Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Органические озоном

    По первому механизму атомный кислород и озон, образующиеся по приведенным выше реакциям, способны реагировать с различными органическими соединениями с образованием органических и неорганических свободных радикалов (рис. 2). Для олефиновых углеводородов эти реакции можно представить следующим образом  [c.32]

    Однако при высоких давлениях озона эти смеси могут взрываться. Хотя с химической точки зрения эти реакции просты, они трудны для изучения, так как чрезвычайно чувствительны к катализу металлами, окисями металлов и следами примесей, таких, как органические вещества, перекиси или окислы азота. Последние две примеси практически трудно отделить, если кислород, подвергающийся озонированию, содержит следы N2 и Н2О. [c.347]


    Окисление химическими реагентами [5.3, 5.35, 5.55, 5.57, 5.64, 5.70]. Окисление неорганических и органических соединений широко используется в промышленной практике при переработке и обезвреживании отходов. Для очистки сточных вод применяются следующие окислители хлор и его соединения, перманганат натрия, бихромат калия, кислород воздуха, озон, перекись водорода и др. Выбор окислителя определяется экономическими показателями и зависит от количества и состава сточных вод, наличия окислителей и требуемой степени очистки. Применение перманганата и бихромата калия, нитрита и нитрата натрия нецелесообразно— усложняется технологическая схема вследствие необходимости удалять избыток окислителей и продуктов их восстановления. [c.493]

    Для. изучения количественной конверсии озона до стабильных органических перекисей был применен иодометрический метод. Полученные данные сравнивались с количеством использованного озона. Образованные перекиси выделялись, анализировались и полученные данные сравнивались с рассчитанными на основе уравнения превращения одного моля озона в один моль перекиси типа (XV или XVI). Эти данные приводятся в табл. 2. [c.351]

    Склонность к детонации у топлив может увеличиваться при добавлении диэтилового эфира, небольших количеств органических нитритов и нитратов [71], перекисей [76—81] и озона [82]. [c.405]

    Окисление в жидкой фазе можно осуш,ествить воздухом, чистым кислородом или кислородом, разбавленным азотом, озоном и другими агентами окисления. Реакцию можно проводить в гомогенной или гетерогенной среде, в присутствии катализаторов (газообразных, жидких или твердых) и Ьез них. Известны многие органические и неорганические агенты окисления, например кислоты, перкислоты и их соли, перекиси и т. д. [c.137]

    Значительная реакционная способность олефинов позволяет использовать их для синтеза многих кислородсодержащих соединений прямым окислением (кислородом, озоном и другими агентами окисления) или через промежуточные реакции (присоединения галоидов, галоидоводородных, неорганических и органических кислот с последующим их гидролизом). [c.161]

    По комплексу свойств силоксановые вулканизаты существенно отличаются от всех других резин, а по отдельным из них значительно превосходят вулканизаты на основе большинства органических каучуков. Для них характерны 1) более высокая термическая стабильность на воздухе и в вакууме 2) лучшая морозостойкость 3) повышенная стойкость к озону и к атмосферным воздействиям 4) лучшие физико-механические свойства при высоких температурах 5) значительно более высокая и селективная газо- и паропроницаемость 6) более высокая стойкость к коронному разряду 7) прекрасные диэлектрические характеристики, [c.490]


    Озоностойкость силоксановых вулканизатов характеризуется отсутствием изменений их механических свойств после 100-часовой экспозиции при 30—70 °С и концентрации озона 0,1% (об.) как в статических, так и в динамических условиях. Органическая резина, даже содержащая антиозонанты, растрескивается в течение 1 ч уже при концентрации озона 0,0001% (об.) [72, с. 143]. [c.494]

    В настоящее время предполагают, что начальным импульсом для взрыва могут явиться следующие факторы удар, кавитационные явления в жидкости, разряд статического электричества, трение твердых частиц взрывоопасных примесей между собой и о стенки аппаратов, присутствие особо реакционноспособных веществ (озон, окислы азота, неустойчивые органические соединения типа перекисей) и т. п. [c.25]

    Инициирование взрыва озоном в смесях органических веществ с жидким кислородом может происходить только по достижении нижних концентрационных границ взрываемости. Причем для инициирования требуется определенное количество озона — t—2% (по массе). Наименьшее количество его требуется для инициирования смеси ацетилена с жидким кислородом. Присутствие непредельных углеводородов в смеси предельных углеводородов с жидким кислородом способствует уменьшению количества озона, необходимого для инициирования. Смеси предельных углеводородов (жидкий метан), а также веретенного масла 12 с жидким кислородом не всегда инициируются даже концентрированным озоном. [c.55]

    Соли надсерной кислоты чувствительны к температуре, влаге, а также контакту с органическими веществами и неорганическими солями. Например, аммоний надсернокислый, обладая сильным окислительным действием, в присутствии влаги разлагается, выделяя кислород и озон соли некоторых металлов при контакте с калием надсернокислым разлагаются, причем образуются пероксиды. [c.39]

    Реакция органических соединений с озоном, часто сопровождающаяся расщеплением молекулы по красным связям. [c.76]

    Озон применяют для обеззараживания питьевой воды и а некоторых органических синтезах. [c.443]

    Старению (деструкции) в большей или меньшей степени подвержены почти все органические н, в частности, полимерные материалы, битумы и др. Агентами, вызывающими деструкцию, являются механические нагрузки, тепло, свет, вода, кислород, озон, ультразвук, окислительные среды и др. Действие этих факторов сводится к разрыву основных цепей макромолекул пли к [c.358]

    Озонирование сточных вод. Метод озонирования позволяет уничтожать в сточных водах цианистые соединения, фенолы, поверхностно-активные вещества, в том числе и алкилбензолсульфонаты, роданиды, нефтепродукты и сопутствующие им меркаптаны, сероводород и различные продукты основного органического синтеза. Сточные воды, прошедшие очистку при помощи озона, прозрачны, бесцветны, не имеют запаха и привкуса. Сбрасываемые воды ряда нефтехимических производств невозможно обезвредить обычными методами химической и биохимической очистки, и только озон позволяет разрушить сложные, не поддающиеся биологическому распаду вещества. [c.343]

    В качестве источника кислорода чаще всего применяют воздух, который обычно подвергают предварительной сушке и очистке от масла и пыли в некоторых случаях используют чистый кислород или озон. Эффективными техническими окисляющими агентами могут служить многие соединения, легко выделяющие кислород, — минеральные и органические перекиси (водорода, бензоила и т. д.), кислоты и надкислоты (азотная, надуксусная, надсерная), а также окислы и соли. Конечными продуктами окисления любого углеводорода или кислородсодержащего соединения являются СО2 и вода. Однако до этой стадии процесс доводят лишь при необходимости полного разрушения органических примесей в отработанном воздухе (в так называемых выхлопных газах). Все окислительные превращения необратимы и сравнительно легко могут быть доведены до полного превращения исходного реагента. На практике более низкая степень превращения сырья поддерживается с целью уменьшения образования вторичных продуктов. [c.174]

    Способы очистки сточных вод зависят от характера содержащихся в них загрязнений. Бытовые сточные воды в основном содержат органические вещества. Поэтому они после обеззараживания хлором или озоном подвергаются биологической очистке. [c.219]

    В атмосферных условиях озонное растрескивание происходит как вследствие воздействия озона, мигрирующего к поверхности земли из верхних слоев атмосферы, где он образуется под влиянием коротковолновой части солнечного излучения, так и озона, выделяющегося при окислении органических соединений, выбрасываемых в основном с выхлопными газами автомобилей. Озонное старение резин имеет место также вблизи работающей. электронной, особенно высоковольтной аппаратуры, источников радиации и т. д. Ускоренные испытания на стойкость к озонному растрескиванию весьма приблизительно позволяют судить о работоспособности резин в атмосферных условиях, так как в последнем случае процесс обычно ускоряется действием солнечного света. В этом отношении более совершенным является испытание на свето-, озоностойкость. [c.132]


    В природе озон образуется ири грозовых разрядах и окислении некоторых органических веществ. Заметные количества озона содержатся в воздухе хвойных лесов, где окислению подвергается древесная смола, и на берегу моря, где окисляются выброшенные прибоем водоросли. [c.158]

    Бактерицидное действие озона связано с его высоким окислительным потенциалом и легкостью его диффузии через клеточные оболочки микробов. Он окисляет органические вещества микробной клетки и приводит ес к гибели. [c.159]

    Наряду с обеззараживанием озонирование приводит к улучшению вкуса, снижению цветности, уничтожению запахов воды в результате окисления и минерализации органических примесей. Например, гуминовые вещества разрушаются озоном до двуокиси углерода и воды. [c.159]

    Отдельные части лабораторных установок соединяют при помощи шлифов, корковых и резиновых пробок или резиновыми шлангами. Корковые пробки не стойки к действию концентрированных кислот и других реагентов. Резиновые пробки и шланги разрушаются сильными кислотами, галогенами и набухают при соприкосновении с органическими растворителями. При работе с хлором, бромистым водородом, фосгеном, озоном следует пользоваться шлифами и шлангами из поливинилхлорида или полиэтилена. Для придания таким шлангам большей гибкости и эластичности их, перед тем как натягивать на стеклянные трубки, погружают в кипящую воду. [c.11]

    Эта своеобразная реакция, представляющая в равной степени научный и промышленный интерес, была открыта в 1940 г. на заводе Фарбверкен Хохст [1]. При работе по этому методу вначале использовали исключительно ультрафиолетовые лучи. Позднее обнаружили, что для инициирования и протекания реакции сульфоокисления можно применять озон [2], оеркислоты [3] и т. п. Чаще всего разрабатывались методы, использующие действие ультрафиолетовых лучей, органических перкислот и их производных. Накопленный при этом опыт привел в конце концов к созданию технически приемлемого способа производства алифатических сульфокислот [4]. [c.481]

    Сульфоокисление в присутствии озона имеет то преимущество по сравнению с методами, в которых инициаторами являются органические перкислоты или перекиси алкилсульфонилацилов, что его очень легко и просто осуществить, тримешав к кислороду небольшое количество озона. Дл,я этого часть кислорода пропускают через какой-нибудь озонатор и смесью озонированного кислорода с двуокисью серы барботи-руют при 10° углеводород, обеспечив возможно большую поверхность соприкосновения газа с жидкостью. Чтобы газы как можно дольше [c.499]

    Тетраоксигы ссмия и рутения ядовиты. О О по запаху напоминает хлор, а КиО — озон. — наиболее часто применяемое соединение ссмия. Его используют как мягкий окислитель и катализатор в органическом синтезе (например, кортизона) и для подкрашивания животных тканей при их микроскопическом исследовании. [c.594]

    Основные продукты фотохимических реакций — альдегиды, кетоны, оксиды углерода, органические нитраты и оксиданты (озон, диоксид азота, пероксиацетилиитрат и другие органические пероксидиые и гидропероксидные соединения, пероксид водорода). [c.34]

    Метод микродугового разряда основан на деструкции органических соединений озоном, выделяющимся при обработке сточных вод в электрическом поле микродуговыми разрядами. [c.206]

    Так как коллоидные частицы имеют слабый отрицательный заряд, хлопья коагулянтов — слабый положительный заряд, то между ними возникает взаимное притяжение, способствующее формированию крупных частиц. В процессе коагуляционной очистки сточных вод происходит соосаждение с минеральными примесями за счет адсорбции последних на поверхности оседающих частиц. Из воды удаляются соединения железа (на 78—89 %), фосфора (на 80—90 %), мышьяка, цинка, меди, фтора и других. Снижение по ХПК составляет 90—93 %, а по БПКб —80—85 % Степень очистки зависит от условий воздействия на коагуляцию дисперсной системы радиации, магнитного и электрического полей, введения частиц, взаихмодействующих с системой и стабилизирующих ее. Воздействие излучения, как и окисление органических соединений озоном способствует разрушению поверхностно-активных веществ (ПАВ), являющихся стабилизаторами твердых и жидких частиц, загрязняющих сточные воды. Под воздействием электрического поля происходит образование агрегатов размером до 500—1000 мкм в системах Ж — Т, Ж] — Ж2 и Г — Т. [c.479]

    Для обезвреживания сточных вод от нефтяных продуктов, сернистых и цианистых соединений, фенолов, поверхностно-активных веществ, кремнийорганических соединений, пестицидов, красителей, соединений мышьяка, канцерогенных ароматических углеводородов и других соединений применяется озон. При действии озона на органические соединения происходят реакции окисления и озонолиза. Озон одновременно обесцвечивает воду и является дезодорантом, применение его не вызывает значительного увеличения солевой массы в воде. Озон подают в сточную воду в виде озоновоздушной или озонокислородной смеси с концентрацией озона в них до 3%. Для лучшего использования озона газовая смесь подается через диспергирующие устройства под слой обезвреживаемой воды. Учитывая высокую токсичность озона и малую поглощаемость его стоками, газы после прохождения через воду надо подвергать очистке от озона. Ввиду высокой стоимости озона го применение целесообразно в сочетании с другими методами — биохимическим, ионообменным, сорбционным. [c.494]

    Существуют два типа окислительных реакций непредельных углеводородов 1) прямая атака двойных или тройных связей электрофиль-пыми реагентами, например озоном, фотосенсибилизированным молекулярным кислородом, органическими перкислотами, свободными гидроксильными радикалами, активированной светом перекисью водорода или различными неорганическими перекисями, способными образовывать неорганические перкислоты, перманганатом, неорганическими окислами, такими как четырехокись осмия, пятиокись ванадия, окись хрома и двуокись марганца, солями ртути, иодобензоатом серебра, диазоуксусным эфиром и подобными веществами 2) косвенная атака метиленовых групп, смежных с двойными и тройными связями и с ароматическими ядрами, такими реагентами, как молекулярный кислород, органические перекиси, двуокись селена, тетраацетат свинца,хлористый хромил, трет-бутил-хромат, бромсукцинимид и т. д. Первый тип реакций протекает по ионному механизму, второй — по свободнорадикальному механизму. Некоторые из этих реакций будут рассмотрены в следующих разделах. [c.347]

    Прямое действие озона на двойные и тройные связи известно давно. Эта реакция применяется в органической химии для определения структуры органических соединений. Несмотря на огромные знания, накопленные в этой области, механизм озонирования был объяснен лишь недавно. В настоящее время точно установлено, что озон разрывает двойные связи, а в результате исследований Рихе и других [17] была выяснена структура озонидов. Наиболее простое объяснение озонолиза двойной связи иллюстрируется уравнением (1). Образующиеся озониды могут быть класси- [c.347]

    Подобно озону органические перкислоты являются элоктрофильпыми реагентами, и реакции с олефинами, имеющими тг-электроны, можно рассматривать как ионные поэтому скорость реакции обычно увеличивается с повышением концентрации таких электронов, например, при последовательном замещении атомов водорода в олефпне группами, способными отдавать электроны. Скорость реакции олефинов с перкислотами увеличивается [39]. Если принять скорость реакции этилена с органической [c.360]

    Резины на основе фторкаучуков по стойкости к органическим жидкостям, кислотам и окислителям значительно превосходят резины из всех других каучуков, особенно при высоких температурах [25, 26]. Лишь в кетонах и фторированных растворителях они избирательно набухают. Для фторэластомеров характерна высокая стойкость к атмосферным воздействиям, свету, озону. Фторкау- [c.506]

    Полиуретаны обладают стойкостью к действию различных растворителей, в том числе разбавленных кислот и щелочей. Они растворяются лишь в таких сильнополярных растворителях, как фенол, крезол, концентрированные минеральные и органические кислоты. Полиуретаны имеют высокую стойкость к атмосфорным воздействиям, стойкость к действию кислорода и озона. [c.85]

    Для очистки сточных вод от органических веществ применяются радиационные методы (например, у -излучение). Радиационное излучение аналогично действию сильных окислителей, так как продукты раднолиза воды НОз, НзОз и др. по окислительным свойствам близки к хлору и озону. Применение у -радиации позволяет не только уничтожить вредные микроорганизмы, но и ядовитые вещества (красители, пестициды, поверхностно-активные вещества, фенолы). [c.220]

    Выброс озонообразующих летучих органических соединений во время сезона повышенного содержания озона (летние месяцы) должен быть уменьшен, по крайней мере, на 15% от уровня 1990 года. [c.348]

    Полимеризацию в растворах проводят в присутствии различных растворителей СН3ОН, С2Н4С12, СвИ С , СН3СООС2Н5, С Н,., СрН СНз, (СНз)аСО и т. д. Катализаторами в этом случае являются озон или органические перекиси. [c.606]

    Реаюигя органических соединений с озоном, часто сопровождаю-щмся расщеплением молекулы по кра гнь м связям. [c.247]

    Регетз1) 1Ция отработанной серной кислоты с помощью окислителей. Однш. из способов ОЧИСТКИ ОСК от органических примесей, который заслуживает внимания, является метод окисления. В результате воздействия сильного окислителя можно добиться почти полного разрушения органических примесей до СО2 и HgO и очистить серную кислоту, пра1стически не загрязняя ее вводимыми компонентами. В качестве окислителей используют озон, пероксид водорода, гипохло- шт кальция, пиросульфат, перманганат или бихромат калия, диоксид марганца с получением кислоты высокой степени очистки. [c.42]

    СКЭП-60-56-65, которые вулканизируют органическими пероксидами. СКЭПТ содержит в своем составе третий мономер, что обеспечивает возможность вулканизации обычными серными системами. Резины на основе этилен-пропиленовых каучуков имеют высокие сопротивление истиранию и старению, а также озоно-, атмосферо-, ВОДО-, тепло- и морозостойкость. Им присуща высокая прочнос гь и эластичность. Недостатки — низкая адгезия, плохая совместимость с другими каучуками, низкая стойкость к маслам и топливам. [c.23]

    Контролируемое окисление спиртов в другие, более ценные, органические соединения проводят с помощью различных окислителей-воздуха, пероксида водорода (Н2О2), озона (О3) или бихромата калия (К2СГ2О7). Мы не будем приводить здесь полные уравнения большинства таких окислительно-восстановительных реакций, а ограничимся лишь тем, что укажем в них источник кислорода буквой О в скобках. [c.430]

    Озоно-воздушиая или озоно-кислородная смеси, содержащие более 10% озона, взрывоопасны. Но те же смеси с меньшими концентрациями озона устойчивы при давлении в несколько атмосфер, при нагревании, при ударе и в реакциях со следами органических загрязнений. Чистый озон взрывается с огромной силой от самых ничтожных импульсов. [c.158]

    ХИМИЯ ПЛАЗМЫ. Плазма — ионизованный газ, используется как среда, в которой протекают в[лсокотемператур-ные химические процессы. С помощью плазмы достигают температуры около миллиона градусов. Плазма, используемая в химии, в сравнении с термоядерной считается низкотемпературной (1500—3500 С). Несмотря на это, в химии и химической технологии она дает возможность достижения самых высоких температур. В химии плазма используется как носитель высокой температуры для осуществления эндотермических реакций или воздействия на жаростойкие материалы ири их исследовании. Технически перспективными процессами X. п. считаются окисление атмосферного азота, получение ацетилена электро-крекингом метана и других углеводородов, а также синтез других ценных неорганических и органических соединений. Специальными разделами X. п. является плазменная металлургия — получение особо чистых металлов и неметаллов действием водородной плазмы на оксиды или галогениды металлов, обработка поверхностей металлов кислородной плазмой для получения жаростойких оксидных пленок или очистки поверхности (в случае полимеров). К X. п. примыкают также процессы фотохимии (напр., получение озона). Здесь фотохимический процесс протекает в той же плазме, которая служит источником излучения. [c.275]


Библиография для Органические озоном: [c.211]   
Смотреть страницы где упоминается термин Органические озоном: [c.67]    [c.257]    [c.332]    [c.101]    [c.24]   
Методы разложения в аналитической химии (1984) -- [ c.130 , c.188 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие озона с органическими веществами

Взаимодействие озона с органическими компонентами воздушной среды

Выяснение строения органических веществ при помощи озона

Д-р Эвальд Фопроберт. Перевод Я. В. Кантора Действие озона на органические соединения

Действие озона на бактерии, минеральные и органические примеси воды

Использование особенностей реакции озона с СС-связями органических соединений в аналитической химии

Озоно

Озоны

Применение озона в органических лабораториях



© 2025 chem21.info Реклама на сайте