Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Массоотдача при абсорбции газов

    Проведение опытов в этих условиях преследует обычно цель моделирования на лабораторных установках процесса абсорбции в промышленной аппаратуре, например в насадочных колоннах. Как показано в главе V, количественные оценки влияния химической реакции на скорость абсорбции обычно мало отличаются друг от друга независимо от того, сделаны ли они на основе пленочной модели или моделей поверхностного обновления Хигби или Данквертса. В большинстве случаев для данного значения коэффициента массоотдачи при физической абсорбции, k , по всем моделям получаются близкие предсказания в отношении этого влияния. Поэтому можно ожидать, что если лабораторная модель промышленного абсорбционного аппарата, предназначенная для изучения влияния реакции на скорость абсорбции, сконструирована с соблюдением существенного условия одинаковости значений в натуре и в модели, то, в соответствии с изложенным в главе V, данная реакция будет приводить к увеличению скорости абсорбции в обоих аппаратах в одинаковой степени (при одном и том же значении А, или парциального давления растворяемого газа у поверхности жидкости). [c.175]


    Гильденблат И. А.. Родионов А. И.. Демченко Б. И., в сб. Тепло- и массоперенос . т. 4., Минск. 1972, стр. 310. Исследование влияния физических свойств на кинетику массоотдачи в жидкой фазе при абсорбции газов. [c.269]

    Р — поверхность абсорбции (массопередачи) р — коэффициент массоотдачи от газа к жидкости  [c.187]

    Воздух с примесью аммиака пропускается через орошаемый водой скруббер, заполненный насадкой из колец с удельной поверхностью 89,5 м /м . Свободный объем насадки 0,79 м /мз. Температура абсорбции 28 С, абсолютное давление 1 ат. Среднее содержание аммиака в газовой смеси 5,8% (объемн.). Массовая скорость газа, отнесенная к полному сечению скруббера, 1,1 кг/(м2-с). Определить коэффициент массоотдачй для газа, считая, что скруббер работает при пленочном режиме. [c.295]

    В настоящем разделе обсуждается пример массоотдачи при вынужденной конвекции в случае, когда ламинарное течение и диффузия происходят в таких условиях, что по существу можно считать, что диффузия не влияет на ноле скоростей. В частности, рассмотрим абсорбцию газа А ламинарно стекающей пленкой жидкости В. Вещество А лишь слабо растворимо в В, так что вязкость жидкости заметно не изменяется. Введем в дальнейшем ограничение, что в жидкой пленке диффузия протекает настолько медленно, что А не проникает глубоко в 5 иными словами, расстояние проникновения должно быть мало по сравнению с толщиной пленки. Графическое представление изложенной ситуации дано на рис. 16-8. [c.469]

    Ламинарное обтекание сферы. Многие практически важные случаи включают массообмен между сферой и окружающей средой. Перенос между таблетками катализатора и реагирующим газом или между жидкостью и суспендированными в ней кристаллами, которые растворяются, приближенно отвечает переносу от отдельных сферических частиц одинакового размера. Абсорбция газа из пузырьков и экстракция из капли одной жидкости другой жидкостью служат примерами массоотдачи к сферическим образованиям жидкости или газа. [c.102]

    У-9-3. Модели поверхностного обновления. Данквертс показал, что при использовании любой из двух моделей поверхностного обновления и равенстве коэффициентов диффузии всех компонентов скорость абсорбции также может быть найдена умножением коэффициента физической массоотдачи на движущую силу, равную количеству газа, которое требуется для насыщения единицы объема основной массы жидкости, когда концентрация свободного (непрореагировавшего) газа А возрастает от А° до Л.  [c.130]


    Для получения значений Й .а нередко более удобно пользоваться не абсорбцией, а десорбцией газов с низкой растворимостью в токе инертного носителя, чаще всего воздуха Некоторые методические вопросы исследования массоотдачи в жидкой фазе рассмотрены, например, в работах Доп. пер. [c.213]

    Значительная зависимость поведения дисперсной системы от физических свойств жидкости (а также и газа) выдвигает еще одну проблему. Если экспериментальные условия измерения скорости абсорбции, сопровождаемой химической реакцией, и скорости физической массоотдачи (ее коэффициента к ) не полностью гидродинамически идентичны, то нельзя найти действительные значения коэффициента ускорения абсорбции химической реакцией. Во избежание этого затруднения целесообразно измерять к1 одновременно с измерением скорости абсорбции реагирующего газа. Такое измерение . можно производить, используя, например, десорбцию [c.224]

    Наблюдая одновременно с абсорбцией двуокиси углерода аминами десорбцию из раствора различных газов (гелия, закиси азота и ксенона), Ю. В. Аксельрод и др.19в нашли, что возникающая нестабильность приводит, кроме увеличения значений ku, к снижению влияния коэффициента диффузии D на вплоть до полной независимости kt от D. В то же время при отсутствии абсорбции СО, тем же раствором амина коэффициент физической массоотдачи был пропорционален DO,5. [c.250]

    В литературе приводится ряд зависимостей для определения коэффициентов массоотдачи на тарелках различных конструкций. Однако большинство их получено путем обобщения экспериментальных данных по абсорбции и десорбции газов и испарению жидкостей в газовый поток. В ряде работ показано, что с достаточной степенью приближения эти данные можно использовать для определения коэффициентов массоотдачи процессов ректификации бинарных систем, для которых мольные теплоты испарения компонентов приблизительно равны. В частности, для тарелок барботажного типа рекомендуются [14] обобщенные критериальные уравнепия типа (VI.39), которые приводятся к удобному для расчетов виду  [c.132]

    Формулы для определения коэффициентов массоотдачи для отдельных систем газ — жидкость. Процесс абсорбции двуокиси серы водой в насадочных колоннах описывается уравнениями [c.271]

    При абсорбции хорошо растворимых газов, в частностя при поглощении хлористого водорода водой, основное сопротивление массопередаче сосредоточено не в жидкой, а в газовой фазе. Поэтому величина коэффициента массопередачи близка к значению коэффициента массоотдачи в газовой фазе и мало зависит от величины коэффициента массоотдачи в жидкой фазе, определению которого посвящен данный пример. (Прим. ред.) [c.290]

    Приведенные формы коэффициентов массоотдачи находят применение в расчетной практике и литературе, однако необходимости в таком разнообразии форм нет. Строго говоря, движущая сила выражается разностью объемных концентраций, так что наиболее правильно пользоваться движущей силой Ас (или А ) и коэффициентом массоотдачи Рс (или р ). Вместо объемной концентрации могут быть использованы пропорциональные ей величины. Такими величинами для газовой фазы являются мольная доля у и парциальное давление р, поэтому в данном случае можно применять движущие силы Ау и Ар и соответствующие коэффициенты массоотдачи р и р . Формы коэффициентов массоотдачи Р-, Ру и Ру, основанные на величинах, не пропорциональных С не рекомендуются для пользования (для газов низкой концентрации употребление этих форм возможно). При больших концентрациях, особенно для многокомпонентных систем или при абсорбции летучим поглотителем, применение движущей силы в относительных концентрациях может привести к серьезным ошибкам. [c.87]

    Для массоотдачи в жидкой фазе опыты, проведенные по абсорбции и десорбции СОз в системе СОа—НаО [56, 761, показали, что направление процесса не влияет на рж- Это подтверждается и тем, что данные по десорбции О и абсорбции ряда плохо растворимых газов укладываются обычно в общую зависимость. [c.124]

    Методы 4, 5 и 6 применимы для определения активной поверхности при абсорбции хорошо растворимых газов. Определение активной поверхности при абсорбции плохо растворимых газов осложнено тем, что плотность орошения в данном случае влияет как на активную поверхность, так и на коэффициент массоотдачи в этих условиях используют методы 7 и 8. [c.440]

    Из формулы (П-121) можно найти отношение коэффициента массоотдачи ав при одновременной абсорбции Л и В к значению Рл при абсорбции одного лишь газа А (т. е. при Гв=0)  [c.150]

    Метод сравнения коэффициентов массоотдачи при постоянной скорости газа и различных плотностях орошения [ 135, 136]. Этот метод применим для определения эффективной поверхности при абсорбции хорошо растворимых газов. Он основан на анализе зависимостей коэффициентов массоотдачи, найденных в опытах по абсорбции, от скорости газа и плотности орошения (стр. 169) сначала возрастает с увеличением Не, а, начиная От значения Не наступает область почти постоянных Рр ,. При дальнейшем увеличении Не наступает область, в которой Рр снова начинает возрастать эта область отвечает режиму подвисания. Плотность орошения, соответствующую значению Ре о, будем называть эффективной плотностью орошения Эффективная поверхность составляет [c.439]


    Метод исследован ия массоотдачи при возгонке нафталина и при абсорбции хорошо растворимых газов [134, 1371. Определяют объемный коэффициент массоотдачи ( p )o при возгонке нафталина с поверхности сухой насадки (см. выше), а затем находят объемные коэффициенты массоотдачи при абсорбции хорошо растворимого газа (или при испарении чистой жидкости) на такой же насадке и при тех же скоростях газа. [c.440]

    Метод исследования массоотдачи при испарении с поверхности полностью смоченной насадки и при абсорбции хорошо растворимых газов 138, 1391. Этот метод аналогичен предыдущему и отличается тем, что ( p )o находят из опытов по испарению чистых жидкостей (обычно воды) с поверхности пористой, пропитанной жидкостью насадки (стр. 458). [c.440]

    Прн работе с некоторыми системами значение коэффициента физической массоотдачи к в условиях абсорбции, сопровождаемой реакцией, может суи1ественно отличаться от соответствующего значения при отсутствии реакции. Это наблюдается, например, при абсорбции двуокиси углерода растворами аминов, как установлено в работе П. Л, Т. Бриана и др., результаты которой рассмотрены в разделе Х-1, а также в работе Ю. В. Аксельрода, Ю, В. Фурмера и др. . При таких обстоятельствах, как и в более общем случае рекомендуется одновременно определять скорость абсорбции, сопровождаемой химической реакцией, и коэффициент кь-Последний может быть найден путем измерения скорости физической абсорбции или десорбции из раствора инертного компонента одновременно с абсорбцией газа, [c.214]

    Газы, Экснериментальные данные о сопротивлении газовой фазы получены разными способами. Одним из них является абсорбция газа жидкостью, над которой упругость ее паров очень мала или в которой протекает очень быстрая реакция абсорбируемого вещества с каким-либо нелетучим компонентом жидкой фазы. Сопротивление массопередаче в жидкой фазе принимается незначительным, так что коэффициент массопередачи равен коэффициенту массоотдачи для газовой фазы. Этот метод следует применять с осторожностью в прошлом его иногда применяли к системам, в которых сопротивление жидкой фазы не было пренебрежимо малым. Второй способ заключается в испаренйи чистой жидкости, стекающей вниз по колонне, в нерастворимый в жидкости газ, барботирующий через слой жидкости. По третьему способу сопротивление жидкой фазы может быть рассчитано по соответствующим зависимостям и его можно вычесть из общего сопротивления, найдя таким путем сопротивление массопередаче в газовой фазе. Последний метод использовался Феллингером нри определении коэффициента массоотдачи для газовой фазы в системах, в которых аммиак абсорбируется из воздуха водой, стекающей ио насадкам [c.525]

    При иерархич построении квазигомогенного приближения производят операцию осреднения (сглаживания) флуктуаций порядка предыдущего (мелкомасштабного) структурного уровня Для этого необходимо, чтобы характерный масштаб / предыдущего уровня был много меньше харак терного масштаба L последующего уровня и система содержала на уровне L макроскопически большое число неоднородностей масштаба / Кроме того, должен существовать промежут размер X I X L) такой, чтобы параметры ф после осреднения по объему (или пов-сти Х ) прел ставлялись уже не флуктуирующими, а регулярными ф-ция ми пространств координат с характерным масштабом изменения L Масштаб X значительно превышает характерное расстояние, на к-ром взаимодействуют флуктуации масштаба/-т наз радиус корреляции Область осреднения размера X наз элементарным физ объемом (или макроточкой) Напр, для процесса хим абсорбции газа жидкостью в двухфазном реакторе барботажного типа / соответствует масштабу газового пузыря, а L-размеру реактора Осреднение концентрации компонентов в каждой фазе проводят по элементарному объему Х , содержащему достаточно большое число пузырей, но значительно уступающему объему реактора Линейный размер X выбирается с учетом интенсивности локального гидродинамич перемешивания Объем Х рассматривается как макроточка с эффективными (т е усредненными по времени наблюдения) значениями коэффициентов массоотдачи, уд тепловыделения, распределения в-в между фазами и т п, к-рые необходимы для составления кинетич ур-ний отдельньи стадий Ур-ния баланса массы и энергии затем составляют с учетом перемешивания в масштабе всего реактора [c.633]

    Экспериментальные данные по массоотдаче в стекающих пленках жидкости обсуждаются в главе 6. Эти данные охватывают результаты, полученные при исследовании испарения чистых жидкостей, абсорбции газа пленкой и массоотдачи между жидкостью и твердой стенкой. [c.95]

    В очень большом числе сообщений приводятся результаты измерения скорости массообмена между отдельной сферической частицей и потоком жидкости. С этой целью используют методики с сублимацией твердого вещества, с испарением жидкости в газ и с растворением твердого вещества или жидкости в жидкости. По-видимому, отсутствуют публикации исследований, посвященных изучению абсорбции газа единичными сферическими частицами в условиях, когда процесс лимитируется сопротивлением в газовой фазе. Подавляющая часть данных относится к испарению капель чистых жидкостей, поскольку экспериментальная методика проста, и небольшие капли (или капли большего размера с поверхностно-активным веществом) ведут себя как жесткие сферические частицы. Кроме того, значительный объем информации по теплоотдаче к сферическим частицам может быть в общем случае распространен на массоотдачу путем замены числа Нуссельта на k dJD и числа Рг на число S . [c.247]

    Результаты исследований абсорбции газов в пенных аппаратах свидетельствуют о том, что коэффициенты массоотдачй в газовой и жидкой фазах при использовании крупнодырчатых тарелок в 2 раза выше, чем в случае применения решеток с обычной перфорацией ( о 5 мм). [c.262]

    Разные модели абсорбции. Кроме рассмотренных выше, были предложены и другие модели абсорбции. По кинетической модели Миямото [33] передача вещества происходит в результате проникновения молекул из газовой фазы в жидкую и одновременного обратного выделения их из жидкости в газ. Последний поглощается жидкостью, если число молекул, переходящих из газа в жидкость, больше числа молекул, выделяющихся из нее. Кинетическая модель не учитывает влияния на массопередачу гидродинамических условий и поэтому недостаточна для анализа передачи массы. В настоящее время кинетическая модель используется при анализе переноса вещества через поверхность раздела фаз (стр. 124). Ваковский [34] применил кинетическую модель с учетом скорости среды для анализа массоотдачи в газовой фазе. [c.108]

    У-9-5. Критерий мгиовеииости реакции. Все реакции протекают с конечными скоростями, и понятие мгновенной реакции является идеализированным. Поэтому требуется какой-то общий критерий для оценки того, может ли данная реакция считаться мгновенной. Вообще говоря, мгновенности протекания реакции способствуют высокая удельная скорость реакции растворенного газа и низкое значение коэффициента массоотдачи для физической абсорбции. В таких условиях скорость процесса полностью лимитируется диффузией реагентов, а скорость реакции достаточна для поддержания равновесия во всех точках раствора кинетика реакции при этом не играет существенной роли. [c.135]

    Возможно использование моделей, описанных в главе IV, в которых каждый элемент поверхности жидкости экспонируется газу до замены его жидкостью из основной массы в течение одинакового промежутка времени 0. В таких установках точно моделируется механизм абсорбции, постулируемый моделью Хигби. При этом, еслн коэффициент массоотдачи в жидкой фазе для газа с коэффициентом диффузии О А равен то продолжительность экспозиции в модели должна быть 40А1(пк1). Колонны с орошаемой стенкой, обеспечивающие продолжительность контакта порядка 0,5 сек, подходят для моделирования насадочных колонн, а ламинарные струи с контактом, равным нескольким тысячным секунды, — для моделирования барботажных тарелок. [c.176]

    Задача VIH. 15. В колонне с ситчатыми тарелками проводят абсорбцию двуокиси серы водой из воздуха при атмосферном давлении. Определить, пользуясь уравнением (VIII. 63), коэффициенты массоотдачи, если колонна работает в следующих условиях расход газа Qo6 = 2800 м 1ч (объем газа приведен к нормальным условиям) начальная концентрация SO2 на входе в колонну y = 0,075 конечная концентрация уг = 0,00364 средняя температура в колонне /=18°С расход абсорбирующей воды Хоб = = 78,5 M 4 диаметр колонны к = 1200 л ж газосодержание пены е = 0,5 высота переточного порога /г = ЪО мм. Дано коэффициенты диффузии в газовой фазе Ьг = 4,45-10 и в жидкой фазе Ож = 5,05-10 ж /ч вязкость газа Цг = 1,79-10" н-и вязкость жидкости fijK = 1,13-10 н-сек/л 2.  [c.305]

    VIII-1-4. Быстрые реакции. В этом случае реакция в пленке протекает в заметной степени, и скорость абсорбции существенно больше скорости физической абсорбции при тех же А и Л . Наиболее важный вывод, который можно сделать применительно к насадочным колоннам на основе проведенного в главе VI обсуждения процессов в проточных абсорберах, заключается в том, что если реакция достаточно быстра для существенного ускорения абсорбции по сравнению с чисто физическим процессом, то концентрация растворенного газа в массе жидкости будет близка к равновесному значению по отношению к условиям в этой массе. В то же время, если концентрация растворенного газа в массе жидкости существенно выше равновесного значения, то абсорбция лимитируется физической массоотдачей. Этот вывод связан с принятием условия о значительном превышении объема жидкости над объемом диффузионной пленки. Как было показано выше, такое условие, по-видимому, выполняется для насадочных колонн. [c.191]

    Однако для расчетных целей при отсутствии части или всей требуемой информации может быть использован и другой подход, который часто оказывается менее трудоемким в смысле затраты времени, чем тщательный анализ всех деталей абсорбционного процесса. Коэффициент ускорения Е или удельная скорость абсорбции 7 зависят от состава раствора и газа и от величины Если использовать лабораторную модель абсорбера с известной поверхностью контакта фаз, в которой значение коэффициента физической массоотдачи таково же, что и в проект Груемой колонне, то можно определить значения Е или / , соответствующие составам жидкости и газа в различных точках проектируемого аппарата, и подставить их затем в уравнение (VIII,33) или (VIII,32). Использование лабораторных моделей для этой цели обсуждается в главе VII. [c.192]

    Т и б и л о в С. Г., Р а м м В. М., Б а р а н о в а А. Р1., Техн. и эконом, информ. НИУИФ им. Я. В. Самойлова, Л 1—2, 81, 89, 93 (1966). Исследование абсорбции хорошо растворимых газов в дисковой колонне. Исследование влияния концентрации олеума на абсорбцию серного ангидрида в дисковой колонне. Влияние коэффициента диффузии на коэффициент массоотдачи в газовой фазе в насадочной колонне. [c.276]

    Процесс массообмена в системе газ—жидкость — процесс абсорбции — редко осуществляется в нормализованных реакторах с мешалками, причем только в случае труднорастворимых газов, и поэтому обычно можно пренебречь сопротивлением массоотдаче в газовой фазе. Критериальное уравнение для расчета объемного коэффициента массоотдачи в жидкой фазе Kv можно рассчитать по уравнению [c.36]

    Задача X. 6. Определить концентрации на поверхности раздела фаз при абсорбции двуокиси серы водой из смеси с воздухом. Колонна работает при следующих условиях начальная концентрация ЗОз г/, = 0,06 конечная концентрация /2 = 0,01 расход газа Q = 455 кг/ч расход абсорбента в 2 раза больше минимального диаметр колонны к == 740 мм] тип насадки — кольца Рашига 25 X 25 X 2 мм. Абсорбция происходит при 30° С и атмосферном давлении. Даны коэффициенты массоотдачи кт = = 1,2 кмоль м ч- (Дг/)" А = 28,8 кмоль м ч (Ад )" ирав-, новесные данные  [c.351]

    Влияние направления диффузии на массоотдачу. Рассмотрим два предельны случая влияния направления диффузии на перенос вещества в каждой фазе. В первом случае путем диффузии переносится к границе раздела фаз лишь один компонент (однонаправленная диффузия). Такая диффузия характерна для процессов абсорбции и жидкостной экстракции. Концентрация переносимого компонента падает в направлении к границе раздела фаз, но общая концентрация смеси компонентов (плотность фазы) не может быть различной и р,зз-пых точках фазы. Поэтому уменьшение абсолютной концентрации, вызванное падением концентрации диффундирующего компонента, компенсируется за счет возникновения потока всей массы газа (жидкости) в направлении к границе раздела фаз — так называемого массового, или стефанового, потока. [c.400]

    Коэффициенты массоотдачи определяют косвенными методами (стр. 167). Поэтому возникает вопрос могут ли коэффициенты массоотдачи, найденные в некоторых стандартных условиях (например, при испарении чистой жидкости для или при абсорбции плохо растворимого газа для р ). служить основой для определения коэффициентов массопередачн в сложном процессе, когда играют роль сопротивления обеих фаз  [c.127]

    Примером абсорбции, сопровождаемой медленной обратимой реакцией, является поглощение SO2 или I2 водой. Обычно эти случаи рассматривают как физическую абсорбцию. Однако Вивиан и Уитней [93, 94] установили, что коэффициент массоотдачи при поглощении указанных газов заметно ниже (с учетом различия в коэффициентах диффузии), чем при десорбции О2 из воды. При этом Рс изменяется в зависимости от плотности орошения в меньшей степени, чем при десорбции О2. [c.139]

    Массоотдача в жидкой фазе при больших скоростях газа (свыше 10 м-сек ) при нисходящем и восходящем прямотоке значительно интенсифицируется. Конобеев, Малюсов и Жаворонков [241 на основе опытов по абсорбции СО. водой получили уравнения  [c.367]


Смотреть страницы где упоминается термин Массоотдача при абсорбции газов: [c.109]    [c.147]    [c.288]    [c.290]    [c.271]    [c.290]    [c.305]   
Массопередача (1982) -- [ c.337 ]




ПОИСК





Смотрите так же термины и статьи:

Массоотдача



© 2025 chem21.info Реклама на сайте