Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Прочность обработки поверхности

    Металлическая поверхность не бывает идеальной, на ней практически всегда имеются те или иные дефекты, в частности многочисленные мелкие трещины. Молекулы жидкости при адсорбции такой поверхностью проникают в микротрещины и взаимодействуют с поверхностью металла в момент разрыва или перестройки связей, оказывая определенное влияние на это взаимодействие. Как показал П. А. Ребиндер [212, 213], описанное явление является причиной понижения прочности кристаллической поверхности. Эта особенность взаимодействия адсор-батов с адсорбентами, получившая наименование эффекта Ребиндера, нашла широкое применение в технике, в частности лри бурении твердых пород и механической обработке металла (резании, шлифовании). [c.192]


    Чистота обработки поверхностей определяет фактическую noj верхность контакта трущихся деталей. В начале работы деталей микронеровности, образованные на поверхности деталей в результате предшествующей механической обработки, разрушаются и возникает новый микрорельеф поверхности, соответствующий вполне определенным условиям взаимного перемещения элементов пары. Поэтому качество обработки деталей в лучшем случае должно давать такой микрорельеф поверхности (форма, размер и направление неровностей), который получается после обкатки. При этом износ деталей в период обкатки будет наименьшим. Качество обработки поверхности оказывает также влияние на антикоррозионную стойкость и усталостную прочность деталей. [c.35]

    Механическая прочность стекла может быть заметно увеличена по сравнению с приведенными данными с помощью специальной обработки поверхности стекла (стр. 329), [c.320]

    Необходимо отметить, что процессы очистки, определяющие в значительной степени качество покрытия, имеют особенно большое значение в процессах вакуумной металлизации.. Состояние поверхности металла в первые моменты осаждения покрытия определяет качество его адгезии, пористость, хрупкость и когезионную прочность. Применяемые химические и электрохимические процессы не обеспечивают достаточной степени очистки и имеют другие недостатки, в частности, требуют больших количеств технической воды, которая большей частью затем сбрасывается в сток. Поэтому весьма перспективны новые методы, например электронно-лучевая обработка и ионная бомбардировка. При ионной бомбардировке поверхность металла почти не разогревается, в то время как при электронно-лучевой обработке поверхность металла нагревается до высоких температур. При помощи ионной бомбардировки очистка поверхности происходит значительно быстрее, чем при традиционных методах химической или электрохимической обработки, кроме того, она может заменить процесс травления. [c.83]

    Иногда применяют дробеструйную обработку поверхности, при которой в поверхностном слое возникает явление наклёпа. Выявлена прямая связь между прочностью сцепления напылённых покрытий и степенью наклёпа поверхности  [c.50]

    Она также может служить мерой прочности связи наполнителя с каучуком. Отсюда видно, что прочность связи наполнителя с каучуком, выраженная величиной тем больше, чем меньше величина поверхностного натяжения (поверхностной энергии) Он-к> т. е. тем больше, чем больше каучукофилен наполнитель и чем легче он смачивается каучуком. Отсюда следует, что 1) всякая обработка поверхности частиц веществом, делающим эту поверхность более каучукофильной (например, введение стеариновой кислоты), повышает активность наполнителя, т. е. увеличивает прочность связи каучука с наполнителем 2) наибольшее усиление достигается при смачивании каучуком всех частиц наполнителя (при отсутствии агломерации частиц наполнителя) в этом случае удельная поверхность наполнителя в каучуке будет достигать своего наибольшего значения. [c.171]


    Подготовка металлических бандажей состоит в удалении с их наружной поверхности ржавчины и следов масла и жира. Поверхность очищают пескоструйным аппаратом в специальных камерах, оборудованных хорошей вытяжной вентиляцией. При очистке сжатым воздухом на поверхность бандажной ленты с большой скоростью выбрасывается струя кварцевого песка. Вместо песка применяют иногда металлические опилки или металлическую дробь, которые создают меньшее количество пыли. Обработка поверхности с помощью пескоструйного аппарата придает ей шероховатость, что повышает прочность связи эбонита с поверхностью металла. [c.513]

    Абразивные ленты, диски, листы и цилиндры, демонстрируемые на рис. 15.3, применяют обычно для полирования, когда в первую очередь требуется обработка поверхности точно по размеру, а не снятие толстого слоя материала. Эффективность такого абразивного инструмента относительно низка вследствие наличия только одного слоя абразивного порошка. Однако использование синтетических полимерных клеев вместо животного клея дает возможность изготовить шлифовальную ленту, обладающую большой гибкостью и высокой прочностью [8,9]. Абразивный материал на подложке имеет два клеевых слоя монтах<ный и калибровочный (рис. 15.4 и 15.5). [c.235]

    Первичная обработка поверхности влияет на последующее активирование, а следовательно, и на прочность сцепления покрытия. Существуют два метода активирования диэлектрика физическая адсорбция ионов или коллоидных частиц активатора, которая зависит от микрошероховатости поверхности хемосорбция ионов или коллоидных частиц активатора (в этом случае прочность сцепления покрытия с диэлектриком зависит от шероховатости и сил химического взаимодействия между покрытием и диэлектриком). [c.334]

    В книге изложены основы механохимии твердого тела применительно к проблеме защиты деформированных металлов от коррозии. На основе термодинамического и кинетического анализа механохимических явлений на границе фаз твердое тело — жидкость и экспериментальных исследований рассмотрена модель механохимического эффекта (ускорения растворения металла при деформации) и описано явление, названное хемомеханическим эффектом. Установлены закономерности влияния напряженного состояния и тонкой структуры металла на коррозионную стойкость и образование коррозионных элементов на поверхности неоднородно деформированных участков металла и сварных соединений. Рассмотрены некоторые методы защиты металлов, вопросы коррозионно-механической прочности труб, способы механохимической обработки поверхности металла. [c.2]

    По сравнению с первым изданием в данной книге существенно расширен экспериментальный материал и дополнен главой, содержащей сведения о коррозионно-механической прочности трубопроводов и оборудования (в частности, оборудования нефтяной промышленности). Более детально и с прикладным уклоном проведены расчеты прочности и долговечности напряженных металлических конструкций и трубопроводов в условиях механохимической коррозии. Приведены результаты новых экспериментальных наблюдений за пластифицирующим действием хемомеханического эффекта и уточнены представления о его природе. Изложены основы и указаны пути применения механохимической обработки поверхности стали. [c.3]

    Коррозионно-механическая прочность насосных штанг /4. Механохимическая обработка поверхности труб.. . .  [c.270]

    Ческом нагружений оказывают большое влияние на усталость металлов (в частности, влияние обработки поверхности, наличие концентраторов напряжений и т. п.). Строгой зависимости между прочностью при статических нагрузках и усталостной прочностью не удалось экспериментально установить. [c.79]

    Грубая механическая обработка поверхности улучшает сцепление (образование соединений). Наблюдается зависимость прочности сцепления от типа раствора активирования большая прочность соответствует раствору 1. [c.47]

    При обработке поверхности песка препаратом ЛЩУ-ЫНз отмечено образование прочной корки, сохраняющей свою прочность в течение 2 мес. Песчаный субстрат обладал высокой биологической активностью. При этом наблюдалось повышение урожайности надземной массы, например житняка. Доза препарата составляет 1 т/га. [c.54]

    Существенное влияние оказывает состав воды и температурно-временной режим обработки поверхности [57]. Например, при обработке алюминия в ванне серная кислота — бихромат натрия с температурой не выше 60 °С образуется прочный слой р-оксида алюминия — АЬОз-ЗНгО [65]. Еслп при последующей промывке водой температура поднимается выще 60°С, то структура оксидной пленки изменяется и образуется слой а-оксида (АЬОз-НгО). При этом прочность соединений, склеенных эпоксидными клеями, существенно снижается. [c.123]


    Одним из распространенных методов повышения прочности адгезионных связей является обработка поверхности электрическим разрядом [63]. Методом ИК-спектроскопии определено, Что обработка электрическим разрядом во всех газовых средах, в том числе в инертных, приводит из-за наличия остатков кислорода к образованию кислородсодержащих групп и групп с Двойными связями. Бомбардировка ионами осуществляется обычно ири пониженном давлении в атмосфере активных газов, способных образовывать новые химические связи и свободные радикалы на поверхности. Ниже приведены данные, свиде- [c.125]

    Клей 10793 на основе бутадиен-нитрильного каучука и феноло-формальдегидной смолы 18 хорошо крепит к стали и дюралюминию резины на основе НК, наирита, СКС, СКН и других каучуков Клей нечувствителен к повышенной влажности и обладает высокой стабильностью свойств. Арматура, покрытая клеем, не менее 10 суток полностью сохраняет адгезионные свойства. Способ обработки поверхности металла не влияет на прочность крепления резины. [c.201]

    Влияние обработки поверхности металлов на прочность клеевых соединений весьма значительно например, обезжиривание поверхности ацетоном при склеивании эпоксидным клеем позволяет повысить прочность соединения на равномерный отрыв с 500—600 до 800—1000 кгс/см . [c.279]

    В ряде случаев обезжиривание склеиваемых поверхностей металлов н обеспечивает максимальной прочности соединения более эффективными являются методы химической обработки поверхности. [c.279]

    Каталитическую активность гетерогенного катализатора характеризуют константой скорости реакции, отнесенной к одному квадратному метру поверхности раздела фаз реагентов и катализатора, или скоростью реакции при определенных концентрациях реагирующих веществ, отнесенной к единице площади поверхности. Промышленные катализаторы применяют в форме цилиндров или гранул диаметром несколько миллиметров. Гранулы катализатора должны обладать высокой механической прочностью, большой пористостью и высокими значениями удельной поверхности. Большую группу катализаторов получают нанесением активного агента, например платины, палладия, на пористый носитель (трегер) с высокоразвитой поверхностью. В качестве носителей применяют активированный уголь, кизельгур, силикагель, алюмогель, оксид хрома (П1 и другие пористые материалы. Носитель пропитывают растворами солей металлов, например Pt, Ni, Pd, высушивают и обрабатывают водородом при 250—500° С. При этом металл восстанавливается и в виде коллоидных частиц [л = (2 -f- 10) 10 м1 осаждается на поверхности и в порах носителя. Можно провести синтез катализатора непосредственно на поверхности носителя, пропитав носитель растворами реагентов, с последующей термической обработкой. Так получают катализаторы с металлфталоцианинами, нанесенными на сажу, графит и другие носители. Широко применяются металлические сплавные катализаторы Ренея. Их получают из сплавов Ni, Со, u, Fe и других металлов с алюминием в соотношениях 1 1. Сплав металла с алюминием, измельченный до частиц размером от 10" до 10" м, обрабатывают раствором щелочи, алюминий растворяется, остающийся металлический скелет обладает достаточной механической прочностью. Удельная поверхность скелетных катализаторов превышает 100 м г" . Такие катализаторы применяются в процессах гидрирования, восстановления и дегидрирования в жидкофазных гете рогенно каталитических процессах. [c.635]

    Ос Значения Ос зависят от обработки поверхности волокна (НЫОз, снланом, бромом, обработка силиконовым маслом, в результате которой межслоевая прочность сдвига т изменяется от 12 до 30 ЛШа) [c.351]

    Так как термопластичные полимеры не содержат в своем составе реакционноспособных групп, дальнейшее повышение адгезии может быть достигнуто за счет прививок функциональных групп или использования сополимеров термопластичное — термореактивное связующее. Предварительная обработка поверхности углеродного волокна эпоксидными смолами позволяе увеличить прочность при сдвиге КМУП с полисульфоновым связующим. По-видимому, это связано с предотвращением взаимодействия функциональных групп на поверхности волокна с влагой. Последняя препятствует адгезии полисульфона к поверхности УВ. Улучшение указанного показателя достигнуто при покрытии поверхности волокна полиимидными и фенольными смолами, а также стиролом и малеиновым ангидридом [9-59]. Термообработка после покрытия улучшает адгезию и прочност1> при сдвиге за счет снижения внутренних напряжений в поверхностных слоях связующего. [c.557]

    Механический способ заключается в пескоструйной обработке поверхности, в результате которой она становится шероховатой, чем улучшается прочность сцепления наносимого покрытия с подложкой Химическими способами накосят на поверхность алюминия в качестве подслоя метачлическую пленку взамен естественной оксидной кли получают искусственную оксидтю пленку, обеспечивающую надежное сцеиленне металла покрытия с основой. [c.48]

    В процессе изготовления и обработки поверхность деталей подвергавт различным механическим, тепловым и физикохимическим воздействиям для повышения их прочности, надежности, коррозионной стойкости и т.п. Служебные свойства деталей в значительной мере определяются напряженным состоянием их поверхностных слоев. [c.177]

    Для формирования прочности магнетитовой пленки обработку поверхности металла гидразином рационально вести при повышенных температурах, т. е. непосредственно после останова котла. Такой регламент позволяет также уменьшить концентрацию гидразина существенно сократить время формирования пленки. Ингибиторное действие N2H4, получающегося при протекании реакции между оксидом железа (1И) и гидразином, особенно эффективно в закрытых системах для сред с малым содержанием кислорода (не выше [c.78]

    Модификация поверхности пленок. Под модификацией поверхности пленок подразумевается воздействие каким-либо способом на поверхности ные слои полимера с целью увеличения прочности сцепления (адгезионной способности), например, с краской, другими пленками и материалами. Поскольку большая часть распространенных пленок (из ПЭ, ПП и др. ) состоит из неполярных углеводородов, они не обладают достаточной адгезией к типофафской краске и обычным клеям. Адгезия значительно улучшается после обработки поверхности пленки химическими реагентами, электрическим разрядом, холодной плазмой, открытым пламенем. [c.88]

    Как отмечалось, подготовка волокнистого наполнителя преду -сматривает операции, заключающиеся в обработке поверхности волокон для улу-чшения их смачивания связующим и увеличения прочности сцепления между наполнителем и связующим в готовом ПКМ. Это мо-гу т быть следующие операции аппретирование, активирование и химическая очистка поверхности, удаление влаги и др. [c.139]

    Реальная химическая структура поверхности достаточно сложна и сведений о ее свойствах и возможности сочетания с клеем бывает часто недостаточно или они вовсе отсутствуют. Поэтому для выбора оптимального способа обработки поверхности следует проводить обширные эксиериментальные работы. Суть подготовки поверхности иод склеивание заключается ч том, чтобы с помощью химических, электрохимических, механических процессов, использования модифицирующих добавок, адгезионных грунтов или других способов изменить природу поверхности субстрата, сделать ее более активной при контакте с клеем для получения требуемой прочности [34, с. 70—89]. Прн окончательном выборе способа подготовки поверхности следует учитывать конструкторские и технологические особенности соединения и изделия в целом, а также условия эксплуа-таццц. [c.120]

    Подготовка поверхности металлов. Строение кристаллической реи1етки, степень шероховатости, наличие оксидов на поверхности металла и ряд других факторов оказывают значительное влияние на прочность соединений. Снятие поверхностного слоя приводит обычно к активации поверхности, уменьшению угла смачивания и повышению площади контакта склеиваемых материалов. Кроме того, при наличии шероховатой поверхности образование микротрещин в пленке клея при нагружении [56] протекает при более высоких значениях напряжений, чем в случае соединений с гладкой поверхностью, так как при этом изменяется доступность к поверхности субстрата. Все эти факторы обусловливают зависимость прочности от степени шероховатости (табл. 5.4). В результате механической обработки поверхности субстрата угол смачивания снижается примерно вдвое, а прочность возрастает в пять раз. Эффективность этого метода сохраняется, если клеевые соединения работают при температурах ниже Тс пленки клея. При более высоких температурах вследствие резкого ухудшения когезионных свойств клея влияние степени шероховатости поверхности на прочность соединений незначительно. [c.121]

    Одним ИЗ сравнительно новых способов обработки поверхности является механохимический [64]. Он основан на образовании свободных радикалов, возникающих при механической обработке поверхности в среде клея. При механической обработке поверхности полимера происходит разрыв макромолекул, что приводит к образованию микрорадикалов, время жизни которых составляет 10- —10- с. Образование радикалов, генерируемых в среде клея, предохраняет их от контакта с воздухом и друг с другом. По-видимому, в этом случае увеличение прочности соединений, склеенных эпоксидными клеями, происходит за счет радикальных процессов в зоне контакта и образования химических связей между макромолекулами субстрата и клея, В качестве подтверждения этого механизма в [78] приводятся данные о стабильности свойств соединений, подвергнутых такой обработке в условиях длительного хранения. [c.126]

    Рекомендуемый состав эфирно-гидридного электролита следующий А1С1з б/в — 270—400 г/л Ь1П — 5—8 г/л диэтиловый эфир — 1 л. При плотности тока 0,8—5 А/дм и комнатной температуре толщина покрытий достигает 50— 60 мкм. По своим физико-химическим свойствам полученные покрытия близки к электрометаллургическим маркам алюминия высокой чистоты. С увеличением плотности тока и уменьшением толщины слоя происходит измельчение структуры покрытий и увеличение микротвердости. Глубокой очисткой исходных компонентов можно добиться снижения микротвердости и отсутствия пористости. Прочность сцепления с основой зависит от предварительной подготовки поверхности подложки и увеличивается при обработке поверхности в растворах жирных кислот, например олеиновой. Кратковременное анодирование в щелочном растворе приводит к более прочному сцеплению с основой. Покрытия на [c.23]

    При химическом способе подготовки поверхности титана и его сплавов следует обращать особое внимание на то, что, несмотря на высокую коррозионную стойкость, в некоторых случаях они вступают во взаимодействие с компонентами растворов и (или) их поверхность наводороживается (значительное растворение в сплаве выделяющегося при обработке атомарного водорода). Это может привести к значительному снижению его прочности, что отрицательно скажется на прочности и надежности клееной конструкции. В связи с этим в каждом отдельном случае необходимо выяснить, как влияет используемый для повышения адгезии клея химический способ обработки поверхности на прочность клеевых соединений титана и его сплавов. [c.59]

    Вулканизаты жидкого тиокола как наполненные, так и нена-полненные плохо крепятся к металлам, стеклу, пластмассам и другим субстра1там. Поэтому их применяют либо с клеевыми подслоями, либо вводят в их состав специальные добавки, о чем уже было сказано выше. Не меньшее влияние на прочность крепления герметиков оказывает тщательность подготовки поверхности субстрата, очистка его от посторонних включений, масел и жира, а также обработка поверхности химическим путем — оксидированием, фосфатированием, анодированием и др. [c.151]

    Среди многочисленных аппретирующих веществ, применяемых для повышения адгезии, имеются также и полимерные аппреты. Их использование в большинстве случаев способствует значительному увеличению прочности сцепления связующего со стеклом. Так, применение для обработки поверхности стеклянного волокна аппретов на основе фенолонеопреновой смолы или комбинации полимеров с винильными группами и синтетических каучуков приводит к возникновению адгезионной связи между стеклом и полиэфиром, прочность которой намного превышает прочность химической связи аппретов со стеклянным волокном. [c.258]

    В работах [171, 175] рассматривалась зависимость адсорбции полимера от числа активных функциональных групп на поверхности сорбентов. Было, в частности, показано, что адсорбция нолидиметилсилоксана на аэросиле обусловлена специфическил взаимодействием полимера с гидроксильными группами поверхности аэросила. К такому же выводу можно придти, исследуя адсорбцию полиэфиров на силикагеле [169]. Ниже будет показано, что и адгезионная прочность во многих случаях определяется содержанием функциональных групп в адгезиве. Обработка поверхности адсорбента, изменяющая его химическую природу, приводит к существенному изменению адсорбции и адгезии. Так, прокаливание двуокиси кремния в вакууме при 450 °С приводит к удалению поверхностных гидроксильных групп [161], в результате чего резко сокращается адсорбция полиэфира на этом мате- [c.26]


Смотреть страницы где упоминается термин Прочность обработки поверхности: [c.79]    [c.83]    [c.35]    [c.50]    [c.50]    [c.467]    [c.22]    [c.277]    [c.236]    [c.109]    [c.49]    [c.182]    [c.255]   
Склеивание металлов и пластмасс (1985) -- [ c.68 , c.69 , c.72 ]




ПОИСК





Смотрите так же термины и статьи:

Обработка поверхности



© 2025 chem21.info Реклама на сайте