Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Митохондрия движение

    Отмытые и подсушенные с помош,ью кусочка фильтрова льной бумаги электроды полярографа осторожно опускают в кювету, заполненную 2 мл среды 1 (проба 1) до полного выхода пузырька воздуха. С помощью специального потенциометра устанавливают перо включенного самописца в исходное положение, соответствующее исходной концентрации кислорода в среде (в самописцах типа КСП-4 — в крайнее правое положение). Включают движение диаграммной ленты и, убедившись в отсутствии дрейфа, с помощью микропипетки добавляют в кювету 0,04—0,05 мл густой суспензии митохондрий (4—6 мг белка). В течение 40—60 с регистрируют медленное эндогенное дыхание и добавляют 0,02 мл сукцината (10 мМ), который вызывает небольшую стимуляцию дыхания. Через 40—60 с в кювету вносят раствор СаСЬ ( 100 мкМ). При этом дыхание сначала резко активируется, затем быстро снижается до исходного уровня. Добавку повторяют несколько раз до тех пор, пока стимуляция дыхания после каждого добавления сменяется четко выраженным торможением. Учитывая количество добавленного СаСЬ, оценивают его максимальную концентрацию, вызывающую обратимую стимуляцию дыхания. Для препарата интактных прочно сопряженных митохондрий (4—6 мг белка в кювете) эта концентрация обычно составляет 400—500 мкМ. В пробе 2 убеждаются в том, что выбранная концентрация СаСЬ вызывает обратимую стимуляцию дыхания с отчетливым выходом в контролируемое состояние. Для определения величины АДФ/О записывают следующую пробу. С этой целью в кювету со средой последовательно добавляют митохондрии, сукцинат и АДФ в концентрации от 300 до 400 мкМ (определение АДФ/О см. на с. 462). Проводят три аналогичных измерения с использованием в качестве субстрата окисления смесь глутамат—малат (по 5 мМ). В этом случае целесообразно уменьшить концентрацию добавляемого СаСЬ в 1,5—2 раза, а в среду инкубации предварительно добавить (непосредственно в кювету) 1 мМ НАД+ для предотвращения утечки эндогенных пиридиннуклеотидов. [c.452]


    Идеи относительно конформационного сопряжения синтеза АТР и переноса электронов становятся еще более привлекательными, если мы вспомним, что АТР используется в мышцах для совершения механической работы. В этом случае гидролиз АТР сопряжен с относительным движением белковых компонентов мышцы (дополнение 10-Е). Не правомерно ли предположить, что образование АТР в свою очередь происходит в результате движения белковых компонентов, индуцированного в митохондриальной мембране Весьма резкое изменение формы митохондрии, сопровождающее переход между состоянием 4 (недостаток ADP) и состоянием 3 (активное дыхание), навело некоторых исследователей на мысль о том, что фосфорилирование неразделимо связано с конформационными изменениями в мембранных белках [94]. Аналогичные рассуждения применимы к фосфорилированию В хлоропластах [95]. [c.414]

    Движение клеток и организмов, выполнение ими механической работы например, мышечной) производятся особыми сократительными белками, служащими рабочими веществами этих процессов. Сократительные белки выполняют ферментативную, АТФ-азную функцию, реализуют превращение химической энергии (запасенной в АТФ, с. 40) в механическую работу. Зарядка аккумулятора , т. е. окислительное фосфорилирование, происходит в мембранах митохондрий при непременном участии ферментов дыхательной цепи. Окислительно-восстановительные ферментативные процессы происходят и при фотосинтезе. Другие мембранные белки ответственны за активный транспорт молекул и ионов сквозь мембраны и, тем самым, за генерацию и распространение нервного импульса. Белки определяют все метаболические и биоэнергетические процессы. [c.87]

    Существование клетки как целостной системы, существование функциональных клеточных органоидов требует компартмента-лизации, пространственного разграничения этих систем мембранами, характеризуемыми регулируемой проницаемостью. Белки-ферменты, входящие в состав мембран в комплексах с липидами, обеспечивают активный транспорт метаболитов в клетку и из нее, идущий в направлении, противоположном градиенту концентрации. Эта функция белков тесно связана с механохимиче-ской. Кроме того, белки катализируют метаболические биоэнергетические процессы, протекающие в мембранах. Так, ферменты митохондрий, локализованные в мембранах, ответственны за биохимические процессы, связанные с дыханием, за механические движения митохондрий, за активный транспорт. [c.176]

    А. Г. Г р и в ц о в (Институт прикладной математики, Москва). Я приведу некоторые результаты численного изучения (с помощью цифровой ЭВМ) теплового движения молекул классической жидкости или газа (с симметричным потенциалом взаимодействия) в тонких двумерных лентах с отражающими границами. Изученная система является достаточно хорошей моделью тонких слоев, ограниченных однородными параллельными стенками, или тонких капилляров при условии, что глубина потенциальной ямы взаимодействия молекула жидкости — материал стенки много меньше глубины ямы межмолекулярного взаимодействия в самой жидкости. Кроме того, представляют непосредственный интерес и сами двумерные ленты из жидкости или газа, так как подобная ситуация реализуется в таких биологически важных объектах, как пластиды — хлоропласты или митохондрии, относительно растворов присутствующих в них глобулярных белков. [c.352]


Рис. 14-36. Средняя часть сперматозоида млекопитающего в поперечном разрезе (по данным электронной микроскопии). Жгутик состоит из аксонемы н девяти окружающих ее плотных волокон. Аксонема построена из двух одиночных микротрубочек, окруженных девятью двойными микротрубочками. Обратите внимание, что плотные волокна как бы обернуты митохондрией, так что расположение последней отлично обеспечивает доставку АТР, необходимого для движения жгутика. Рис. 14-36. Средняя часть <a href="/info/103753">сперматозоида млекопитающего</a> в поперечном разрезе (по <a href="/info/796426">данным электронной микроскопии</a>). <a href="/info/103174">Жгутик</a> состоит из <a href="/info/1339100">аксонемы</a> н девяти окружающих ее плотных волокон. <a href="/info/1339100">Аксонема</a> построена из двух одиночных <a href="/info/101277">микротрубочек</a>, окруженных девятью двойными <a href="/info/101277">микротрубочками</a>. Обратите внимание, что плотные волокна как бы обернуты митохондрией, так что расположение последней отлично обеспечивает доставку АТР, необходимого для движения жгутика.
    Загадочны во многом процессы, лежащие в основе деления клетки, и прежде всего процессы, определяющие исключительные по своей согласованности и сложности движения хромосом и митохондрий (рис. 74 и 75) [506, 507], а также клеточных ядер, хлоропластов и других микрообъектов биологического происхождения [508, 509]. Нет сомнения в том, что эти движения, как и во всех других случаях, обусловлены действием сил, которые могут быть поверхностными или объемными (осмотические, силы набухания). Роль осмотических сил в жизненных процессах, как известно, исключительно велика возможно, что совместное действие тех и других сил определяет указанные движения. [c.119]

    В процессе тканевого дыхания от окисляемого вещества отнимаются два атома водорода (два протона и два электрона) и по дыхательной цепи, состоящей из ферментов и коферментов, передаются на молекулярный кислород - Ог, доставляемый кровью из воздуха во все ткани организма. В результате присоединения атомов водорода к кислороду образуется вода. За счет энергии, выделяющейся при движении электронов по дыхательной цепи, в митохондриях осуществляется синтез АТФ из АДФ и фосфорной кислоты. Обычно образование одной молекулы воды сопровождается синтезом трех молекул АТФ. [c.37]

    К оболочке вплотную прилегает цитоплазматическая мембрана. Она обладает избирательной проницаемостью, т. е. пропускает внутрь клетки и отводит из нее определенные вещества. Благодаря такой способности мембрана играет роль органеллы, концентрирующей питательные вещества внутри клетки и способствующей выведению наружу продуктов жизнедеятельности. Внутри клетки всегда наблюдается повышенное по сравнению о окружающей средой осмотическое давление. Цитоплазматическая мембрана обеспечивает его постоянство. Кроме того, она является местом локализации ряда ферментных систем, в частности окислительно-восстановительных ферментов, связанных с получением энергии (у эукариотов они находятся в митохондриях). В отличие от клеток эукариотов в прокариотической клетке отсутствует деление ее на отсеки. Клетки прокариотов не имеют ни комплекса Гольджи, ни митохондрий, не наблюдается у них и направленного движения цитоплазмы. Явления пиноцитоза и фагоцитоза прокариотам не свойственны. Из органелл только рибосомы аналогичны рибосомам эукариотов. [c.43]

    Бриггс, Хоуп И Робертсон [101] описали развитие цитоплазмы во время роста клетки, когда пластиды и митохондрии увеличиваются в размерах, число их растет и, наконец, начинается движение плазмы. Ядро при этом либо оттесняется к стенке клетки, либо сохраняет некоторую подвижность, либо остается висеть на цитоплазматических тяжах, пересекающих вакуоль в разных направлениях. Тонкий пристенный слой цитоплазмы (толщина его обычно не превышает нескольких микронов) ограничивают с двух сторон две чрезвычайно важные мембраны мембрана на границе цитоплазмы и клеточной стенки, или плазмалемма, и мембрана на границе цитоплазмы и вакуоли, или тонопласт. Тонопласт в клетках выражен хорошо что же касается плазмалеммы, то ее удается обнаружить не всегда. Обе эти мембраны имеют, по-видимому, толщину порядка 10 ммк. Г  [c.143]

    Проникновение Са " внутрь клетки влияет на орган движения инфузории — реснички — точно так же, как у нас вхождение Са в мышечные клетки необходимо для их сокращения (мы рассказывали об этом, говоря про Са-насос). Кстати, и разрядка трихоцист у инфузорий связана с потоками Са в клетку. Большинство Са-каналов инфузорий расположено прямо на мембране ресничек. Если удар по передней части инфузории вызвал ПД, то откроется много Са-каналов, внутрь клетки войдет много Са , а от этого реснички инфузории меняют направление своего удара. Возникает реверс инфузория отплывает хвостом вперед от раздражителя, например от препятствия, на которое она натолкнулась. После того как Са-насос и митохондрии уберут излишки Са++ из цитоплазмы, нормальная работа ресничек восстанавливается. [c.262]

    Все формы направленного движения и транспорта нуждаются в энергии. В большинстве случаев эта энергия используется в форме АТР. Однако для переноса белков в митохондрии требуется еще наличие электрохимического градиента на внутренней митохондриальной мембране. Этот градиент образуется в процессе транспорта электронов по мере того, как протоны откачиваются из матрикса в межмембранное пространство (см. разд. 7.1.7). Внешняя митохондриальная мембрана свободно проницаема для ионов, поэтому на ней не поддерживается никакой градиент. Электрохимический градиент на внутренней мембране используется как аккумулятор энергии для осуществления большей части синтеза АТР в клетке. Кроме того, энергия градиента расходуется для переноса внутрь митохондрии белков, несущих положительно заряженные митохондриальные сигнальные пептиды. Если добавить ионо-форы, сбрасывающие митохондриальный мембранный потенциал (см. разд. 7.2.10), этот перенос блокируется. Каким образом электрохимический градиент способствует переносу белков Ответ на этот вопрос пока не получен. [c.30]


    Взаимодействующие частицы и 1 микродвижения. - Похоже ли это на броуновское движение - А что скажет Математик - "Хорошее перемешивание" частиц. - Микродвижешм частиц - диффузиогшый процесс - Как часто с клетками организма встречается частица - Бесконечно велико или бесконечно мало - Нормальное распределение перемещений частиц. - Условта подобия микродвижений. - Живая Температура и митохондрии. - Итоги беседы [c.17]

    Изучение фотографических изображений клетки, полученных прн помощи микроскопа в разные моменты времени, позволили увидеть, что плазматическая мембрана, так же как и митохондрии и другие органеллы, постоянно находится в движении. Митохондрии скручиваются и поворачиваются, а поверхность мембраны постоянно совершает волнообразные движения. Пузырьки освобождают свое содержимое в окружающую среду, выводя его из клеток, а перенос веществ внутрь клетки осуществляется за счет процесса эндоцитоза (гл. 1, разд. Б.4). При помощи химических методов было показано также, что составляющие мембраны вещества транспортируются из эндоплаз1матического ретикулума в пузырьки аппарата Гольджи, в экскреторные гранулы и в плазматическую мембрану. Важным этапом биосинтетических процессов, протекающих в клетке, является присоединение углеводных (гликозильных) остатков к молекулам белка с образованием гликопротеидов и гликолипидов. Ферменты, катализирующие эти реакции, — гликозилтрансферазы (гл. 12)-—обнаружены в эндоплазматическом ретикулуме и в пузырьках а1ппарата Гольджи. Эти ферменты катализируют присоединение углеводных единиц (по одной в каждом акте реакции) к определенным местам молекул белков, липидов и других соединений, экскретируемых из клеток. Другие ферменты катализируют присоединение сульфатных и ацетильных групп к углеводным фрагментам молекул глико Протеидов. [c.356]

    За счет поглощения квантов света возбуждаются пигменты ФС-1, и электроны перемещаются на более высокий энергетический уровень. За счет энергии этих электронов образуются молекулы НАДФН. В ФС-П вследствие фотолиза воды и фотовозбуждения пигментов образуются электроны, которые также двигаются на более высокий энергетический уровень, затем через систему цитохромов переносятся на электронодефицитную ФС-1, и равновесие между системами восстанавливается. Перенос электронов от ФС-П к ФС-1 сходен с движением электронов дыхательной цепи в ходе окислительного фосфорилирования в митохондриях в обоих [c.92]

    Цитоплазма нейрона находится в постоянном движении. Это движение, называемое аксональным транспортом, осуществляет функциональную связь между телом клетки и ее ядром, с одной стороны, и нервным окончанием, с другой стороны, часто находящемся на расстоянии 1 м и даже более. Аксональный транспорт обусловливает рост и функциональную активность аксона, его регенерацию после очаговых поражений и адаптацию синаптической активности. Различают антеро- и ретроградный аксональный транспорт, так что различные компоненты могут проходить не только от тела клетки к синапсу, но и в обратном направлении. Существует медленный аксональный поток (1— 4 мм/сут), промежуточный (15—50 мм/сут) и быстрый (200— 400 мм/сут). Каждый вид молекул переносится с характерной для него скоростью. Тубулин, субъединицы нейрофиламентов, актин и миозин транспортируются медленно митохондрии с промежуточной скоростью мембранные белки, гликопротеины, гликолипиды, ферменты синтеза медиаторов и медиаторы — быстро. ДНК, РНК н ганглиозиды не транспортируются. Ретроградный транспорт удаляет продукты деградации синапсов, переносит ферменты, а также субстраты, поглощенные пресинаптической мембраной, например фактор роста нервов, токсин столбняка и нейротропные вирусы. [c.316]

    Тонкие клегки, образующие волоски на поверхности растений, прозрачны, что позволяет без труда наблюдать движение цитоплазмы на живом объекте. Эти клетки содержат крупные вакуоли, через которые тянутся тонкие (толщиной около I мкм) жгуты цитоплазмы (рис. 19-46). Видно, как по этим цитоплазматическим тяжам быстро движутся различные частицы, например митохондрии. Создается впечатление, что эти тяжи расходятся из области, лежащей по соседству с клеточным ядром при этом они непрерывно меняют свою форму и расположение, сливаются друг с другом, ветвятся, сжимаются, исчезают и образуются заново. [c.194]

    Ряс. 19-47. Схема токов цитоплазмы в гигантских клетках водоросли 1 иеЧа. Л. Путь движения цитоплазмы в цилиндрической клетке. Для ясности относительная ширина клеткн преувеличена. Б. Продольный разрез участка клетки показано взаимное расположение подвижных и неподвижных слоев цитоплазмы. Статичная кортикальная цитоплазма содержит хлоропласты, которые прикреплены к лежащим под ними пучкам актиновых филаментов. С внутрениен стороны с этим субкортикальным слоем актиновых филаментов граничит слой подвижной цитоплазмы, содержащий ядра, митохондрии н другие органеллы. В реальной клетке вакуоль намного шире, чем показано на рисунке. [c.194]

    Гигантские цилиндрические клетки зеленых водорослей hara и Nitella достигают 2-5 см в длину. Эти многоядерные клетки демонстрируют движение цитоплазмы в наиболее впечатляющей форме. Бесконечная лента струящейся цитоплазмы, слегка отклоняясь по спирали, охватывает всю клетку по ее длинной оси (рис. 19-47). Цитоплазма движется всегда в одном направлении со скоростью около 75 мкм/с, увлекая с собой в этом непрерывном кружении внутренние мембранные системы, митохондрии и клеточные ядра. [c.194]

    Для того чтобы мог происходить фотосинтез, в хлоропласты должна поступать двуокись углерода. Небольшое количество СО2 образуется в результате дыхания в митохондриях, нахо-ДЯШ.ИХСЯ по соседству с хлоропластами (сами хлоропласты, по-видимому, не дышат), но, разумеется, количество углерода в растении от этого не увеличивается. Главным поставщиком углерода служит внешняя среда, т. е. либо вода, в которую погружены листья водных растений и в которой растворен углекислый газ, либо воздух, окружающий листья наземных растений. Фотосинтезирующие растения поглощают СО2 из окружающей среды, вследствие чего концентрация СО2 вблизи растения снижается, т. е. возникает градиент концентрации. Благодаря этому градиенту происходит диффузия (обусловленная беспорядочным тепловым движением молекул) из области с более высокой концентрацией СО2 в область с более низкой концентрацией. В полностью неподвижной воде или в неподвижном воздухе этот градиент теоретически должен был бы простираться до бесконечности, т. е. стационарное состояние не могло бы установиться. На самом же деле в достаточно большом, но конечном объеме, содержащем СО2 и растение, стационарное состояние устанавливается довольно быстро. Кроме того, в присутствии транспирнрующего растения воздух не может быть полностью неподвижным (стр. 62), и даже в воде, по-видимому. всегда существуют хотя бы небольшие конвекционные токи, обусловленные местными разностями температуры. Однако, несмотря на эти неизбежные слабые движения в практически неподвижном воздухе или в воде, СО2 поступает в растение гораздо медленнее, чем в активно перемешиваемой среде. Следовательно, молекулы среды (воздуха или воды) препятствуют движению молекул СО2 иными словами, диффузионный ток, направленный к растению, встречает на своем пути определенное сопротивление. [c.52]

    В опытах с листьями наземных растений в замкнутой системе (фиг. 38, Б) имеются еще более сложные источники ошибок. Здесь один и тот же воздух в течение продолжительного времени циркулирует, проходя последовательно через прибор для измерения концентрации и через листовую камеру. Поэтому фотосинтез происходит при непрерывно уменьшающейся концентрации СОа и скорость его в любой момент времени можно определить, исходя из известного объема системы и наклона кривой, описывающей изменение концентрации СО2 во времени. Этот наклон определяется не только скоростью поглощения и выделения СО2 (соответственно хлоропластами и митохондриями), но и наружной концентрацией СО2 в данный момент времени, предшествующими изменениями этой концентрации во времени и, наконец, всеми значениями внутреннего сопротивления движению СО2. При наличии,очень точного метода определения концентрации объем замкнутой системы можно сделать достаточно большим относительно поверхности листа для того, чтобы снижение концентрации происходило крайне медленно (и вместе с тем поддавалось измерению). В противном случае видимый фотосинтез следует измерять в открытой или, еще лучше, в полузамкнутой системе (см. ниже), так как в этих случаях можно поддерживать постоянную скорость фотосинтеза, пополняя запас СО2 в воздухе по мере его расходования. Следует указать, что те же самые рассуждения приложимы и к опытам с открытой и замкнутой системами, в которых измеряются изменения концентрации кислорода, поскольку выделение кислорода обычно считается эквивалентным поглощению СОг- Однако теоретичесю  [c.85]

    Бок и Кридль высказали даже предположение, что на одном из этапов переноса электронов, имеющем место в процессе действия дегидрогеназы, совершается маятникообразное движение одного из коферментов, который связан с носителем эластической связью. Вращательное движение кофермента обеспечивает последовательность соударений с функциональными группами всего комплекса. Не имея возможности вдаваться в детальное рассмотрение этой гипотезы, все же подчеркнем, что изучение митохондрий скорее наводит на мысль об аналогии между этой частицей и часовым механизмом, чем на мысль о сходстве биохимических машин с простым коллоидным раствором. [c.185]

    Изгибы полимерных цепей, спирализа-ция, образование третичных и четвертичных структур Движения рибосом, движения и деформации активных групп ферментов. Деформации мембран, изменения форм митохондрий, изменение форм мышечных волокон, движения частей скелета и т. п. [c.107]

    НОГо фосфориЛированйй, когда зиерГйя потока электронов преобразуется в энергию макроэргической связи, Роль, которую в данном случае играют деформации молекулы, исключительно велика. Опыт (Пакер) свидетельствует о том, что между процессом образования макроэргических веществ в митохондрии и состоянием ее мембран имеется определенное соответствие это можно рассматривать как аргумент в пользу изложенной концепции. Сопряжение окислительно-восстановительного процесса с образованием макроэргической связи происходит в трех местах в комплексах I, П1 и IV. В переносе электронов от комплекса I к III и от комплекса II к III участвует кофактор Q, молекулы которого совершают движения в липидной среде. Между комплексами III и IV челночное движение совершает молекула цитрохрома с. Природа первичных макроэргических соединений не выяснена во всяком случае АТФ получается не сразу. Первичными продуктами, как предполагается, являются вещества ангидридного характера, и работа потока электронов сводится к тому, что он создает макроэргические связи между гипотетическим веществом и теми участниками цепи переноса электронов, которые играют роль передатчиков в каждом комплексе. Промежуточные продукты, в свою очередь, реагируя с фосфатом и АМФ в присутствии ферментов-киназ, переносящих фосфорильную группу, могут стать источниками образования АТФ. [c.201]

    У наземных насекомых баланс между потребностью в кислороде и его доставкой обеспечивает трахейная система. По существу каждая клетка связана прямым каналом с неисчерпаемым резервуаром Ог — окружаюи ей атмосферой. Как показывают электронные микрофотографии, трахеолы тесно примыкают к митохондриям, образуя митохондриально-трахеолярный континуум . У мелких насекомых простой диффузии кислорода через эту систему достаточно, чтобы удовлетворить потребность в нем даже при наивысшей интенсивности обмена веществ однако у крупных насекомых, например стрекоз, саранчи или ос, необходима энергичная вентиляция более крупных трахей с помощью движений брюшка или грудных стенок. [c.83]

    Проницаемость в живых клетках представляет собой активный процесс и имеет мало общего с молекулярной диффузией или осмотическим потоком. Наоборот, активный транспорт осуществляется чаще всего против градиента концентрации, т. е. в направлении от мепьшей концентрации к большей. Ясно, что это — сложное явление, в котором обязательно должна потребляться энергия, так как движение веществ в направлении, обратном диффузии, связано с уменьшением энтропии. Активный перенос веществ как внутрь клетки из внешней среды, так и внутрь различных структурных элементов из заполяющей клетку гиалоплазмы осуществляется особыми нерастворимыми белками и белковыми комплексами, образующими наружную клеточную мембрану и различные структурные образования внутри клеток. Активный транспорт через мембраны и внутрь клеточных органелл связан с протеканием химических реакций, конечно, ферментативных. Поэтому проблема проницаемости и соответствующая функция белков тесно связана с их ферментативной функцией. С другой стороны, с помощью активного транспорта осуществляется один из механизмов автоматического регулирования. Как мы увидим дальше, регулирование проницаемости митохондрий осуществляется путем их сокращения пли расслабления. Причиной этого движения яляется сократительная реакция в особом белке, т. е. это явление вполне аналогично сокращению мышцы. [c.139]

    Одна пз самых важных функций белков, с которой мы встречаемся у всех видов живых существ, — прямое превращение химической энергии в механическую работу. В этом отношении самый совершенный механизм — поперечно-полосатая скелетная мышца высших животных. Примеры механохимической активности в гораздо более простых организмах — движение жгутиков (флагелл) у бактерий и мерцательных ресничек у парамеций, сокращение хвоста бактериофага при инъекции ДНК в заражаемую клетку. Наконец, процесс сжатия и расширения митохондрий, [c.186]

    Разделение фаз в анизотропных золях естественно было бы объяснить фиксацией частиц во вторичном потенциальном минимуме. Некоторые авторы, полагающие, что лондонов-ские силы притяжения слишком слабы для фиксации частиц на расстоянии 500 А, пытались найти этому другое объяснение [5, 25], ссылаясь при этом на теорию самопроизвольного энтропийного разделения фаз Онзагера [26]. Однако эта теория объясняет разделение фаз только в случае небольшого различия в их концентрациях. В тактоидных же золях это различие может быть очень большим. Кроме того, эта теория не пригодна для монодисперсных систем (многие латексы, бактерии), а также грубых дисперсий, при разделении которых энтропийный эффект из-за крупности частиц вообще не может иметь существенного значения. С другой стороны, в колониях бактерий расстояние между клетками так велико, что молекулярными силами притяжения, по всей вероятности, нельзя объяснить фиксацию клеток. Большие трудности встречаются при объяснении природы сил притяжения и отталкивания в случае взаимодействия хромосом в процессе митоза, движения митохондрий и других биологических микрообъектов [12]. [c.13]

    Движение и другие формы механической работы высших организмов обусловлены работой поперечнополосатых скелетных мышц. Основная структурная единица мышцы — мышечная клетка или мышечное волокно (рис. 106). Мышечное волокно окружено саркоплазма-тической мембраной или сарколеммой. Эта мембрана местами внедряется во внутренний объем мышечного волокна, образуя поперечные канальцы, заполненные межклеточной жидкостью. Внутри мышечной клетки находятся цитоплазма (саркоплазма) с митохондриями, сар-коплазматический ретикулум (сеть) и миофибриллы. Сарконлазматический ретикулум—мембранная система, пересекаюш,ая мышечные волокна по соседству с канальцами и окружающая миофибриллы, которые собственно и играют главную роль при сокращении и растяжении мышц. [c.241]

    Данные о действии ауксинов на избирательное поглощение катионов растительными клетками (Пап, Reinhold, 1963) и на движение протоплазмы (Камня, 1962) дают возможность предполагать, что фитогормоны влияют на процессы, происходящие в мембранах. Митохондрии являются типичными мембранными образованиями (Грин, 1964). Поэтому представлялось интересным исследовать влияние ауксинов на свойства мембран. В литературе отмечалось, что гормоны животных тканей (например, тироксин) оказывают определенное влияние на структуру и активность митохондрий (Lehninger, 1959а Сикевиц, 1962). [c.200]

    Если нам удается наблюдать живую цитоплазму, то обьршо бросается в глаза ее активность — усиленное движение органелл, в частности митохондрий. [c.194]

    Средняя часть спермия — это начало жгутика она увеличена за счет множества митохондрий, расположенных по спирали вокруг аксиальной нити. Митохондрии обеспечивают аэробное дыхание и продуцируют АТФ, служащую источником энергии. Эта энергия расходуется на движения жгутика, благодаря которым спермий плывет со скоростью примерно 1—4 мм/мин. На поперечном срезе жгутика можно видеть характерное для всех жгутиков расположение девяти пар периферических микротрубочек, окружающих центральную пару микротрубочек. [c.78]

    АТФ-синтетаза в. - .ависимости от условий может как синтезировать АТФ (синтетаза), так и гидролизировать ее (АТФ-аза). При недостаточном количестве АТФ в клетке АТФ-синтетаза синтезирует АТФ за счет энерг ии протонного градиента. Если внезапно падает протонный гра,аиент, то она будет гидролизировать АТФ и усиливать движение протонов через мембрану митохондрий. [c.57]

    С митохондриями же связаны и другие окислительные системы, а именно р-окисление жирных кислот, окисление сук-цината, окисление NADH за счет О2 и окислительное фосфо-рилирование. В согласии с этими наблюдениями находятся данные о том, что многие важные коферменты сосредоточены преимущественно в митохондриях. Так, например, здесь находится свыше 50% всего СоА печени и флавиннуклеотидов. Ни-котинамиднуклеотиды локализованы преимущественно в цитоплазме, однако их концентрация в матриксе митохондрий примерно равна их концентрации в цитоплазме. Мембрана митохондрий непроницаема для растворимых коферментов, и основным источником субстрата для системы цитохромов служит восстановление NAD+ матрикса в NADH митохондриальными дегидрогеназами. Перенос восстановительных эквивалентов между митохондриями и цитоплазмой осуществляется благодаря сложному челночному движению метаболитов [3103]. [c.92]

    Практически все животные, растения и грибы, которые дышат, имеют очень сходные митохондрии. А исключение только подтверждает правило. Например, существуют амебы, не содержащие митохондрий, зато в них живут бактерии-симбионты, выполняющие те же функции. Согласно крайней точке зрения, клетки высших организмов — Евсьма сборные образования электростанции для дыхания и фотосинтеза они получили от бактерий, а органы движения (жгутики, реснички) — от симбиотических спирохет. [c.276]

    Все существующие ныне клетки подразделяются на два типа прокариотические (бактерии и их близкие родственники) и эукариотические. Считают, что первые близки в общих чертах с самыми ранними клетками-прарооителъницами Несмотря на сравнительную простоту строения, клетки прокариот весьма разнообразны в биохимическом отношении, например, у бактерий можно обнаружить все основные метаболические пути, включая три главных процесса получения энергии - гликолиз, дыхание и фотосинтез. Эукариотические клетки больше по размеру и имеют более сложную организацию, чем клетки прокариот. Они содержат больше ДНК и различных компонентов, обеспечивающих ее сложные функции. ДНК эукариот заключена в окруженное мембраной ядро, а в цитоплазме находится много других окруженных мембранами органелл. К ним относятся митохондрии, осуществляющие окончательное окисление молекул пищи, а также (в растительных клетках) хлоропласты, в которых идет фотосинтез. Целый ряд данных свидетельствует о происхождении митохондрий и хлоропластов от ранних прокариотических клеток, ставших внутренними симбионтами большей по размеру анаэробной клетки. Другая отличительная особенность эукариотических клеток - это наличие цитоскелета из белковых волокон, организующего цитоплазму и обеспечивающего механизм движения [c.41]

    Если мы рассмотрим живую клетку позвоночного животного в фазово-конграстный микроскоп или в микроскоп с дифференциальным интерференционным контрастом (разд. 4.1.5), мы увидим, что ее цитоплазма находится в непрестанном движении. Митохондрии и более мелкие мембранные органеллы за несколько минут успевают изменить свое местоположение в клетке путем характерных периодических скачков, которые слишком упорядоченны и направленны, чтобы их можно было спутать со столь же безостановочным броуновским движением-результатом случайного теплового движения молекул. Многие из таких внутриклеточных перемещений происходят в тесной связи с микротрубочками Если клетку, в которой движутся органеллы, быстро зафиксировать и приготовить из нее срезы для электронной микроскопии, то можно увидеть, что мембрана таких органелл зачастую соединена с микротрубочками цитоплазмы тонкими нитевидными структурами. Можно предположить поэтому, что микротрубочки играют важную роль в подобном движении, хотя, как мы уже говорили (разд. 11.2.4), некоторые перемещения пузырьков в цитоплазме происходят вдоль актиновых филаментов, а не микротрубочек. Наиболее яркой демонстрацией транспортной роли микротрубочек явилось изучение быстрого аксонного транспорта в нервных клетках, где перемещение мембранных пузырьков в обоих направлениях по аксопу -между телом клетки и нервным окончанием - идет с большой интенсивностью. [c.311]


Смотреть страницы где упоминается термин Митохондрия движение: [c.38]    [c.376]    [c.443]    [c.247]    [c.339]    [c.242]    [c.36]    [c.535]    [c.520]    [c.168]    [c.165]    [c.182]    [c.318]   
Биохимия Том 3 (1980) -- [ c.356 ]

Биохимия мембран Биоэнергетика Мембранные преобразователи энергии (1989) -- [ c.177 ]




ПОИСК







© 2025 chem21.info Реклама на сайте