Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионные кристаллы свойства

    Действие ионизирующего излучения на полимеры, в отличие от воздействия на другие твердые тела, например на ионные кристаллы, в которых при облучении обычно происходят радиационные повреждения, часто приводит к улучшению их свойств. [c.196]

    Исследованиями ученых многих стран установлено, что к соединениям переменного состава относятся не только оксиды, но н субоксиды, халькогениды, силициды, бориды, фосфиды, нитриды, многие другие еорганические вещества, а также органические высокомолекулярные соединения. Во всех случаях, когда сложное вещество имеет молекулярную структуру, оно представляет собой соединение постоянного состава с целочисленными стехиометриче-скими индексами. Некоторые ионные кристаллы и даже атомные кристаллы и металлы могут также подчиняться законам стехиометрии. Но в случае немолекулярных кристаллов, как отмечает Б. Ф. Ормонт, уже не молекула, а фаза т. е. коллектив из Л/о (числа Авогадро) атомов, определяет свойства кристаллической решетки . Он предлагает для подобных веществ расширить формулировку закона постоянства состава Если... в твердом агрегатном состоянии соединение не имеет молекулярной структуры, то в зависимости от строения атомов и вытекающего отсюда строения фазы и характера химической связи в ней состав соединения и его свойства могут сильно зависеть от путей синтеза. Даже при одном и том же составе свойства могут сильно зависеть от условий образования . Б. Ф. Ормонт подчеркнул необходимость исследования зависимости условия образования—состав — строение — свойства,— направленного. на установление связи между условиями образования, химическим и фазовым составом системы, химическим составом и строением отдельных фаз и их свойствами. Нетрудно заметить, что добавление к обычной формуле, закона постоянства состава слов состав срединения зависит от условий его образования ,— лишает закон постоянства состава его смысла. В то же время указание на важность изучения в связи с проблемой стехиометрии не только состава, но и строения твердых веществ представляется очень существенным. [c.165]


    Методом ЭПР исследуются молекулы, атомы и радикалы в газовой фазе, матрицах, растворах (в том числе и сольватированные электроны), в кристаллах и порошках. Из спектра ЭПР и особенностей его тонкой и сверхтонкой структуры можно получать важные сведения об электронной конфигурации атомов и ионов, о свойствах атомных ядер. ЭПР — один из наиболее чувствительных методов обнаружения и идентификации свободных радикалов, установления их электронной конфигурации и геометрии. Метод ЭПР применяется и для исследования комплексных соединений, в частности соединений переходных и редкоземельных металлов. При этом величина -фактора и его зависимость от направления определяются силой и симметрией [c.148]

    Большая часть металлов обладает высокой ковкостью, т.е. способностью расплющиваться в тонкие листы, а также пластичностью, т.е. способностью вытягиваться в проволоку. Эти свойства указывают на способность атомов кристаллической решетки металлов скользить друг по другу. Таким свойством не обладают ионные кристаллы, а также кристаллы большинства ковалентных соединений. Ионным и ковалентным кристаллам присущи хрупкость и способность легко раскалываться вдоль определенных плоскостей. [c.360]

    Кристалл 2п8 может рассматриваться как ковалентная каркасная структура, в которой каждый атом 2п связан с четырьмя атомами 5, а каждый атом 5 связан с четырьмя атомами 2п. Сульфид цинка обнаруживает свойства диэлектрика, хотя и не в такой мере, как алмаз. Вместе с тем его можно рассматривать как ионный кристалл, состоящий из ионов 2п" и 8" с координационным числом 4 каждый. Наконец, его можно рассматривать и как металлическую структуру (гексагональную плотноупакованную), построенную из анионов 8"", в которой половина тетраэдрических дырок (вакансий) занята ионами 7п"  [c.527]

    Ионные решетки характерны для большинства неорганических соединений (соли, оксиды и другие классы соединений). Многие минералы также имеют ионное строение. Так, кристаллы, имеющие ионную решетку, как правило, хорошо растворимы в воде, а растворы их обладают высокой электрической проводимостью. В твердом виде ионные кристаллы не проводят электрический ток, так как в них электроны прочно удерживаются в атомных орбиталях отдельных ионов. В расплавленном состоянии кристаллические вещества проводят электрический ток, причем проводимость осуществляется замечет переноса ионов. Электрическая проводимость расплавов является характерным свойством любых ионных структур. [c.32]


    Подобный эффект играет роль и при взаимодействии поверхности ионного кристалла с жидкой водой. Молекулы воды, прилегающие к поверхности, могут связываться ионами поверхностного слоя кристалла, ориентироваться и поляризоваться под их влиянием и т. д. Свойства воды в таком связанном состоянии в ориентированном слое заметно отличаются от обычных. Эти вопросы рассматриваются несколько подробнее при описании процессов замерзания связанной воды (гл. I, 5). [c.24]

    Еще одной особенностью ионных кристаллов является их малая деформируемость, т, е. высокая хрупкость. Это свойство наглядно демонстрируется на рис, В,1, Смещение отдельных слоев ионов относительно друг друга требует приложения значительных сил, так как при этом происходит смещение многих [c.348]

    Ионные соединения обладают также характерными электрическими свойствами. В твердом состоянии ионные кристаллы, как правило, являются диэлектриками. Небольшая ионная проводимость может наблюдаться в ионных кристаллах с дефекта- [c.349]

    Ионная связь в кристаллах. Энергия ионной кристаллической решетки. Для объяснения и предсказания свойств ионных кристаллов широко используется электростатическая теория ионной связи. Теория ионных кристаллов исходит из того, что в решетке действуют электростатические силы притяжения между разноименными ионами и отталкивания — между одноименными. Любой рассматриваемый ион в решетке непосредственно окружен противоионами, а одноименные ионы расположены за ними, и тз1Кое чередование сохраняется во всей решетке. Поэтому кулоновское притяжение разноименных ионов преобладает над кулоновским отталкиванием. Надо учесть также квантовомеханическое отталкивание заполненных электронных оболочек ионов. Однако вклад такого отталкивания невелик и практически компенсируется эффектом поляризации ионов и ван-дер-ваальсовым притяжением . В целом энергия притяжения преобладает над энергией отталкивания и кристаллическая структура оказывается устойчивой. Расстояния между ионами в решетке определяются равновесием сил притяжения и отталкивания. Максимально устойчивой, равновесной структуре кристаллической решетки отвечает минимум энергии. , [c.168]

    Согласно традиционному определению, металлы-это элементы, оксиды которых являются, как правило, ионными кристаллами, проявляющими в водных растворах основные свойства. Например, оксид натрия в воде образует гидроксид натрия  [c.283]

    Для декорирования поверхности ионных кристаллов используют благородные металлы. Однако даже при повышенных температурах 300—400°С эти металлы обладают слабо выраженной селективностью по отношению к различным активным центрам. Кроме того, не исключена возможность осаждения частиц на бездефектные участки поверхности. Более подходящими для декорирования являются вещества с кристаллической решеткой низкой симметрии, сильными анизотропными свойствами. Такими качествами обладает висмут. Использование висмута снижает температуру декорирования до 80—110°С, создает возможность выявления активных [c.160]

    Для однотипных соединений с одинаковой структурой наблюдается связь между ДЯ°кр и их механическими свойствами. Обычно чем выше Д//°кр, тем прочнее решетка и тем тверже ионный кристалл. [c.213]

    Состояние химических систем (как и любых других систем) может изменяться. Такие изменения называются процессами. Понятие процесса является одним из наиболее фундаментальных понятий для физической химии. Следует подчеркнуть, что строение и свойства химических систем проявляются именно в изменениях состояний систем. С химической точки зрения особый интерес представляют такие процессы, в которых происходит глубокая перестройка электронных состояний, сопровождаемая перегруппировкой ядер, так что из одних устойчивых одно- или многоатомных частиц образуются другие. В многокомпонентной макроскопической системе эти процессы приводят к химическому превраш,ению, в результате которого некоторые химические соединения — исходные веш,ества, или реагенты, превращаются в другие химические соединения — продукты. Химическую природу имеют также и многие другие явления, происходящие в химической системе, такие, как растворение, испарение ковалентных и ионных кристаллов и др., так как они также сопровождаются существенной перестройкой электронных оболочек. Как правило, химические превращения сопровождаются процессами, которые принято относить к области молекулярной физики переносом вещества и зарядов, переносом энергии термического возбуждения (теплоты) и др. [c.186]

    Сочетание в кристаллической решетке шпинели ионов железа разной зарядности придает этим кристаллам свойства полупроводников и магнетиков  [c.129]


    Что же касается общетеоретических вопросов, то при описании многих тем школьного курса химии учение о периодичности позволяет глубже раскрыть их содержание. Так, при изучении водных растворов следует обратить внимание на свойства растворителя (вода) и свойства растворяемых веществ (типы связи, строение молекулы, степени окисления), которые определяют такое свойство веществ, как их растворимость, поведение в воде (электролитическая диссоциация, гидролиз, окисление—восстановление). При описании состава химических соединений следует обратить внимание на взаимосвязь классификации соединений по составу с положением элементов в системе (совокупность свободных атомов, номер группы и периода). Это дает возможность устанавливать связи между разными классами соединений (оксиды, фториды, хлориды, гидриды, интерметаллиды) и видеть особенности каждого из них по составу (насыщенные или ненасыщенные молекулы), по агрегатному состоянию и строению (водородные соединения неметаллов, как правило, газообразны при обычных условиях, гидриды типичных металлов — ионные кристаллы) и т. п. [c.71]

    В растворах сильных электролитов вследствие полной их диссоциации концентрация ионов велика. Поэтому свойства таких растворов будут существенно зависеть от степени взаимодействия входящих в их состав ионов как друг с другом, так и с полярными молекулами растворителя. Взаимодействие ионов в растворах сильных электролитов будет приводить к тому, что катионы и анионы будут испытывать взаимное притяжение, а ионы одного знака заряда будут отталкиваться друг от друга. Поэтому в растворе каждый произвольно выбранный ион будет окружен в среднем во времени преимущественно противоположно заряженными ионами, как, например, в ионных кристаллах. [c.160]

    Ионные кристаллы образует также фторид алюминия. Он имеет температуру плавления 1040°С и плохо растворяется в воде. Но уже хлорид этого металла гидролизуется очень бурно и имеет температуру плавления всего 190°С. Отличие свойств фторидов от свойств остальных галидов здесь выражено особенно резко. [c.294]

    Несомненно, одним из важнейших факторов, определяющих растворимость, является притяжение между ионами кристалла. Кристаллы, построенные из небольших ионов, которые упакованы более плотно, как правило, сильнее сопротивляются разрушению, чем кристаллы, состоящие из больших ионов. Поэтому, если сравнивать различные соли с одинаковым катионом, ясно, почему фториды (Р ) и гидроксиды (ОН ) обладают меньшей растворимостью, чем нитраты (N0 ) и перхлорагы (СЮ ). В указанном ряду анионов хлорид-ионы имеют промежуточный размер, и поэтому свойства хлоридов трудно предсказать, основываясь на указанных общих соображениях. [c.248]

    Проводимость ионных кристаллов в общем незначительна. При этом электрический ток в них может передаваться перемещением и ионов, и -электронов, но полупроводниковые свойства связаны только с электронной проводимостью. Абсолютная величина ионной и электронной проводимости и соотношение между ними могут существенно изменяться в зависимости от вещества, его кристаллической модификации и от температуры. Так, у низкотемпературной формы сульфида серебра р-АдзЗ с повыщением температуры [c.145]

    Вследствие полярности молекул вода проявляет высокую активность при различных химических взаимодействиях, является хорошим растворителем для электролитов, которые в воде подвергаются диссоциации. Молекулы воды отличаются способностью к образованию водородных связей, что оказывает влияние па взаимодействие воды с другими веществами и на свойства водных растворов. Молекулы воды способны к образованию допорно-акцеп-горных связей, в которых они являются донорами неподеленных электронных пар ь ислородного атома. Все это обусловливает высокую реакционную и растворяющую снособность воды. В воде растворимы очень многие вещества. При этом часто молекулы (или ионы) растворяемых веществ образуют соединения с молекулами воды. Это явление называется гидратацией. Молекулы воды взаимодействуют также с поверхностью ионных кристаллов. [c.170]

    СИЛЬНО возрастает с повышением температуры, как для классических ионных кристаллов, т. е. энергия активации проводимости для высокопроводящих электролитов существенно ниже. Другая характерная особенность этих электролитов — ограниченный интервал температур их существования. Ограничение со стороны высоких температур вызвано плавлением твердых электролитов или их разложением. При плавлении проводимость ионных сверхпроводников иногда даже несколько снижается (например, для a-AgI, а-СиВг). На рис. У.б видно также типичное для многих твердых электролитов резкое уменьшение проводимости по достижении характерной для каждого соединения или твердого раствора температуры. Иногда резкое снижение х происходит при очень низких температурах. Так, для KAg4I5 такое явление наблюдается при —136 С, а для КЬА 415 — при —155°С. Резкое снижение проводимости сопровождается также резким изменением сжимаемости, коэффициента поглощения ультразвука, скачками теплоемкости и других свойств. [c.109]

    Энергия решетки конного кристалла определяет целый ряд его физических свойств. Работы Борна и Капустинского создали количественную теорию решетки ионных кристаллов. Стабильность кристалла тем выше, чем выше энергия решетки. Из формул Борна и Капустинского следует, что наиболее стабильны решетки, образованные небольшими и сильно заряженными ионамн. Этот вывод подтверждается сравнением свойств, зависящих от энергии решетки для ряда ионных кристаллов (твердость, температура плавления [c.170]

    Энергия ионной кристаллической решетки может достигать весьма больших значений. Так, для кристаллов ВеО, ЫаС1 и К1 она составляет соответственно 4530, 770 и 632 кДж/моль. Ионные кристаллы имеют высокую прочность, хрупкость, высокие температуры и теплоты плавления, причем перечисленные свойства обусловлены не только значительными величинами энергии кристаллической решетки, но и структурой каркаса ионного монокристалла. [c.78]

    Как и в ковалентных кристаллах, валентные электроны взаимодействующих атомов полностью заполняют зону с более низкой энергией (валентная зона). Зона же проводимости, образованная внешними орбиталями второго атома, пуста, и переброс в нее электронов требует затраты энергии. В кристалле ЫаС1, например, все Зр-электро-ны атомов хлора и Зз-электроны атомов натрия заполняют зону с более низкой энергией, образованную взаимодействием Зр-орбиталей атомов хлора. Зона же, соответствующая Зз-орби-талям атомов натрия (зона проводимости), оказывается незаполненной, причем ширина запрещенной зоны достигает 7 эВ. Электронная проводимость большинства ионных кристаллов примерно на двадцать порядков ниже, чем у металлов. Известен ряд ионных кристаллов, ширина запрещенной зоны у которых не так велика и составляет порядка 2—3 эВ, как, например, у кристаллов СигО. Такие вещества при высоких температурах проявляют полупроводниковые свойства. [c.86]

    Как видно, из спектра ЭПР л особенностей его тонкой и сверхтонкой структуры можно получать важные сведения об электронной конфигураций атомов и ионов, о свойствах атомных ядер. Для химиков ЭПР ценен как один из наиболее чувствительных методов обнаружения и идентификации свободных радикалов, установления их электронной конфигурации и. геометрии. Найда из спектра ЭПР газов, растворов, кристаллов (порошков) значение Н, отвечающее резонансной линии, по (19.15) вычисляют -фактор. Последний используют для идентификации радикалов, чему Ьпособствует вьгявление сверхтонкой структуры спектра. По я-фактору можно судить о симметрии радикала, а также определить энергии отдельных орбиталей. Сверхтонкое расщепление в спектре позволяет определить заселенность. у- и р-орбиталей атома с магнитным ядром в радикале, а отсюда — электронйое распределение и в известных случаях — валентный угол. Так, например, именно метод ЭПР сказал решающее слово в пользу угловой структуры радикала СН2. Метод ЭПР применяется и для исследования комплексных соединений, в частности соединений переходных и редкоземельных металлов. Величина -фак-тора и его зависимость от направления при этом определяются силой И симметрией ло.ия, создаваемого лигандами [к-6]. [c.78]

    Вещества КОН, Ва(ОН)2, NaOH и подобные им основные гидроксиды в твердом состоянии являются ионными кристаллами при их электролитической диссоциации в водном растворе образуются ионы ОН —сильное основание, а также ионы К , Ва " , Na" и др., которые кислотными свойствами в воде не обладают. [c.122]

    При обезвоживании кислоты А, обладающей окислительными свойствами, с помощью декаоксида тетрафосфора образуется белое твердое вещество Б, которое представляет собой ионный кристалл. Вещество Б неустойчиво и при слабом нагревании разлагается со взрывом на два газообразных продукта, один из которых — кислород, а второй — вещество В. При поглощении газа В водой появляется кислота А, а при поглощении его раствором щелочи образуется анион кислоты А. [c.159]

    В предыдущих разделах речь шла об идеальном кристалле, в котором все частицы занимают свои правильные положения и движение их сводится к колебаниям. Однако модель идеального кристалла не позволяет объяснить механические и транспортные свойства реальных кристаллов. Значение силы сдвигэ, вызывающей остаточную деформацию, для реальных кристаллов оказывается на порядки меньше теоретического значения для идеального кристалла. Проводимость реальных кристаллов значительно выше, чем это было бы в случае идеальной решетки. Проводимость идеального ионного кристалла должна быть ничтожной, так как единственный возможный механизм ее — обмен местами соседних ионов противоположного знака (вхождение катиона в решетку анионов и наоборот), а это энергетически чрезвычайно невыгодный и при обычных температурах фактически нереализуемый процесс. Но, как показывает опыт, ионные кристаллы при обычных температурах обладают заметной проводимостью. [c.189]

    В принципе все физические свойства кристаллов зависят от их структуры и, следовательно, от дефектности решетки. Однако не все свойства в равной мере чувствительны к наличию дефектов. Обычно число равновесных дефектов относительно невелико, поэтому к мало чувствительным свойствам относятся все те, которые зависят только от средних значений молекулярных параметров частиц в решетке. Сюда относятся такие термодинамические свойства, как теплоемкость и энергия кристаллов. Более чувствительны к наличию дефектов оптические свойства кристаллов в области основной полосы поглощения. Высокочувствительны те физические свойства, которые практически полностью определяются наличием отдельных дефектов в кристаллической решетйе — диффузия в кристаллах, электропроводность примесных полупроводников, поглощение света вне основной полосы поглощения, люминесценция, некоторые магнитные свойства, скорость химических реакций в кристаллах. Для химии большое значение имеет равновесная нестехиометричность ионных кристаллов, возникающая в связи с появлением в решетке структурных дефектов. [c.271]

    Одна из самых интересных областей физической химии реальных кристаллов — теория нестехиометрических соединений. Несте-хиометрические твердые соединения обнаружены еще в прошлом веке. Образование таких соединений Бертолле считал нормальным свойством твердых тел. Отсюда возникло название бертол-лиды . Нестехиометрические твердые соединения — обычно ионные кристаллы. Состав оксида титана изменяется от Т1о,вО до ТЮ ,2. Оксид железа (II) всегда содержит избыток кислорода РеО +в. Небольшая нестехиометричность характерна даже для хлорида натрия. В кристаллах Ыац-вС значение доходит до б 10 . Нестехиометрические ионные кристаллы обладают интересными электрофизическими свойствами, изучение которых, начатое в 30-е годы, завершилось созданием современной теории полупроводников. [c.277]

    Кристаллоструктурные задачи. Стереохимические исследования важны главным образом для сложных по составу соединений, чаще всего включающих фрагменты (лиганды, радикалы, молекулы) органической природы. Но существуют и такие классы соединений, как инт ермё-таллические и ионные кристаллы, где дальний порядок, т. е. не стереохимический, а упаковочный (кристаллоструктурный) аспект строения, более существен, чем стереохимический. Это связано с тем, что именно строение кристалла Б целом, а не конфигурации отдельных структурных кирпичей определяют анизотропию кристаллического вещества и такие физические свойства, как твердость, упругость, а также сегнетоэлектрические, пироэлектрические и другие характеристики твердых соединений, используемые в современной технике. Кроме того, большое значение имеет изучение общих закономерностей кристалла в целом (дальнего порядка) в семействах родственных по составу соединений. Примером может слу- [c.134]


Смотреть страницы где упоминается термин Ионные кристаллы свойства: [c.450]    [c.392]    [c.124]    [c.398]    [c.478]    [c.28]    [c.160]    [c.478]    [c.206]    [c.78]    [c.170]    [c.101]    [c.69]    [c.279]   
Электронное строение и химическая связь в неорганической химии (1949) -- [ c.206 ]




ПОИСК





Смотрите так же термины и статьи:

Кристаллы ионные

Кристаллы ионов

Магнитные свойства и строение ионной связи в молекулах и кристаллах

Электростатические расчеты свойств молекул и кристаллов с ионной связью



© 2025 chem21.info Реклама на сайте