах в ацетонитриле относительная нуклеофильность солей тетраэтиламмония в реакции замещения с различными анионами от азида до фторида различается всего в 80 раз, причем фторид является наиболее сильным нуклеофилом среди галогенидов [127]. Различия в реакционной способности ионов в таких растворителях по сравнению с нормальным поведени- м в некоторых случаях бывают просто поразительными, и та- [c.18]

    Получение бутиловых спиртов гидрированием масляных альдегидов. Сырые масляные альдегиды, полученные оксосинтезом, имеют сложный состав. Основными компонентами этой смеси являются масляный и изомасляный альдегиды, спирты, которые присутствуют в продукте реакции за счет гидрирования альдегидов в процессе карбонилирования пропилена, и растворитель (пентан-гексано-вая фракция, ароматические углеводороды, смесь бутилового и изобутилового спиртов). В меньших количествах присутствуют-кислоты, сложные эфиры (в частности, формиаты и ацетали), простые эфиры и продукты конденсации. Эти примеси гидрируются значительно хуже основных продуктов и многие из них оказывают отравляющее действие на катализатор. Некоторые примеси образуются во время декобальтизации продуктов синтеза. Поэтому принятый способ деко-бальтизации в значительной мере предопределяет выбор катализатора и условий гидрирования. [c.24]

    Реакцию проводят в высококипящем простом эфире — анизоле или диизопентиловом эфире. Диэтиловый эфир как растворитель не применяют, так как вместе с образующимся метаном в газометр будут поступать пары частично испаряющегося эфира. [c.265]

    Упоминавшуюся ири рассмотрении реакции 15-2 методику оксимеркурирования—демеркурирования можно приспособить для ириготовления простых эфиров (ориентация по Марков-никову), если оксимеркурирование проводить с использованием в качестве растворителя ROH, например 2-метил-1-бутен в этаноле дает EtMe2 OEi [151]. Первичные и вторичные сппрты дают хорошие выходы при использовании ацетата ртути (II), но для третичных спиртов необходимо использовать трифтороацетат ртути(II). Однако и с этим реагентом дитретичный простой эфир получить не удается. Если оксимеркурирование проводят в присутствии гидропероксида, а не спирта, продукт (после демеркурирования иод действием боргидрида натрия) представляет собой алкилпероксид (нероксимеркурированпе) [152]. [c.168]

    Катализаторы из благородные ч е т а л. л о в отличаются высокой активностью и пригодны для гидрирования уже при комнатной температуре. Это особенно важно в тех случаях, когда исходные вещества или продукты реакции неустойчивы ыри повышенных температурах. Другим преимуществом платиновых и шлладиевых катализаторов является их инертность по отношению к кислотам t что возводя вести гидрирование в кислых растворах, например в ледяной уксусной кис доте, В качестве растворителей применяют, как и в других методах, спирты, афнръг уксусной цпслоты, простые эфиры и воду, [c.32]

    Наилучшими растворителями для реакции Гриньяра являются простые эфиры, образующие с продуктом реакции хорошо растворимые комплексы. Кроме диэтилового эфира, применяют также дипропиловый, диизопропилоцый, дибутиловый, диамиловый и диизоамиловый эфиры, а также анизол . Применение высших эфиров рекомендуется в тех случаях, когда реакцию необходимо проводить при высокой температуре. Иногда образовавшееся магнийорганическое соединение оказывается нерастворимым в эфире в таких случаях добавляют другие растворители, напримербензол,толуол или ксилол. Иногда первую стадию реакции проводят в диэтиловом эфире, затем эфир отгоняют, к остатку добавляют другой растворитель и таким образом повышают температуру реакции . [c.639]


    При приготовлении растворителя для реакции окисления при контролируемом потенциале в лаборатории автора настоящего обзора использовалась более простая процедура. Растворитель реактивной чистоты нагревали в течение нескольких часов с обратным холодильником над LIA1H4, а затем тщательно фракционировали путем перегонки. Были обнаружены малые примеси эфиров, которые не оказывали влияния при электрохимических измерениях. При хранении растворителя в плотно закрытом сосуде, находящегося, однако, в контакте с окружающей атмосферой, тетрагидрофуран приходил в негодность после трех дней хранения [3 . [c.29]

    Реакция Гаттермана с фураном, а-метил-и а-этилфуранами и некоторыми другими протекает легко и не требует других конденсирующих средств, кроме НС1. Продуктами реакции являются фурфурол и соответствующие его а-алкильные производные (122). Интересно отметить, что фенолы и их простые эфиры требуют для этой реакции также значительно более мягких условий, чем бензол, так что последний даже может быть использован в этих синтезах, как растворитель (123). [c.17]

    Примечание. При этерификации пирослизевой кислоты тетрагидрофурил-пропанолом в нрисутствин серной кислоты образуется неразделимая перегонкой смесь фуроата и простого эфира тетрагидрофурилпропанола. В этом случае продукт реакции— слегка желтоватая подвижная, маслянистая жидкость, со слабым приятным запахом, Пр 1,4780 1,1586. Т. кип. 173,5—17579 мм, хорошо растворим в органических растворителях, в воде не растворяется. При хранении темнеет. [c.202]

    Небезынтересным является вопрос о влиянии растворителя на восстановительную силу комплексных гидридов металлов. Для алюмогидрида лития такую зависимость проследить не удается, так как его высокая реакционная способность ограничивает выбор растворителей, сводя его лишь к простым эфирам, в которых он является мощным реагентом различия в восстановительной силе при этом незначительны. Напротив, использование борогидрида натрия, являющегося мягким восстановителем, позволяет заключить, что роль растворителя может быть чрезвычайно большой. Так, восстановление ацетона заканчивается за несколько минут в водном или спиртовом растворе и вовсе не наблюдается при проведении реакции в растворителях эфирного типа - ТГФ, диглиме и триг-лиме, хотя КаВН4 хорошо растворим в них. Следовательно, растворитель важен не только для достижения гомогенности среды. Роль его более сложна и может быть осмыслена лишь с учетом механизма реакции. [c.120]

    Литийорганические соединения выгодно отличаются от реактивов Гриньяра, часто используемых в синтезе, так же как и от других металлорганических соединений. Они, как правило, более реакционноспособны, и вследствие этого конечные продукты получаются с высокими выходами. Выделелять продукты проще, так как большинство литиевых солей хорошо растворимо в воде. Они менее, чем магнийорганические реактивы, склонны к реакциям восстановления и сопряженного присоединения. Немаловажным фактором является также то, что при синтезе литийорганических соединений меньше трудностей возникает с выбором растворителей. Обладая не очень сильно поляризованными связями, эти соединения хорошо растворяются как в слабополярых (типа простых эфиров), так и в неполярных (типа углеводородов) растворителях, чем выгодно отличаются от более реакционноспособных натрий-органических соединений, которые вследствие солеобразного строения не растворяются в указанных растворителях, и от магнийорганических соединений, которые требуют более полярных растворителей. Возможность применения углеводородных растворителей особенно ценна для промышленной наработки литийорганических соединений (многие из них благодаря этому вполне доступны) и для использования их в синтезе практически важных соединений, в частности лекарственных препаратов. [c.220]

    Этот метод синтеза является общепринятым при получении сим метричных первичных эфиров. Применяют различные дегидрати рующие агенты, такие, как серная кислота, концентрированная соляная кислота и п-толуолсульфокислота. Реакция протекает при простом нагревании. При получении более высокомолекулярных эфиров наилучших результатов Достигают при кипячении с обратным холодильником спирта с кислотой до тех пор, пока не выделится теоретическое количество воды [1]. Удобным способом получения симметричных эфиров диарилкарбинолов и а-фенилэтанола является пропускание раствора спирта в таком растворителе, как, например, бензол, через колонку, заполненную окисью алюминия, при комнатной температуре [2]. Простые эфиры бензиловых спиртов удобно также получать реакцией, катализируемой иодом (пример 6.5). [c.342]

    Гипогалогениты можно получать в процессе реакции, добавляя галоген к воде или к водному раствору щелочи, пропуская хлор в водный раствор едкого натра и хлорной ртути [54], в водный раствор мочевины и переосажденного мела [55], применяя водный раствор гипохлорита кальция и двуокись углерода [56] или трет-бутил-гипохлорит [57]. Эмульгирующие агенты увеличивают эффективность присоединения [58, 59]. В присутствии реакционноспособных растворителей, таких, как спирт или кислота, образуется соответствующий простой или сложный галогенза.мещенный эфир 160 с хорошими выходами. Галогензамещенный простой эфир может также образовываться из Ы,Ы-дибромбензолсульфамида и этилового спирта [61]. В присутствии воды Ы-бромацетамид (КБА) образует бром-гидрины [62], а в инертных растворителях он дает дибромзамещен-ные продукты присоединения [63]. Продукты присоединения двух атомов брома получаются в результате ряда сложных реакций между олефинами и М-бромацетамидом [64]. По-видимо.му, сначала присоединяется радикал М-бромацетимидила, а затем, после термического разложения, образуется продукт присоединения двух атомов брома. [c.413]

    Опубликован подробный обзор [301, посвященный этой реакции, но относительно некоторых экспериментальных условий пока еще нет единого Мнения. Ароматические нитрилы дают отличные выходы,, особенно если в качестве растворителя использовать не этилфор-миат или этилацетат, а эфир. Сложные эфиры растворяют исхх)дпые вещества и позволяют довольно эффективно осаждать комплекс хлоргидрата имина с хлоридом олова(П), что приводит к завершению реакции [31]. Для алифатических альдегидов, судя по опубли-кованным данным,, получаются низкие выходы, но имеются указания, что при проведении восстановления в безводной среде с большим избытком хлорида слова(П) (молярное отношение 7 1) и при длительном времени взаимодействия (7 дней) выход достигает 55— 67% [32]. Обычно принимают, что безводные условия являют,, я наилучшими, возможно, вс.ледствие того, что имидоэфиры, вероятно образующиеся при расщеп,лепии простых эфиров или в результ Де обмена сложных эфиров в воде, инертны по отношению к восстано  [c.40]

    Если реагирующие соединения растворимы в полифосфорной кислоте, которая является и катализатором и растворителем, или если наблюдается реакция внутримолекулярного ацилирования, получаются самые высокие выходы [7, 8]. Так, фенолы и простые эфиры фенолов наиболее подходят для межмолекулярных, а о)-арил-алканкарбоновые кислоты — для внутримолекулярных реакций ацилирования (примеры в.6 и В.9). Ацилирование в полифосфорной кислоте протекает через образование соответствующего смешанного ангидрида [9]. [c.124]

    Этот метод синтеза применим только для получения сложных виниловых эфиров, простых виниловых эфиров (из фенола) и винил-сульфидов (из тиофенола или алкилтиола) [164]. Для проведения реакции ароматическую или алифатическую карбоновую кислоту нагревают саму по себе или в каком-нибудь растворителе с дивинил-ртутью, полученной из хлорида ртути(II) и винилмагнийбромида в тетрагидрофуране [165]. В отсутствие растворителя реакция обычно проходит более чем на 50% за время меньше 5 мин при нагревании на паровой бане. Для безопасности реакцию необходимо проводить в хорошо вентилируемой тяге, поскольку дивинилртуть высоко токсична. Если проводить реакцию в инертном растворителе, можно выделить образующийся в качестве промежуточного соединения винилртутный эфир R 00Hg H = H2. Выходы виниловых сложных эфиров составляют от 38 до 74%. [c.306]

    Сложные эфиры, содержащие атомы водорода в -положении, можно превратить в замещенные сложные эфиры посредством атаки карбаниона на алкилгалогенид (гл. 13 Карбоновые кислоты разд. А.9 и подробный обзор [67]). Для получения карбанионов из . сложных эфиров применяют этилат натрия [681, трифенилметил-натрий [69], трифенилметилкалий [701 и едкое кали в растворителях типа ацеталей, таких, как 1,1-диэтоксиэтан [71]. Простейшие эфиры типа R H2 OOR дают плохие выходы из-за наличия конкурирующей реакции Кляйзена между 2 молями самого сложного эфира,, приводящей к образованию р-кетоэфира. [c.333]

    Обычно в качестве исходного лнтийорганического соединения К Ь1 берут бутил- илн фениллитий, а в качестве растворителя простые эфиры или углеводороды. Ннже приведены некоторые примеры такой реакции. [c.1477]

    Большинство упомянутых соединений, без сомнения, можно было бы получить в растворе, если бы не трудности работы с большими количествами жидкостей в вакуумной системе. В этом случае небольшие количества продукта пришлось бы отделять от большого объема растворителя. Кроме того, имеются определенные ограничения в выборе растворителя. Известно, что простые эфиры вызывают диспропорционирование соединений с группами 31Нз [22], а третичные амины образуют очень устойчивые продукты присоединения с некоторыми галогеносиланами, что прекращает реакцию взаимодействия [13, 23]. [c.143]


Смотреть страницы где упоминается термин Простой эфир, растворитель в реакциях: [c.49]    [c.168]    [c.284]    [c.588]    [c.179]    [c.199]    [c.356]    [c.84]    [c.413]    [c.430]    [c.925]    [c.1498]    [c.1508]    [c.299]    [c.249]    [c.139]    [c.244]    [c.424]   
Органическая химия (1964) -- [ c.0 ]

Органическая химия (1964) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Реакция простая

Эфиры простые



© 2025 chem21.info Реклама на сайте