Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Квантовые выходы химических процессов

    Квантовые выходы химических процессов фотолиза и фотоокисления ПА 6 (А. — 254 нм Г 25. .. 30 С) [c.372]

    Квантовые выходы химических процессов [c.108]

    В соответствии со вторым законом фотохимии — законом фотохимической эквивалентности (Штарк и Эйнштейн)— каждая молекула, участвующая в химической реакции, происходящей под действием света, поглощает один квант лучистой энергии, который вызывает реакцию. В дальнейшем Штарк и Боденштейн [164, 3861 показали, что этот закон применим только к первичным фотохимическим процессам, поскольку вторичные цепные реакции могут приводить к тому, что полный квантовый выход (отношение числа прореагировавших молекул к числу поглощенных квантов) будет значительно больше единицы (например, в реакции хлора с водородом в газовой фазе полный квантовый выход составляет 10 —10 ). Поэтому согласно второму закону фотохимии каждый поглощенный фотон, или квант света, в первичном акте способен активировать только одну молекулу. Это значит, что поглощение света — одноквантовый процесс, и квантовый выход первичного процесса равен единице. [c.22]


    Количество прореагировавших или образовавшихся молекул измеряется обычными химическими или физико-химическими методами, а интенсивность поглощенного света — актинометром. Как следует из второго закона фотохимии, квантовый выход первичного фотохимического процесса не может превышать единицу, однако он может отличаться от измеряемого квантового выхода Ф. В различных реакциях величина квантового выхода может изменяться от бесконечно малой величины до 10 . Поэтому величина квантового выхода фотохимической реакции позволяет судить о ее механизме. [c.134]

    Возможна прямая оценка квантовых выходов процессов испускания путем измерения абсолютных интенсивностей испускаемого и поглощаемого света, хотя низкая интенсивность многих процессов испускания затрудняет такие измерения. Абсолютные интенсивности могут определяться с помощью первичного стандарта (термостолбика) или предварительно прокалиброванного фотоумножителя. Благодаря высокой чувствительности для абсолютных измерений интенсивности испускания также может использоваться химический актинометр на основе ферриоксалата калия. [c.193]

    Число прореагировавших или образовавшихся молекул в единицу времени измеряется обычными аналитическими методами, а число фотонов, поглощенных системой в единицу времени — актинометром (химическим или физическим прибором, способным считать фотоны). Таким образом, если каждый поглощенный фотон способен вовлечь молекулу в определенный фотохимический процесс, то квантовый выход этого процесса будет равен единице. Если есть другие процессы, конкурирующие с рассматриваемым, то квантовый выход должен быть меньше единицы. [c.14]

    Прекращение реакции может наступить в результате обрыва цепи, вызываемого прежде всего действием кислорода, который вступает в соединение с алкил-радикалом и с атомом хлора. Так как в технических газах всегда содержится большее или меньшее количество кислорода, обрыв цепи в промышленных условиях наступает относительно быстро. В то время как при использовании химически чистых газов квантовый выход достигает 30 000—40 000, в технических процессах эта величина не превышает 2000. Под квантовым выходом понимается число реакций, вызываемых одним световым квантом до обрыва цепи. [c.113]

    Если этими процессами являются дезактивация при столкновении и химическое разложение, то из измерения квантового выхода как функции давления при нескольких длинах волн можно получить величины, пропорциональные к(Е).  [c.201]


    В соответствии с законом эквивалентности Штарка-Эйнштейна, поглощаемый фотон вызывает фотохимическое возбуждение одной молекулы. Количественной мерой превращения служит квантовый выход реакции, равный отношению числа частиц, претерпевших превращение в результате фотохимической реакции, к числу поглощенных фотонов. В предельном случае для первичных процессов выход должен равняться единице, в экспериментах, в зависимости от длины волны, интенсивности света и температуры и типа вещества, выход может принимать значения от 10 3 до 10. Так как энергия активации химических реакций лежит в пределах 40-420 кДж/моль, можно сделать вывод (сравнивая ее с энергией одного моля фотонов, равной Nab-/1 )0 действии на реакции видимых, ультрафиолетовых и рентгеновских лучей. [c.177]

    Квантовый выход в обычных фотохимических процессах должен быть равен или меньше единицы. Это следует из принципа фотохимической эквивалентности Эйнштейна, согласно которому поглощение кванта света может вызвать только одну первичную реакцию. В то же время поглощение света не обязательно приводит к химическому превращению. Образовавшаяся в результате поглощения света возбужденная частица может перейти в основное состояние с испусканием кванта света (флуоресценция или фосфоресценция) или в результате превращения (конверсии) энергии электронного возбуждения в энергию колебания. [c.252]

    Наряду с реакциями, квантовый выход которых больше единицы, известны фотохимические реакции с квантовым выходом меньше единицы (табл. 21). Причины этого явления могут заключаться в том, что часть фотонов поглощается посторонними веществами, находящимися в смеси с реагирующими веществами. В некоторых случаях пониженный квантовый выход обусловливается обратимостью химической реакции, а также передачей энергии некоторыми молекулами, поглотившими фотоны, другим молекулам в процессе взаимных столкновений. [c.175]

    Поглощение кванта света необязательно сопровождается химическим превращением, даже если таковое возможно. Избыточная энергия может быть рассеяна в виде теплоты или излучена в виде кванта света, как правило, меньшей энергии (с большей длиной волны). В последнем случае вещество начинает светиться под действием падающего пучка света. Это явление известно под названием флуоресценции. В результате на каждый поглощенный квант света, как правило, происходит менее чем одно химическое превращение. Отношение числа прореагировавших частиц к числу поглощенных квантов света называется квантовым выходом реакции. Это одна из основных характеристик фотохимического процесса. Изучением фотохимических процессов занимается специальная наука — фотохимия. [c.289]

    Безызлучательные переходы могут привести к быстрому опустошению уровней и вблизи области пересечения потенциальных кривых такое опустошение уровней — одна из причин того, что резонансная флуоресценция сложных молекул достаточно редка, даже при низких давлениях. Как было отмечено в разд. 3.3, если скорость процессов, связанных с пересечением потенциальных кривых, всего лишь в 10 раз больше скорости радиационных (например, в случае обычной разрешенной флуоресценции скорость процессов, связанных с пересечением, порядка 10 с ), то интенсивность излучения уменьшится приблизительно в 10 раз. Поэтому уменьшение интенсивности излучения является чувствительным тестом процесса предиссоциации. Этот эффект хорошо иллюстрируется на примере флуоресценции N02. Первичный квантовый выход распада N02 резко возрастает, когда длина волны короче той, при которой спектр поглощения становится размытым (Х< 400 нм). Квантовый вы.ход флуоресценции N02 имеет противоположную тенденцию он весьма существен для длин волн больше приблизительно 410 нм и незначителен при Х<390 нм. Сумма квантовых выходов флуоресценции и диссоциации равна единице во всем диапазоне от 360 до 450 нм. Электронно-возбужденные молекулы N02 могут также образовываться химически по реакции [c.92]

    Ионные выходы, значительно превосходящие 4, свидетельствуют о цепном характере реакции. Типичным примером, как и в случае фотохимических реакций, является реакция хлора с водородом. Как впдно из табл. 49, ионный выход этой реакции оказывается величиной того же порядка, что и квантовый выход (10 ). Близость ионного и квантового выходов хлористого водорода свидетельствует об одинаковости механизма радиационно-химической и фотохимической реакций, в частности об одинаковости ведущих реакцию активных центров (атомы Н и С1). Эти центры могут возникнуть в результате первичного процесса диссоциации молекулы Нг или С1г под действием альфа- или бета-частицы, а также в результате последующих превращений первично образованных ионов. В последнем случае возможны следующие процессы  [c.465]


    С квантовым выходом 7=1 протекает большее число реакций. Как правило, это обычные химические процессы, где молекула реагента получила дополнительную энергию не в виде теплоты (как в темновых процессах), а в виде излучения. [c.157]

    Известно, что согласно закону Эйнштейна один поглощенный квант энергии вызывает единственный химический процесс. В то же самое время квантовый выход может быть равен 10 . Как объяснить это кажущееся противоречие  [c.164]

    Основные научные работы посвящены кинетике газовых химических реакций. Изучал (1893—1899) процессы получения и термической диссоциации иодистого водорода и состояние равновесия системы, что послужило исходным пунктом систематических исследований кинетики образования бромистого (1907—1908) и хлористого (1913) водорода из элементов. Установил (1899) условия проведения, молекулярный порядок и зависимость от материала реакционного сосуда кинетики термической диссоциации иодистого водорода. Вывел уравнение скорости образования бромистого водорода, показав ее зависи.мость от константы равновесия диссоциации молекулы брома. Выдвинул (1913) принцип стационарной концентрации промежуточных продуктов газовых реакций, согласно которому концентрация активных частиц в ходе реакции приобретает постоянное значение вследствие равенства скоростей их генерирования и расходования. Открыл (1913) фотохимические реакции с большим квантовым выходом, что положило начало представлениям о цепных процессах. Объяснил их закономерности передачей по кинетической цепи энергии возбуждения молекул. Объяснил падение активности твердых катализаторов блокировкой их по- [c.64]

    Следует различать первичные процессы и последующие вторичные реакции. В первичном процессе один фотон поглощается одной молекулой, молекула активируется и тем самым переходит в более высокое состояние. Активированная молекула может терять энергию различными путями, включая люминесценцию или внутреннее превращение, или она может претерпеть химическое изменение, прежде чем потеряет всю эту энергию. Иногда первичный процесс сопровождается простой стехиометрической реакцией, которая дает некоторое целое число или долю молей продукта реакции. С другой стороны, диссоциированные фрагменты, образовавшиеся в результате поглощения света, могут рекомбинировать, что приводит к заниженным квантовым выходам. Кроме того, каждая активированная молекула может вызвать цепную реакцию, в которой первичная реакция повторяется многократно, и, таким образом, достигаются большие квантовые выходы. [c.548]

    Согласно закону Эйнштейна,каждый квант поглощенного света в области сплошного спектра вызывает элементарную химическую реакцию. Однако, как было показано выше, после поглощения могут происходить побочные процессы (тушение и т. п.), поэтому число молекул, подвергающихся химической реакции при поглощении кванта света, обычно отличается от единицы. Эффективность процесса определяется величиной квантового выхода ф  [c.154]

    Более распространены случаи, при которых квантовый выход процесса меньше единицы. Снижение квантового выхода может быть обусловлено двумя причинами. Первая - часть возбужденных молекул тратит свою энергию не на фотохимическую реакцию, а на другие, фотофизические процессы дезактивацию при столкновении с другими молекулами, излучение света, в том числе флуоресценцию и фосфоресценцию. Вторая причина - заметное протекание обратной химической реакции, например рекомбинации радикалов. Скорость обратной реакции в растворе часто увеличивается за счет клеточного эффекта. Например, разложение этилиодида [c.162]

    Для определения интенсивности света можно также использовать химическую реакцию с известным квантовым выходом. Квантовый выход Ф равен числу молекул продукта, образованных при поглощении одного кванта света. Более удобное определение квантовый выход равен числу молей продукта на Эйнштейн поглощенного света. Так как поглощенная энергия может теряться в результате физических процессов, при которых могут не протекать химические реакции, то квантовый выход может быть очень маленьким. С другой стороны, продукты реакции могут образоваться в результате реакции, инициированной первичным фотохимическим процессом, и Ф может быть очень большим. [c.65]

    Одной из основных задач фотохимии является установление природы и определение эффективности первичных фотохимических процессов, выявление механизма химической реакции, инициированной квантами света. Если в результате первичного процесса образуется устойчивый продукт, то квантовый выход этого [c.52]

    Низкие квантовые выходы продуктов свидетельствуют о большой роли процессов дезактивации, флюоресценции и других процессов, которые не приводят к химическим изменениям. Высокие квантовые выходы продуктов указывают на возможность цепных реакций образования этих продуктов. [c.55]

    Отношение числа прореагировавших молекул к числу молекул, поглотивших фотоны, называется квантовым выходом т- Если бы каждый поглощенный фотон неизбежно вызывал химическое превращение молекулы, то квантовый выход должен был бы всегда быть равен единице. Однако возможны разнообразные физические процессы, приводящие к превращению поглощенной световой энергии в тепло, без химического изменения молекулы. Поэтому квантовый выход может быть меньше единицы. [c.153]

    Влияние среды на квантовые выходы хемилюминесценции, а также влияние процессов тушения и переноса энергии осложняет применение хемилюминесцентных методов исследования. Изменение состава системы в ходе химического превращения или при внесении добавок обычно приводит к изменению интенсивности свечения. Однако без дополнительных контрольных опытов, измеряя только хемилюминесценцию, нельзя ответить на вопрос о причинах изменения ее интенсивности. Изменения могут быть связаны с появлением новых хемилюминесцентных реакций, а также с влиянием состава на скорость элементарной реакции, приводящей к возбуждению, и на значения квантовых выходов. Поэтому при применении хемилюминесцентных методов всегда желателен кинетический контроль, при помощи которого можно установить причины изменения интенсивности. По тем же причинам нужны параллельные кинетические исследования и при изучении механизма хемилюминесценции. [c.19]

    Для определения полного квантового выхода химической реакции необходимо измерить число прореагировавших исходных молекул или молекул, образовавшихся в результате реакции, и количество поглощенных квантов излучения. Если в первом случае требуется лишь привлечение подходящего аналитического метода, то в последнем необходим метод измерения абсолютного числа фотонов. Экспериментальные способы проведения таких абсолютных измерений описаны в гл. 7. При определении первичного квантового выхода необходимо прежде всего исключить или оценить вклад вторичных реакций и определить абсолютные эффективности излучательных и безыз-лучательных потерь энергии. Однако не всегда возможно даже установить, какой именно процесс является первичным, так что полное описание первичных процессов в терминах квантовых выходов может быть сделано лишь в особо благоприятных случаях. Тем не менее некоторые соображения могут быть использованы при определении первичного процесса. Так, при рассмотрении спектра поглощения можно предположить электронную конфигурацию возбужденного состояния и, следовательно, возможные механизмы распада. Детектируя промежуточные частицы (возбужденные состояния или атомы и ради- [c.19]

    Поглощение излучения на синглет-триплетном переходе мало, поскольку он запрещен в такой же степени, как запрещена фосфоресценция на триплет-синглетном переходе. Следовательно, возбуждение верхнего фосфоресцирующего уровня непосредственно из основного является неэффективным, гораздо чаще фосфоресценция возникает в результате радиационного распада триплетных уровней, заселяемых безызлучательными переходами с синглетных уровней, возбуждаемых поглощением из основного состояния. Диаграмма последовательности событий показана на рис. 4.1. В результате поглощения заселяется уровень Si" после быстрой релаксации (по крайней мере в конденсированных средах) по колебательным уровням молекула оказывается на уровне Si°, где она может потерять энергию либо за счет излучения (фосфоресценции), либо в результате безызлучательного перехода на уровень T l — интеркомбинационной конверсии (IS ), либо в результате безызлучательного перехода на уровень — внутренней конверсии (1 ). Возможно, это может показаться странным, что ISG на уровень Ti , являющийся запрещенным по спину согласно правилам отбора для безызлучательных переходов, может эффективно конкурировать с разрешенной по спину флуоресценцией или внутренней конверсией на So " однако фосфоресценция наблюдается во многих случаях, когда можно предположить, что 1 5i 5o относительно неэффективна. Для полного понимания процессов фотохимии молекул необходимо знать эффективность (квантовый выход) всех процессов, происходящих в ней. Даже если возбужденные частицы не вступают в химические реакции, не подвержены процессам разложения или тушения, то необходимо уметь определять квантовый выход флуоресценции ((pf), фосфоресценции (фр), интеркомбинационной конверсии " So (fis ) и внутренней конверсии 51 5о(ф1с). Учитывая, что суммарная эффективность всех процессов равна единице, получим [c.84]

    Фотослои с оксигалогенидами висмута оксифторидом, оксихлоридом и окси-бромидом, а также с некоторыми солями органических кислот тартратом, цитратом, оксалатом и ацетатом, — при химическом проявлении позволяют достигнуть светочувствительности на уровне 10" —10" Дж/см в УФ-области и 10 —10 лк с в видимой области. Квантовый выход фотографического процесса на слоях с одним из самых светочувствительных соединений висмута — оксибромидом — составляет 10 при X = 365 нм. Столь высокое химическое усиление действия света за счет восстановления кристаллов оксибромида висмута нехарактерно для других несеребряных систем. Фотослои в виде дисперсии смеси оксихлорида и оксибромида висмута в поливиниловом спирте, сенсибилизированном до экспонирования водным раствором нитрата серебра, при проявлении в универсальном проявителе фотопленок и фотобумаг позволил бы получить светочувствительность на уровне 510 Дж/см [304]. [c.289]

    Количественное изученне флуоресценции и фосфоресценции позволяет определить ряд важных величин, характеризующих фотохимический процесс время н изни возбужденных молекул, скорость интеркомбинационной конверсии, число и природу возбужденных состояний, эффективные сечения тушения молекул, эффективность переноса электронной энергии, первичный квантовый выход. Рассмотрим процесс, который слагается из стадий первичного возбуждения исходных молекул светом и последующих процессов флуоресценции или фосфоресценции, конверсин энергии электронного возбуждения в энергию теплового движения и химического превращения возбужденных частиц, т. е. [c.323]

    Второй закон фотохимии сформулировали Штарк (1908—1912) и Эйнштейн (1912—1913) каждая молекула, участвующая в химической реакции, идущей под действием света, поглощает один квант излучения, который вызывает реакцию. В дальнейшем Штарк и Боденштейн (1913) указали, что закон приложим только к первичному процессу, поскольку вторичные цепные реакции могут приводить к тому, что полный выход получается больше единицы (например, в газофазной реакции водорода с хлором Фнс1 = 10 ). Поэтому второй закон следует читать так поглощение света молекулой — одноквантовый процесс, и сумма квантовых выходов первичных процессов должна равняться единице, т. е. 2ф = 1,00, где фг — квантовый выход -го первичного процесса, который может представлять собой диссоциацию, изомеризацию, флуоресценцию, фосфоресценцию, безызлучательные переходы и т. п.— короче говоря, все возможные пути разрушения или дезактивации возбужденной молекулы. [c.21]

    Фотохимические процессы могут вызывать химические изменения веществ. Природа получаемых продуктов, а также скорости их образования могут быть определены обычными химическими методами, рассматривать их здесь нет необходимости. Больший интерес представляют экспериментальные методы, связанные с использованием световых измерений. Определения интенсивностей поглощаемого (а иногда испускаемого) света существенны для нахождения квантовых выходов, которые в свою очередь необходимы для оценки эффективности первичных фотохимических процессов. Квантовые выходы могут быть определены с помощью классических методов, т. е. при освещении постоянным светом. Кинетическое поведение реакционных систем в условиях постоянного освещения обычно согласуется с предположением о наличии стационарных концентраций промежуточных соединений реакций. Дополнительные кинетические данные (например, константы скорости отдельных стадий) можно получить в экспериментах, проводимых в нестационарных условиях. Это уже было продемонстрировано на примерах фотолиза (см. конец разд. 1.8) и флуоресценции (см. разд. 4.3). Фотохимические процессы идеально подходят для изучения в нестационарных условиях потому, что освещение можно включить и выключить очень быстро с помощью импульсной лампы или механического затвора. Часто нельзя аналогичным образом начать и остановить термические реакции (хотя ударные волны могут использоваться для быстрого нагревания в газовых системах). Эта глава начинается с обсуждения источников света, применяемых в фотохими- [c.178]

    Здесь мы в большей степени касаемся применения фотохимии в промышленном синтезе. Очевидно, что фотохимический процесс должен превосходить по выходу или чистоте продукта обычные методы производства, чтобы конкурировать с ними. Особенно подходящими кандидатами для промышленного применения являются цепные реакции (часто с радикальными переносчиками цепи) с фотохимической начальной стадией. Мы уже рассматривали такое их использование в связи с фотополимеризацией (разд. 8.8.2). Заметим, что фотохимическая реакция может быть экономически оправданной даже в том случае, когда ее квантовый выход низок, если выход химического продукта выше, чем у обычных процессов. В производстве веществ тонкой химической технологии расходы на свет составлявот незначительную часть общей стоимости продукта высокого качества. Более того, вследствие относительно малых количеств используемого материала серийный процесс часто может представлять увеличенную копию лабораторного метода. При использовании фотохимии в широкомасштабном валовом химическом производстве возникают несколько большие трудности, так как плата за энергию может теперь составлять существенную часть стоимости конечного продукта. В широкомасштабном производстве часто применяются реакторы непрерывного действия, ставящие перед фотохимией проблемы, связанные с их конструкцией. В частности, необходимо использовать прозрачные реакторы или прозрачные кожухи ламп, стенки которых часто загрязняются образующимися смолообразными (и светопоглощающими) побочными продуктами. Размер реактора также может серьезно ограничиваться поглощением света реагентами. Этим недостаткам фотохимического синтеза должна быть противопоставлена более высокая селективность получения продуктов и лучший контроль за их образованием. Процесс производства отличается меньшими тепловыми нагрузками, поскольку реагенты не нужно нагревать, а затем охлаждать. Выли разработаны и технологии преодоления проблем, связанных с фотохимическими реакторами. Они включают освещение поверхности падающих тонких слоев реагентов использование ламинарных потоков несмешивающихся жидкостей, причем ближайшей к стенке реактора должна быть жидкость, поглощающая свет применение пузырьков газа, вызывающих турбулентность, для улучшения обмена реагента. И на- [c.283]

    Первичный квантовый выход представляет собой долю молекул, участвующих в конкретном /-м процессе (если возможно несколько таких параллельных процессов), от общего числа молекул, поглощающих свет. Такой процесс может быть химическим (перегруппировка, разрыв связи и т. и.) или физическим (флуоресценция, интеркомбипационныи переход и т. п.) следовательно, речь идет о выходе химических частиц определенного впда (молекул в основном состоянип, радикалов и т. п.), образующихся непосредственно из первичного возбужденного состояния (указанные частицы, таким образом, не обязательно должны быть окончательными продуктами фотореакции, как X, V,. .в приведенном выше уравнении, а могут быть лишь промежуточными продуктами). [c.374]

    Вполне очевидно, что для эффективности необходимо поглощение излучаемого света. Согласно закону фотохимического эквивалента Эйнштейна, каждая реагирующая молекула поглощает один квант. Однако в химической практике необходимое количество квантов сильно колеблется. К реакциям, где число молекул, реагирующих с поглощением одного кванта, превышает единицу, относятся такие, когда под влиянием света образуются частицы, которые сами по себе или путем превращения в другого рода частицы способны к непрерывному самовоспро-изводству. Это происходит в случае образования свободных радикалов, вызывающих цепную реакцию. С другой стороны, активированная молекула может различным образом использовать поглощенную энергию, и в таких случаях квантовый выход в любом направлении окажется меньше единицы. Механистически возбужденная молекула как в начальном состоянии, так и в форме, образующейся в результате нерадиационного превращения, может использовать поглощенную энергию для процессов теплового соударения, гомолиза, перегруппировки, реэмиссии света и т. д., причем конечный продукт или продукты могут образоваться очень сложным путем, В этой статье нет смысла [c.371]

    В некоторых случаях в облученных молекулах происходят как физические, так и химические процессы, конкурирующие между собой. Например, если антрацен облучать светом в растворе бензола, он димеризуется и одновременно флюоресцирует. Если раствор бензола сделать более концентрированным, квантовый выход димерных продуктов возрастает, а интенсивность флюо- [c.65]

    Развитие представлений о природе и кинетике ценных реакций прошло за последние пятьдесят лег через три ярко выран енные стадии. Первая началась с открытия Боденштейном [1] в 1913 г. фотохимических неразветвленных цепных реакций с большим квантовым выходом в 1916 г. это открытие было развито Нерпстом [2] и применено к термическим реакциям в 1923 г. Христиансеном и Крамерсом [3]. Вторая стадия заключалась в развитии представлений о разветвленных цепных реакциях в работах Семенова [4] в 1927 г. и несколько позднее в работах Хиншельвуда [5] 11 о вырожденно-разветвленных цепных реакциях в работе Семенова [6] в 1931 г. Эти авторы дали математическое обоснование взрывных и псевдовзрывных процессов, которое исключительно полно объясняет самые разнообразные случаи. Однако оно не дает никаких сведений о химической природе активных центров или о реакциях инициирования, распространения, разветвления и обрыва цепей третья стадия заключается в рассмотрении этих реакций с точки зрения конкретных промежуточных продуктов, и все вместе привело к окончательному описанию механизма всей реакции в целом, во всех ее различных проявлениях. [c.559]

    Введение в натуральный каучук различных галогенсодержащих соединений снособствует увеличению эффективности радиационного сшивания в результате увеличения выхода свободных радикалов [153—156]. Присутствие в латексах натурального каучука воды также приводит к более интенсивному сшиванию при облучении [154—159]. Введение перед облучением в натуральный каучук обычных вулканизующих агентов, в том числе и серы, пе влияет [160] на эффективность процесса радиационного сшивания. Сера при облучении при 25° присоединяется к каучуку и несколько уменьшает эффективность радиационного сшивания [161]. Некоторые наполнители способствуют радиационному сшиванию, возможно, вследствие химического присоединения макромолекул каучука к поверхности частиц наполнителя. При радиационной привитой сополимеризации стирола и натурального каучука квантовый выход свободных радикалов, образующихся в молекулах каучука и инициирующих процесс, ( ир равен 0,26 [162]. Активность образующихся радикалов при инициировании привитой полимеризации ниже, чем в процессе образования поперечных связей возможно также, что в присутствии стирола свободные радикалы образуются в меньших количествах. [c.179]

    Основные научные работы посвящены исследованию сверхбыстрых химических реакций импульсными методами. Совместно с Р. Дж. Р. Норришем соацал (1950) первую установку импульсного фотолиза. Ими впервые были получены спектры поглощения многих простых свободных радикалов, изучен механизм их превращений, показано существование быстрых рекомбинационных процессов. Им удалось зарегистрировать спектральную картину развития реакции хлора с кислородом, инициируемую световым импульсом. Исследовал быстрые реакции в кондеч-сированной фазе. Предложил метод определения абсолютного квантового выхода триплетных состояний. Разработанные им приемы изучения деградации энергии триплетных молекул позволили представить детальную картину быстрых процессов, следующих за фотовозбуждением. Установил основные кинетические закономерности реакций переноса электрона и атома водорода. Определил константы кислотно-основного равновесия для синглетных и триплег-ных состояний ароматических молекул нашел связь между константами скорости реакций и природой возбужденного состояния. Исследовал механизм первичных фотохимических реакций на модельных системах фотосинтеза. Одним из первых создал установки импульсного лазерного фотолиза. [c.404]


Смотреть страницы где упоминается термин Квантовые выходы химических процессов: [c.76]    [c.19]    [c.20]    [c.69]    [c.589]    [c.391]    [c.444]    [c.167]    [c.15]   
Смотреть главы в:

Введение в фотохимию органических соединений -> Квантовые выходы химических процессов




ПОИСК





Смотрите так же термины и статьи:

Квантовый выход



© 2024 chem21.info Реклама на сайте