Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лиганды, избирательное связывание

    Избирательное связывание лигандов с носителями для получения аффинных сорбентов [c.186]

    Клетку-мишень определяют по способности избирательно связывать данный гормон с помощью такого рецептора, причем для количественной оценки взаимодействия используют радиоактивные лиганды, имитирующие связывание гормонов. Исследование проводится с соблюдением следующих правил 1) введение радиоактивной метки не должно менять биологической активности лиганда 2) связывание лиганда должно быть специфическим, т.е. добавление немеченого агониста или антагониста должно вытеснять метку 3) связывание должно быть насыщаемо 4) связывание должно происходить в тех же пределах концентраций, что и предполагаемый биологический ответ. [c.151]


    Таким образом, избирательное связывание лигандов рецепторными белками осуществляется теми частями их молекул, которые расположены вне клетки. Формирование комплекса лиганд— рецептор запускает цепь биологических реакции, важнейшая роль в которых принадлежит внутриклеточному участку молекулы рецепторного белка. Однако лишь совокупное участие всех структурных элементов молекулы рецептора обеспечивает при участии лиганда реализацию присущих ему функций (эффек-торные функции). [c.6]

    С увеличением исходной концентрации белкового лиганда абсолютное количество связавшегося материала медленно увеличивается, но доля связывания снижается ввиду стерических помех, которые создают друг для друга крупные молекулы белка при связывании с близко расположенными активными центрами матрицы. Кроме того, излишне высокая исходная концентрация лиганда стимулирует повышенный уровень неспецифической сорбции, что снижает избирательность сорбента. [c.376]

    Разделение в А. х. обычно проводят на хроматографич. колонках иногда разделяемую смесь помещают в сосуд с сорбентом и выдерживают до полного связывания исследуемого компонента. Затем сорбент (в колонке или сосуде) промывают буферным р-ром для удаления несвязавшихся в-в, после чего десорбируют исследуемый компонент. Десорбция (элюция) последнего обычно достигается повышением ионной силы, изменением pH буферного р-ра или добавлением в него орг. р-рителя, что ослабляет взаимод. лиганд-фермент. Более избирательна десорбция р-ром лиганда. [c.221]

    С увеличением основности лиганда, измеряемой прочностью связывания протона. Такие лиганды являются комплексообразующими реагентами общего значения с довольно слабо выраженной избирательностью по отношению к одинаково заряженным ионам металлов. [c.108]

    Связывание низкомолекулярного лиганда, образно выражаясь, перетаскивает молекулу в активную конформацию К. Если лиганд связывается только с К, то энергия этой конформации избирательно уменьшается, а энергия К остается неизменной. Поскольку лиганд связывается с белком достаточно слабо (большая часть энергии связывания уходит на удержание подходящей для лиганда формы белка), он с легкостью диссоциирует, и поэтому такое изменение конформации белка полностью обратимо [c.164]

    Клеточные рецепторы избирательно взаимодействуют с самыми разнообразными по химическому строению веществами — от органических соединений с небольшой молекулярной массой до высокомолекулярных белков. Размеры молекул рецепторных белков, число образующих их полипептидных цепей варьируют (табл. 1). Вполне закономерно поэтому стремление выявить характерные для каждого рецептора особенности структуры участка, ответственного за распознавание лиганда. Вместе с тем анализ функциональных свойств различных по специфичности (т. е. распознающих различные лиганды) рецепторов выявляет определенные черты сходства между ними. Как было показано в гл. 2, прн взаимодействии рецепторов со своими лигандами происходит их активация, выражающаяся либо в усилении ферментативной активности рецепторов, либо в изменении их сродства к внутриклеточным белкам или ДНК. Этот процесс связан с глубокой конформационной перестройкой рецепторных белков, распространяющейся на участки, находящиеся на большом удалении от центров связывания лигандов (активные центры рецепторов). Последнее дает основание считать, что внеклеточные участки различных по специфичности рецепторов, в пределах которых находятся активные центры последних, должны использовать сходные принципы структурной организации, обеспечивающие при связывании любого по строению лиганда изменение конформации внутриклеточных участков молекул рецепторов. [c.43]


    Наибольший интерес представляют ФАП на основе нейромедиаторов. Это связано с тем, что последним соответствует обширная группа рецепторов разнообразной локализации, поэтому, изменяя относительное сродство к различным видам рецепторов и избирательно воздействуя на рецепторы данного вида определенной локализации (например, рецепторы на поверхности мембран), можно ожидать возникновения новых эффектов. Под ответом рецептора на действие того или иного вещества подразумевают два последовательных акта специфическое связывание с рецептором и индуцирование физиологического ответа. Если вещество специфически (с точки зрения структуры) связывается с рецептором (является его лигандом) и вызывает характерный физиологический ответ за счет обратимых изменений в рецепторе, то его называют агонистом. Если имеет место только первая стадия — связывание, а вторая-ответ — не наблюдается, то вещество называют антагонистом данного рецептора. В тех случаях, когда антагонист связывается с рецептором сильнее, чем обычные агонисты, его называют блокатором (конкурентным или неконкурентным — в зависимости от способности вытеснять агонист из рецептора). Связывание полимера с рецептором еще не означает физиологического ответа (т. е. активности), а активность сама по себе не доказывает связывания полимера с рецептором, так как может вызываться адсорбированным на полимере или выделившимся в результате гидролиза ФАВ. Только обнаружение физиологической активности полимера при безусловном отсутствии примесей низкомолекулярного ФАВ свидетельствует в пользу проявления активности полимером как таковым. Для ФАП прививочного типа это означает способность ковалентно связанного с полимером-носителем лиганда — ФАВ — взаимодействовать с рецептором и вызывать специфический физиологический ответ. [c.79]

    Использование ингибиторов рецепторов (например, конкурентных антагонистов) приведет к уменьшению или ингибированию рецепторного связывания и повлияет на ферментативный распад лиганда только в том случае, если фермент избирательно чувствителен к данному антагонисту. Поэтому чтобы подтвердить, что уменьшение или ингибирование связывания лиганда связано именно с рецепторным механизмом, необходимо использовать различные антагонисты и агонисты рецепторов данного типа, отличающиеся степенью сродства к рецепторам. [c.382]

    Связывание низкомолекулярного лиганда, образно выражаясь, перетаскивает молекулу в активную конформацию К. Если лиганд связывается только с то энергия этой конформации избирательно уменьшается, а энергия К остается неизменной (рис. 3.17)  [c.126]

    Для того чтобы создать рецептор, настроенный на более крупные молекулы субстратов, а не только на простые ароматические соединения, был синтезирован аналог 227, в котором фенютеновые остатки в соединениях 226 заменены нафтилсновыми 134с]. В результате этой модификации лиганд 227 получил способность образовывать комплексы с такими крупными молекулами, как стероиды, одновременно с резким снижением его сродства к субстратам меньшего размера, Нам кажется важным подчеркнуть это обстоятельство при переходе от 226 к 227 увеличение размеров внутренней полости лиганда, его связывающего сайта, — это не просто возрастание объема контейнера , в который теперь можно заложить вместо одной маленькой молекулы одну большую или несколько маленьких, а именно изменение характера селективности рецептора (в большом контейнере прочно удерживаются крупные молекулы, а мелкие из него вываливаются ), И дело здесь не просто в размерах — видимо, не менее важно и определенное структурное соответствие субстрата рецептору. Так, при варьировании структуры стероидного субстрата константа связывания с рецептором 227 может изменяться в пределах двух-трех порядков величины. Таким образом, этот лиганд может служить эффективным инструментом для избирательного связывания определенных стероидов и выделения их из смесей. [c.481]

    Этот выбор диктуется в основном стремлением сохранить нативность очищаемого белка и максимально уменьшить неспецифическую сорбцию других компонентов исходной смеси. Само аффинное связывание вещества с лигандом, как правило, от состава буфера я ид-кой фазы зависит мало. Интересами сохранения нативности и растворимости белка диктуются выбор pH, наличие соли, а иногда (например, для белков мебран) введение в буфер добавок органических растворителей или детергентов. Все это определяется известными свойствами данного белка. Неспецифическая сорбция примесей, в частности балластных белков, на матрице и спейсерах происходит за счет тех же самых сил (притяжения разноименно заряженных групп, водородных связей и гидрофобных взаимодействий), которые обусловливают и биоспецифическое снизывание вещества с лигандом. Избирательность и прочность аффинной связи обусловлены кооперативным действием различных сил в области связывания, где они дополняют друг друга. Благодаря такой кооперации имеется возможность ввести в буфер факторы, ослабляющие действие сил какого-либо типа или даже всех их одновременно, но в такой степени, что биоспецифическое аффинное взаимодействие будет ослаблено лишь частично, в то время как неспецифическую сорбцию удастся подавить практически полностью. [c.404]

    Показано, что природа донорных атомов и величина pH влияют на избирательность связывания иона металла с лигандом. Влияние pH приобретает особое значение в связи с различием величины pH в разных тканях и органах. Кроме того, интересно, что ионы металлов в заряженной форме лишь с большим трудом проникают через липопротеидное сито клеточной мембраны. Незаряженные хелатные комплексы диффундируют через такие мембраны значительно быстрее, чем заряженные комплексы или свободные ионы металлов. На избирательность взаимодействия ионов с лигандами влияет также геометрия лиганда, образующего хелат, и стерические препятствия. Поскольку образование хелата увеличивает константы стабильности различных ионов приблизительно в одинаковое число раз, само по себе образование хелатных связей не влияет существенно на избирательность взаимодействия ионов металлов с лигандами. [c.408]


    В случае, когда активный центр формируют идентичные полипептидные цепи, образующие димер, конфигурация активного центра полностью симметрична. При этом избирательность связывания лиганда значительно выше, чем при асимметричной конфигурации центра, и, как следствие этого, сродство лиганда к рецептору будет весьма велико. Этот вывод согласуется с данными рентгеноструктурного анализа димера легких цепей иммуноглобулинов, связывающих тринитрофенильную группу. Последняя целиком заполняет глубокий щелеобразный карман между вариабельными районами этих целей (Л. Deisenhofer, 1982). Для сравнения можно привести реконструированную структуру активного центра моноклонального антитела против фосфорилхолина (рис. 3). Асимметричный по структуре активный центр этого антитела сформирован при участии разноименных цепей легкой и тяжелой. Расположенный в полости центра низкомолекулярный лиганд занимает небольшое пространство, контактируя лишь с несколькими из образующих его коротких участков полипептидных цепей. [c.16]

    Сначала лиганд, который обычно представляет собой конкурентный обратимый ингибитор, ковалентно сшивают с соответствующей нерастворимой матрицей при этом лиганд не теряет своей способности связываться с ферментом. Затем подлежащий очистке раствор фермента наносят на колонку, заполненную связанной с лигандом матрицей в соответствующем буферном растворе, после чего происходит избирательное связывание фермента. Содержа-1циеся в ферменте примеси, которые не связались с матрицей, элюируются с колонки последующую элюцию фермента осуществляют при помощи раствора, содержащего субстрат, в среде с другим pH и (или) ионной силой. [c.101]

    Лектинами называют белки или гликопротеиды растительного (фитогемагглютинины) или животного происхождения, проявляющие более или менее избирательное сродство к остаткам индивидуальных сахаров или групп сходных сахаров. Разнообразие остатков сахаров, часто встречающихся в природе, невелико, но они входят в салшх различных колхбинациях во множество биологически важных соединений полисахаридов, мукополисахаридов, гликопротеидов, глико-липидов и др. Многие из этих соединений участвуют в построении клеточных мембран. Подобно антителам, лектины обладают более чем одним участком связывания сахаров, что обусловливает их сио-собностъ агглютинировать эритроциты и другие клетки, отбирая их по классам, напрпмер опухолевые или эмбриональные. Используемые в качестве аффинных лигандов, лектины позволяют решать важные задачи очистки содержащих сахара компонентов плазмы, гликопротеидов клеточных мембран и др. [c.363]

    Среди требований, предъявляемых в настоящее время к комплексонам как лигандам, можно условно выделить два основных обеспечение максимальной устойчивости образуемых соединений и избирательность комплексообразования. В первом случае селективность часто бывает не только необязательной, но и нежелательной, например, когда решается задача связывания всех тяжелых катионов, присутствующих в равновесной смеси, в устойчивые водорастворимые комплексы. Этому условию наилучшим образом удовлетворяют лиганды, относящиеся к классу полиаминополикарбоновых кислот с дентатностью 6— 10 (ЭДТА, ДТПА, ТТГА, ЦГДТА). [c.350]

    Связывание токсических металлов с помощью политиамак-роциклических лигандов в целях охраны окружающей среды Политиамакроциклы избирательно связывают токсические металлы Hg, РЬ, С(1 [54] [c.22]

    Большое количество полученных в последние годы экспериментальных данных свидетельствует в пользу гетерогенности рецепторов АТ II, и в дальнейшем изложении будем исходить именно из этого предположения [379-382]. Полифункциональность АТ II и гетерогенность его рецепторов можно связать с молекулярной структурной организацией гормона, изученной теоретически. Его предрасположенность к реализации ряда функций проявляется в существовании в нативных условиях нескольких близких по энергии и легко переходящих друг в друга пространственных форм. Высокая эффективность и строгая избирательность взаимодействий АТ II с различными рецепторами связаны с тем, что каждая его функция реализуется посредством актуальной только для данного рецептора конформации из состава самых предпочтительных структур свободной молекулы. Таким образом, поиск структурно-функциональной организации АТ II сводится к выяснению для каждой биологической активности пептида актуальной конформации. Для решения задачи в условиях отсутствия необходимых данных о потенциальных поверхностях мест связывания требуется использование дополнительной информации. В качестве такой информации, как правило, привлекаются данные по биологической активности синтетических аналогов природных пептидов. Однако при формировании серии аналогов без предварительного изучения конформационных возможностей как природного пептида, так и его искусственных аналогов в ходе исследования по существу случайным образом ищется прямая зависимость между отдельными остатками аминокислотной последовательности гормона и его функциями. Поскольку стимулированные гормоном аллостери-ческие эффекты возникают в результате не точечных, а множественных контактов между комплементарными друг другу потенциальными поверхностями лиганда и рецептора (иначе отсутствовала бы избирательность гормональных действий), нарушение функции при замене даже одного остатка может быть следствием ряда причин. К ним относятся исчезновение нужной функциональной группы, потеря необходимых динамических свойств актуальной конформации, запрещение последней из-за возникающих при замене остатков стерических напряжений, смещение конформационного равновесия из-за изменившихся условий взаимодействия с окружением и т.д. Следовательно, случайная замена отдельных остатков не приводит к решению задачи структурно-функциональной организации гормонов. Об этом свидетельствует отсутствие в течение нескольких десятков лет заметного прогресса в ведущихся с привлечением множества синтетических аналогов исследованиях зависимости между структурой и функцией АТ II, энкефалинов и эндорфинов, брадикининпотенцирующих пептидов, а также ряда других. Отсюда следует неизбежный вывод о необходимости привлечения к изучению структурно-функциональных отношений у пептидных гормонов специального подхода, который позволил бы отойти от метода проб и ошибок и при поиске синтетических аналогов делать сознательный выбор для их синтеза и биологических испытаний. [c.567]

    Чтобы избежать нежелательных побочных эффектов в процессе лечения, нужно исключить присоединение ГРЧ к пролактиновому рецептору. Поскольку участок молекулы гормона роста, связывающийся с этим рецептором, по своей аминокислотной последовательности лишь частично совпадает с участком молекулы, который взаимодействует с пролактиновым рецептором, удалось избирательно снизить связывание гормона с последним. Для этого использовали сайт-специфический мутагенез, в результате которого произошли определенные изменения в боковых группах некоторых аминокислот (Ш5-18, Н15-21 и 01ц-174) — лигандов для ионов необходимых для высокоаф- [c.208]

    Избирательное выделение биологически активных макромолекул аффинной хроматографией основано на обратимых взаимодействиях между имхмо билизованным аффинным лигандом и свободной макромолекулой. Однако принцип аффинной хроматографии может быть также использован даже с сорбентом, который содержит необратимый ингибитор, когда после сорбции комплементарной макромолекулы в специфическом комплексе образуется ковалентная связь. Для освобождения выделяемого вещества из комплекса с аффинным сор бентом используют подходящую химическую реакцию. Пример ковалентной аффинной хроматографии— выделение ацетилхолинэстеразы с помощью иммобилизованных органофосфатов [1, 56]. Ацетилхолинэстераза принадлежит сериновым эстеразам, для которых типично ингибирование связыванием с органофосфатами или органофосфонатными эфирами, содержащими легко отщепляемую группу, например, [c.158]

    Из вышеизложенного следует, что кроме природы нерастворимого носителя существенную роль играет также метод связывания. В табл. 8.12 дан обзор методов связывания, рассмотренных в разд. 8.2 и 8.3. При выборе методов связывания главное внимание уделяется тому, какие группы аффинного лиганда можно использовать для присоединения к нерастворимой матрице без затрагивания связывающих участков аффинных лигандов. Если доступно несколько групп, рекомендуется выбрать наиболее избирательный метод, потому что желательна специфическая связь через одну определенную функциональную группу. Присоединение не должно приводить к появлению в специфическом сорбенте неспецифически сорбирующих групп. Поэтому лучше привязывать к аффинному лиганду пространственную группу и только модифицированный таким образом лиганд присоединять к нераствори-мовду носителю. В результате образования связи между поверхностью нерастворимого носителя и аффинным лигандом не должно возникать ни в носителе, ни в аффинном лиганде неспецифически сорбирующих групп эта связь должна быть устойчивой в ходе сорбции, десорбции и регенерации (см. разд. 8.5). При выборе метода необходимо принимать во внимание также зависимость устойчивости аффинного лиганда от pH. Кислые протеина-зы, например, нельзя связывать в щелочных средах, поскольку они будут при этом инактивироваться. Поэтому в табл. 8.12 приводится также значение pH, при котором проводится связывание. Однако во многих методах могут быть получены хорошие результаты даже при низких pH (связывание в нейтральной среде на [c.229]

    Итак, синапсы можно подразделить на возбуждающие и тормозные. Лиганд-зависимые ионные каналы постсинаптической мембраны могут реализовать как тот, так и другой эффект, в зависимости от ионной избирательности данных каналов. Но, как мы уже отмечали, ионные каналы с воротами-не единственные белки постсинаптической мембраны, с которыми взаимодействуют медиаторы. Существует совершенно иной механизм синаптической передачи рецепторы сопряжены здесь с мембранными белками, вызывающими образование второго посредника в постсинаптической клетке (см. разд. 13.3.3). Например, как полагают, многие рецепторы для моноаминов норадреналина и дофамина относятся именно к этому типу. Связывание медиатора с рецептором активирует аденилатциклазу, повышая тем самым внутриклеточную концентрацию циклического АМР. Циклический АМР в свою очередь активирует протеинкиназы, фосфорилирующие в клетке определенные белки например, они могут фосфорилировать ионные каналы и таким образом изменять электрическое состояние клетки. Конечный эффект может быть или возбуждающим, или тормозным. Действительно, циклический АМР способен в принципе вызвать изменение в любом регуляторном механизме клетки вплоть до экспрессии генов. [c.104]

    Феномен молекулярного импринтинга был впервые обнаружен в 1972 г. Для его реализации в водном растворе получают ма-кромолекулярные комплексы низкомолекулярных лигандов с полимерами, которые далее высушивают и промывают растворителем, избирательно освобождающим комплексы от лиганда, но не растворяющим макромолекулы [163]. Поскольку подвижность макромолекул в твердой фазе ограничена, они сохраняют конформацию, которая была индуцирована в них соответствующим лигандом, даже после его удаления из комплекса. В итоге образуется новый класс искусственных материалов, обладающих свойствами специфических рецепторов, поскольку заключают в себе отпечаток пространственной структуры лиганда-матрицы. Такие материалы обладают высоким сродством и избирательностью по отношению к лигандам, уникальной стабильностью, значительно превышающей таковую природных биоматериалов, и их довольно просто получать в большом количестве. Они активно внедряются в практику для синтеза, разделения, идентификации и связывания матричных лигандов и их производных, а также создания биосенсоров. Лигандами же могут служить микроорганизмы, белки, нуклеиновые кислоты, аминокислоты, сахара, алкалоиды, стероидные соединения, токсины, гербициды, ароматические и гетероциклические химические соединения, ионы металлов и вещества в газообразной фазе. [c.374]

    Чтобы не путать с предыдущим разделом, этот раздел, в котором описано то, что обычно понимается под названием аф- финная хроматография , озаглавлен Аффинная адсорбционная хроматография . В этом случае биоспецифический отбор происходит на стадии адсорбции, так как выделяемый белок обладает специфическим сродством к адсорбенту благодаря его способности связывать лиганд (рис. 4.32). Нет четкого разделения между действительно специфическими аффинными адсорбентами, которые кроме белков, имеющих центры связывания для иммобилизованного лиганда, связывают мало других белков, и адсорбентами общего типа, которые хотя и проявляют специфичность к определенным классам белков, связывают также и многие другие. Описание адсорбентов второго типа можно начать сокращенных адсорбентов, обладающих значительной избирательностью к ферментам, имеющим нуклеотидсвязывающие центры, а затем перейти к таким адсорбентам, как фосфоцеллюлоза, которая, будучи в основном ионообменником, часто используется в качестве псевдоаффинного носителя для белков, связывающих нуклеиновые кислоты [70], и ферментов, взаимодействующих с фосфорилированными сахарами [62, 63]. Хотя [c.146]

    Представляет интерес сенсор [40], основанный на принципе конкуренции глюкозы и меченного флуоресцеином полидекстрана за связывание с белком конканавалином А, иммобилизованным на внутренней поверхности полой диализной трубки (гл. 32). Конструкция этого аффинного сенсора включает оптическое волокно, вставленное в диализную трубку, что позволяет непосредственно определять несвязанный меченый декстран. Преимуществом данного сенсора по сравнению с глюкозооксидазными сенсорами является то, что его сигнал определяется конкурентным равновесием между глюкозой и формирующим сигнал лигандом. Поэтому кинетика ферментативных реакций и загрязнение электрода не влияет на величину сигнала. Оптимальной избирательности и чувствительности такого сенсора можно достичь подбором соответствующих связывающего белка и конкурентного лиганда например, можно было бы использовать специфические антитела. При использовании сенсора in vivo его недостатками являются все еще ограниченная стабильность и относительно большое время отклика. [c.326]

    При выборе лиганда необходимо учитывать, сколько радиоактивного изотопа может быть включено в его молекулу без нарушения сродства к рецептору. Поскольку количество рецепторов в биологическом материале низко, а сродство к гормонам высоко, используемый лиганд дол>кен иметь высокую удельную радиоактивность (выше 10 Ки/ммоль). Очевидно, что при использовании в качестве изотопа более подходяи им лигандом является алпренолол, который имеет ненасы-ш,енную двойную связь в участке, несущественном для связывания с рецептором, чем пропранолол, который имеет такую же избирательность в отношении р-рецеп-торов и такое же сродство к ним, но может включить в свою молекулу меньшее количество радиоактивной метки (см. рис. 42). [c.139]


Смотреть страницы где упоминается термин Лиганды, избирательное связывание: [c.368]    [c.370]    [c.243]    [c.6]    [c.32]    [c.110]    [c.107]    [c.210]    [c.98]    [c.271]    [c.379]    [c.196]    [c.49]   
Введение в ультрацентрифугирование (1973) -- [ c.221 ]




ПОИСК





Смотрите так же термины и статьи:

Избирательное связывание

Связывание



© 2025 chem21.info Реклама на сайте