Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дегидрирование регенерация катализатора

    Буянов Р. А. Закоксование и регенерация катализаторов дегидрирования при получении мономеров СК.— Новосибирск Наука, 1968. - 64 с. [c.97]

    Технологические схемы процессов дегидрирования различных парафинов аналогичны. В реакторе с неподвижным слоем катализатора все операции проводятся в одном аппарате и для обеспечения непрерывности работы производства устанавливают несколько реакторов. Регенерация обычно осуществляется при 600—650 °С и подаче воздуха. Использование псевдоожиженного слоя мелкозернистого катализатора позволяет иметь один реактор работающий непрерывно. В этом случае подготовленный/катализа тор непрерывно поступает в реактор, а отработавший выводится Регенерация катализатора осуществляется также в псевдоожи женном Слое, но в отдельном аппарате — регенераторе. Подго товка катализатора включает восстановление и десорбцию воды и проводится либо в отдельном аппарате, либо в аппарате, встроенном в реактор или регенератор. Технологическая схема процесса дегидрирования парафиновых углеводородов в псевдоожиженном слое мелкозернистого катализатора представлена на рис. 4. В процессе эксплуатации были усовершенствованы конструкции реакторов и регенераторов [35, 36]. [c.657]


    Водород в продуктах реакции отсутствует, что свидетельствует о протекании реакций окислительного дегидрирования. Кислород для реакции подводится из объема катализатора. При восстановлении катализатора наблюдается период постоянной скорости реакции окислительного дегидрирования. Независимо от условий проведения процесса периоду постоянной скорости реакции соответствует съем 11 —13 см кислорода с 1 г катализатора. Окислительная регенерация катализатора восстанавливает его активность. [c.685]

    P. A. Б у я H о в, Закоксовывание и регенерация катализаторов дегидрирования при получении мономеров. Изд. Наука , 1968. [c.323]

    Ввиду высокой эндотермичности процесса и работы в отсутствие разбавителя-теплоносителя вначале применяли трубчатые реакторы, обогреваемые топочными газами, с чередованием периодов дегидрирования парафинов и регенерации катализатора. Затем широко распространились систе.мы с псевдоожиженным микросферическим катализатором. В них скомбинированы регенеративный принцип использования теила и непрерывная регенерация катализатора, аналогичная рассмотренной для каталитического крекинга (стр. 45). Катализатор выходит из реактора дезактивированным и поступает в регенератор, где воздухом выжигают кокс. За счет экзотермичности последней реакции катализатор разогревается и снова поступает в реактор, где выполняет дополнительную золь теплоносителя, компенсирующего затраты тепла на эн- [c.491]

    Таким образом, появление стадии окислительной регенерации значительно усложняет технологические схемы и аппаратурное оформление процессов. Она существенно влияет на их экономику, а для каталитического крекинга даже определяет рентабельность и конкурентоспособность различных вариантов этого процесса. История создания и развития таких важных каталитических процессов нефтепереработки и нефтехимии, как крекинг, риформинг, дегидрирование, гидрокрекинг и гидроочистка неразрывно связана с решением проблем окислительной регенерации используемых катализаторов. Естественно, чт0 эта стадия привлекает к себе пристальное внимание исследователей уже не одно десятилетие. Результаты ранних исследований закономерностей окисления кокса обобщены в работе [2], опубликованной 20 лет назад. С тех пор в научной литературе накоплены новые сведения по теории и практике окислительной регенерации катализаторов и назрела необходимость систематизировать и обобщить имеющийся материал, рассмотреть в тесной взаимосвязи характеристики кокса, образующегося на катализаторах, механизм и кинетику его окисления изменение свойств катализаторов при регенерации, основы промышленной технологии и аппаратурного оформления процесса. [c.4]


    Оксиды несходных металлов подгруппы железа и хрома. В состав катализаторов дегидрирования, гидрообессеривания, риформинга и ряда других входят соединения переходных и благородных металлов, которые проявляют каталитическую активность в окислительно-восстано-вительных реакциях [93]. Поэтому естественно, что уже в ранних работах, посвященных изучению закономерностей окислительной регенерации катализаторов, содержащих переходные металлы, наблюдали более высокие скорости окисления кокса по сравнению с Таковыми для некаталитического окисления углерода [3, 75]. Однако только в цикле работ сотрудников Института катализа СО АН СССР детально изучены закономерности каталитического окисления кокса на оксидах чистых переходных металлов, а также промотированных щелочными металлами [104-108]. [c.40]

Рис. 5.6. Схема окислительной регенерации катализатора одностадийного дегидрирования бутана Рис. 5.6. Схема <a href="/info/310892">окислительной регенерации катализатора</a> <a href="/info/185181">одностадийного дегидрирования</a> бутана
Рис. 5.7. Схема регенерации катализатора дегидрирования бутенов Рис. 5.7. <a href="/info/1605712">Схема регенерации катализатора</a> дегидрирования бутенов
    Дегидрирование бутенов в бутадиен проводят в системе из двух реакторов со стационарным слоем катализатора. Один аппарат работает в режиме дегидрирования, второй-в режиме регенерации катализатора (рис. 5.7) [5]. Регенерацию катализатора осуществляют паровоздушной смесью при температуре 620-650 С. Концентрация кислорода в газовой смеси находится в пределах 1-2% (об.). Длительность всего цикла (дегидрирование + регенерация) составляет примерно 30 мин. Операция перехода с фазы дегидрирования на фазу регенерации заключается в замене бутена в парогазовой смеси определенным количеством воздуха [c.108]

    Процесс окислительной регенерации катализаторов, будучи одной из важнейших и необходимых стадий многих процессов, непрерывно раз-видается и совершенствуется. Наибольшее внимание исследователей привлекали процессы регенерации катализаторов крекинга, которые быстро закоксовываются в основном процессе. Такое положение естественно, так как показатели процесса крекинга сильнее других зависят от того, насколько быстро и качественно проведена регенерация катализаторов. Именно поэтому регенерация указанных катализаторов изучена наиболее глубоко как с точки зрения понимания механизма и химизма процесса, так и в плане разработки теоретически обоснованных кинетических моделей, методов расчета и оптимизации регенераторов. В то же время успехи в исследовании окислительной регенерации алюмохромовых катализаторов дегидрирования, которые также быстро коксуются, менее значительны. [c.134]

    Реакторы кипящего слоя применяют в промышленности для крекинга нефтепродуктов на алюмосиликатном катализаторе и для регенерации катализатора [1, 3—7] уже несколько десятков лет. И в настоящее время эти реакторы являются самыми крупными аппаратами с кипящим слоем катализатора. Метод кипящего слоя катализатора был применен для гидроформинга [3, 81. Весьма рациональным оказался кипящий слой катализатора по сравнению с фильтрующим слоем для процессов дегидрирования углеводородов в различных производствах [3, 9—141. [c.91]

    Перед использованием в процессе катализатор обрабатывается водяным паром при температуре 630—650 С в течение 2 ч, после чего проводится разработка катализатора. Параметры процесса дегидрирования температура — 570— 630 С( давление Сб9 кПа перепад давления по слою катализатора < 49 кПа объемная скорость подачи сырья — 500—800 ч . Степень превращения бутилена в этих условиях составляет 24%, селективность — 80%. Ядами для катализатора являются ацетон и соли меди. Регенерация катализатора осуществляется при температуре 620 С в течение 1—1,5 ч. Срок службы катализатора равен 3000— 3500 ч. [c.410]

    Перед использованием в процессе катализатор активируют" в присутствии кислорода воздуха при 550 °С в течение 2 ч. Параметры процесса дегидрирования температура верхнего слоя катализатора — 570 °С объемная скорость поддачи изопропилбензола — 0,5 ч массовое соотношение этилбензол/водяной пар =1 3. При этих условиях выход а-метилстирола составляет 53 и Й3% на пропущенный и разложенный изопропилбензол, соответственно. Ядами для катализатора являются хлор, хлорорганические соединения, сера, аммиак и аминосоединения, мышьяк. Регенерация катализатора проводится паровоздушной смесью. [c.411]


    Процесс дегидрирования проводится в неподвижном слое гранулированного катализатора в среде водорода при незначительном избыточном давлении и умеренной температуре. По мере дезактивации катализатора в течение рабочего цикла температура повышается с целью поддержания постоянной степени превращения на уровне 10% за проход. Селективность превращения сырья в н-моноолефины соответствующей молекулярной массы" составляет приблизительно 90%. Продолжительность рабочего цикла — около 30 суток, после чего отработанный катализатор заменяют свежим. Возможна окислительная регенерация катализатора в реакторе, однако замена требует меньше времени. [c.60]

    Высокие температуры промышленного процесса каталитического риформинга (480—540° С) вызывают неизбежные в этих условиях реакции крекинга. Образующиеся осколки молекул могут насыщаться водородом, выделяющимся в результате основных реакций дегидрирования, или вступать в реакции уплотнения. Относительная роль этих реакций определяется режимом процесса и, в первую очередь,— парциальным давлением водорода, находящегося в системе. Так, на одной промышленной установке регенерацию катализатора, вызванную дезактивацией его побочными продуктами уплотнения, проводили через каждые семь суток. При повышении давления в реакторе с 14 до 24—25 ат пробег установки увеличился до трех месяцев. Под высоким давлением водорода протекают реакции гидрокрекинга, т. е. крекинга с насыщением образующихся продуктов водородом. Эту реакцию можно выразить уравнением  [c.216]

    Реакторный блок установки включает два (или больше) аппаратов, работающих попеременно на дегидрирование сырья и регенерацию катализатора. [c.330]

    С увеличением объемной скорости преобладающую роль в процессе начинают играть реакции, протекающие быстрее дегидрирования нафтеновых углеводородов, гидрокрекинга тяжелых парафиновых углеводородов и изомеризации углеводородов С4 и С5. Роль реакций, требующих большого времени (дегидроциклизации, деалкилирования и гидрокрекинга легких углеводородов), снижается. Обычно. можно выбрать такую объемную скорость, чтобы проводить процесс в определенном интервале давления и температуры и с заранее подобранной глубиной превращения сырья, не прибегая к частой регенерации катализатора. [c.166]

    Гидроформинг-процесс проводится сейчас в прохмышленности также методом псевдоожиженного слоя. Хотя в процессе гидроформинга в результате дегидрирования освобождается водород, и дегидрирование и гидрирование представляют собой равновесный процесс, гидроформинг ведут под давлепием водорода. В присутствии водорода под давлением коксообразование значительно меньше, чем в отсутствие водорода, а благодаря высокой температуре равновесие сильно сдвинуто в сторону дегидрирования. Регенерация катализатора при работе методом псевдоожиженного слоя происходит непрерывно. [c.104]

    При дегидрировании на катализаторе отлагается довольно много углерода, понижающего его активность. Этот углерод должен удаляться сжиганием в струе воздуха. В процессе Гудри таблетированпый катализатор смешан с большим числом алундовых шариков, которые сами каталитическим действием пе обп 1дают, но имеют большую теплоемкость. Тепло, освобождающееся при регенерации, воспринимается этим теплоносителем и отдается им в процессе дегидрирования. Теплоноситель препятствует также чрезмерному повышению температуры при регенерации, что чрезвычайно важно, так как при нагревании до 700—750° активность катализатора быстро ухудшается. [c.87]

    Прпмепенпе большого избытка водяного па1)а полностью предотвра]цает отложение кокса иа ь атализаторе, так что дегидрирование может проводиться без периодической регенерации катализатора. Так как необходимое для дегидрирования тенло подводится с перегретым водяпылт паром, то отпадает необходимость в устройстве какого-либо обогрева реакционной печи, поэтому конструкция ее, естественно, сильно упрощается. Способ работы показан на схеме рис. 145. [c.237]

    Промышленные процессы дегидрирования бутана. Дегидрирование бутанов до бутиленов проводится обычно при температурах от 540 до 600° С и давлении около одной атмосферы или ниже. Для реакции дегидрирования, идущей с поглощением тепла, требуется около 560 ккал на килограмм бутана и промышленные установки дегидрирования должны обеспечивать подвод такого количества тепла. В Соединенных Штатах Америки в настоящее время применяются две технологические схемы процессов каталитического дегидрирования бутана. В установках фирмы Филлипс Петролеум Компани тепло, необходимое для проведения реакции, подводится посредством обогревания горячим топочным газом двухдюймовых трубок с катализатором. В установках Гудри процесс осуществляется короткими циклами за счет тепла, выделяющегося во время регенерации катализатора. [c.199]

    В процессе Гудри [2, 40, 80, 88] для дегидрирования используется тепло, аккумулированное катализатором и инертным веществом катализатора. Процесс ведется над алюмохромовым катализатором, обработанным предварительно в течение 10 часов водяным паром при 760° С и смешанного с двухкратным количеством алунда [30, 31]. При продолжительности дегидрогенизационного цикла от 7 до 15 минут наблюдается снижение температуры на 50° С, после чего температура снова повышается путем выжига углерода на катализаторе неразбавленным воздухом. Путем соответствующего подбора условий можно добиться теплового равновесия между теплотой реакций и теплотой регенерации катализатора. При применении в качестве сырья к-бутана процесс может быть направлен па получение как бутиленов, так и бутадиена. Установка может работать при малых давлениях (порядка 127 мм рт. ст.), необходимых для получения хороших выходов бутадиена. Температура процесса устанавливается от 566 до 593° С, и объемная скорость от 0,8 до 2,0. В настоящее время завод в Эль-Сегундо (штат Калифорния) максимально развивает производство бутенов как сырья для последующего превращения в бутадиен посредством процесса Джерси (описанного ниже). [c.199]

    Дегидрирование углеводородов вследствие эндотермичности процессов требует интенсивного подвода тепла. Это в значительной степени и определяет их технологическое оформление. Так, в циклических процессах применяют твердый инертный разбавитель-теплоноситель. Использование такого теплоносителя позволяет аккумулировать тепло, выделяющееся при регенерации катализатора, и затем использовать его при дегидрировании. При дегидрировании олефиновых и алкилароматических углеводородов в качестве теплоподводящего агента используют водяной пар. Поскольку катализаторы дегидрирования представляют собой пори- [c.652]

    Стирол-контакт является саморегенерируюшимся катализатором, а К-12 требует периодической регенерации паровоздушной смесью. В связи с этим процесс дегидрирования на катализаторе К-12 протекает циклами, с чередованием контактирования и регенерации. Регенерация катализатора проводится в течение 1 часа через 72—120 часов. [c.231]

    Технологический процесс дегидрирования парафинов в соответствующие олефины составляют три основные стадии 1) дегидрирование парафина с регенерацией катализатора 2) выделение бутан-бутиленовой (или пентан-амиленовой) фракции из продуктов реакции 3) разделение этой фракции с получением бутиленов (или изоамиленов). Технологическая схема первых двух стадий изображена на рис. 145 для дегидрирования -бутана и существенно ие отличается от схемы дегидрирования изобутана и изонен-таиа. [c.492]

    Регенерация катализаторов вакуумного дегидрирования н-бутана н де-гнарнрования бутенов в бутадиен. Алюмохромовый катализатор вакуумного дегидрирования н-бутана регенерируют непосредственно в контактном аппарате по схеме, представленной на рис. 5.6 [5]. Реакторный блок компонуют, как правило, из восьми аппаратов, работающих со смещенным во времени циклом, что создает общую непрерывность процесса. Аппарат после цикла дегидрирования продувают и подают в него воздух. Вьгжиг кокса проводят при 600-650 °С. Цикл регенерации составляет около 8 мин. После регенерации газы удаляют эжектором 3, а катализатор восстанавливают, подавая в аппарат углеводородный газ из реактора, работающего в цикле дегидрирования. [c.107]

    Замена и регенерация катализатора легко осуществляется при применении аппаратов КС. Это является решающим преимуществом его в процессах крекинга, дегидрирования и в ряде других производств органической химии (см. главы VI и Vil), в которых требуется циркуляция катализатора с целью его регенерации, так как зерна его покрываются пленкой углеродистых соединений и теряют каталитическую активность в течение нескольких минут. В этом случае используется текучесть псевдоожиженного (кршящего) слоя, позволяющая непрерывно или периодически частично или полностью выпускать катализатор из слоя на регенерацию и вновь подавать его в реактор. Для такой работы, конечно, необходимо иметь высоко прочный катализатор, к которому не стремятся в случае неподвижного слоя. [c.104]

    На практике дегидрирование алканов С4 и j осуществляется как в стационарном, так и в подвижном слое катализатора. Так, в процессе дегидрирования бутана фирмы Phillips применяются реакторы с неподвижным слоем промоти-юванного алюмохромового катализатора, содержащего 20% (масс.) СГ2О3. катализатор смешивается с инертным разбавителем — теплоносителем, который аккумулирует теплоту регенерации катализатора (выжига кокса) и, выделяя его на стадии контактирования, компенсирует эндотермический тепловой эффект (см. ниже процесс фирмы Houdry). Очевидно, что из-за частой смены циклов контактирования и регенерации требуется создание системы из нескольких реакторов, работающих попеременно. [c.351]

    В процессе фирмы Houdry дегидрирование алканов С4 и С5 осуществляется в стационарном слое таблетированного алюмохромового катализатора, с периодической регенерацией последнего нагретым воздухом. Катализатор содержит около 20% СГ2О3 и до начала работы активируется путем обработки водяным паром при 760 °С в течение 10—20 ч. Характерной особенностью метода является сбалансированный тепловой режим циклов контактирования и регенерации, поддерживаемый на заданном уровне практически без всякого притока теплоты извне . Количество теплоты, выделяемое при окислительной регенерации катализатора и затраченное на его нагрев, точно соответствует расходу теплоты, требующейся для обеспечения протекания дегидрирования. Для более полной взаимной компенсации экзо- и эндотер.мического тепловых эффектов катализатор разбавляется инертным теплоносителем, также аккумулирующим теплоту. Описанный прием позднее был использован в целом ряде процессов. [c.356]

    Исследование работы катализатора АП-56 при риформинге фракции 62—105 °С показало, что глубина дегидрирования шестичленных нафтеновых углеводородов не зависит от длительности работы катализатора. Для циклогексана глубина дегидрирования составляет около 85%, для метилциклогексана — 100%. Глубина дегидрирования пятичленных нафтеновых углеводородов значительно ниже в начальный период работы катализатора только 25% метилцикло-пентана превращается в бензол, а диметилциклопептана — 60%. По мере отработки катализатора (при работе на сырье с повышенным содержанием серы и с высокой влажностью циркулирующего газа) степень превращения метилциклопентана в бензол падает до нуля и после окислительной регенерации катализатора она не восстанавливается. Изменение свойств катализатора объясняется понижением степени дисперсности платины и потерей кислотного промотора фтора [55]. [c.20]

    Окислительная и восстановительная регенерация. Окислительная регенерация алюмоплатинового катализатора заключается в выжигании коксовых отложений с катализатора кислородом воздуха при 300—500°С. Такая регенерация только частично восстанавливает активность катализатора, и после нескольких регенераций катализатор необходимо заменять свежнм. Для снижения содержания сернистых соединений на установках без блока гидроочистки предложено [118] обрабатывать катализатор водородом (восстановительная регенерация). Оказалось, что в результате восстановления сернистых соединений до сероводорода остаточное содержание серы в катализаторе снижается до 0,03—0,05% (масс.). Активность катализатора в сопоставлении со свежим проверяли, используя его для дегидрирования циклогексана в бензол при атмосферном давлении, 300 °С и объемном соотношении катализатора и инертного газа, равном 1 40  [c.155]

    С целью уменьшения перепадов давления процессы дегидрирования обычно проводятся на относительно тонком неподвижном слое гранулированного алюмохромового катализатора. Чрезвычайно быстрое образование кокса вызывает необходимость чередовать периоды работы (продолжительностью от нескольких минут до 1 ч ) с периодами регенерации. Катализатор смешивают с инертным теплоносителем, который поглощает тепло, выделяющееся в процессе регенерации катализатора, и отдает его в раакторе. При этом регенерация осуществляется продувкой воздухом. Когда в качестве регенерирующего агента используют рециркулирующий газ, содержащий 2-3% кислорода, максимальные температуры регенерации не должны превышать 650°С. При более высоких температурах Сг Од переходит в неактивную модификацию розового или фиолетового цвета, а y-AljOg переходит ва-АЦОз. Как уже отмечалось в гл.2, процесс регенерации не сопровождается образованием значительных количеств СО. [c.72]

    Считают, что при дегидрировании этана количество необходимого тепла составляет 32 ккал моль. При работе в промышлеипом масштабе для полного превращения 1 кг бутана нужно затратить примерно 550 ккал. В адиабатических условиях, т. е, без поступления тепла извне, 1% дегидрируемого бутана понизил бы температуру на 7°. Следовательно, 30%-ное превращение бутана вызвало бы снижение температуры на 200°. Из сказанного следует, что для этого сильно эндотермического процесса проблема нагрева является очень серьезной. В настоящее время возможны три решения этой проблемы. Во-первых, располо кенный в трубах катализатор можно подвергать нагреву извне нри помощи газа. Во-вторых, можно использовать тепло, накопившееся при регенерации катализатора. Наконец, третий путь решения заключается в том, что в печь вместе с дегидрируемым газом в качестве носителя тепла вводят перегретый водяной пар. [c.55]

    Трубы должны быть сделаны из особой стали, устойчивой при высокой температуре к окислителям и восстановителям. Восстановительная среда образуется при дегидрировании вс-тедствие выделения водорода, а окислительная — прп регенерации катализатора, так как углерод удаляют выжиганием воздухом. [c.62]


Библиография для Дегидрирование регенерация катализатора: [c.160]   
Смотреть страницы где упоминается термин Дегидрирование регенерация катализатора: [c.271]    [c.682]    [c.3]    [c.487]    [c.488]    [c.495]    [c.260]    [c.33]    [c.39]    [c.332]    [c.332]    [c.107]    [c.114]    [c.58]    [c.65]   
Общая технология синтетических каучуков (1952) -- [ c.150 , c.151 ]

Общая технология синтетических каучуков Издание 2 (1954) -- [ c.122 ]




ПОИСК





Смотрите так же термины и статьи:

Дегидрирование катализаторы



© 2025 chem21.info Реклама на сайте