Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия активации азота

    Для объяснения этого эффекта Будар сделал предположение [265], что дипольный слой водорода изменяет энергию активации адсорбции азота в том же направлении, что и сам азот, но в меньшей степени, чем последний. Если сплошная пленка водорода оказывает такое же влияние на энергию активации азота,, как и пленка азота, покрывающая 20% поверхности, и если величина эффекта, вызываемого этими слоями, линейно связана с 9, то тогда приведенное выше соотношение становится понятным. [c.162]


    Оксид азота(1)—термодинамически неустойчивое соединение. Стандартная энергия Гиббса его образования положительна (Д6,1,бр = 104 кДж/моль). Однако вследствие большой прочности свя.-зей в молекуле N20 энергии активации реакций, протекающих с участием этого вещества, высоки. В частности, высока энергня Активации распада N20. Поэтому при комнатной температуре оксид азота(I) устойчив. Однако при повышенных температурах он разлагается на азот и кислород разложение идет тем быстрее, чем выше температура. [c.408]

    Энергия активации диффузии в сплошных средах возрастает с увеличением размера мигрирующей частицы [см. уравнение (3.85)], для водорода в различных металлах эта величина колеблется в пределах 23—46 кКж/моль, для азота от 80 до 200 кДж/моль [8], поэтому с ростом температуры различие в значениях коэффициентов диффузии водорода и других веществ заметно уменьшается, в частности, при = 900°С для железа имеем Dh = 6,3-10 mV и Dn = 2,3-10 ° м / . [c.117]

    Наблюдающаяся высокая химическая активность )адикалов обусловлена незаполненностью их электронных оболочек. Характерна аналогия между химическими свойствами гидридов углерода, азота, кислорода и фтора и химическими свойствами атомов с тем же числом электронов. Так, радикал СН (метин) является химическим аналогом атома Н, радикалы СНа (метилен) и NH (имин) — аналогами атома О, радикалы СН3 (метил), НН2 (аминогруппа) и ОН (гидроксил) — аналогами атома К и, наконец, молекулы СН4, N1 3, Н2О и НГ в известном смысле (инертность) аналогичны атому N6. Благодаря химической ненасыщенности радикалов энергия активации нроцессов, протекающих с их участием, имеет порядок величины энергии активации атомных реакций. Поэтому такие процессы, как правило, идут приблизительно с такой же скоростью, с какой идут атомные процессы. [c.34]

    Замена в молекулах углеводородов атомов водорода гетеро атомами и перевод их в неуглеводородные молекулы сопровож даются, по данным Багдасарьяна [15], изменением их свойств Такие гетероатомы, как кислород, сера, азот, галоиды и др., бо лее электроотрицательны, чем атомы водорода и углерода. Это отражается на поляризуемости молекул и изменяет энергию активации реакций. [c.41]

    Выход адипиновой кислоты повышается, когда окисление осуществляют в двухтемпературном режиме при 60—80 °С на первой стадии и при 100—120°С на второй (это объясняется тем, что образование промежуточных продуктов синтеза адипиновой кислоты протекает с более низкой энергией активации, чем для промежуточных стадий получения побочных веществ, в то время как для гидролиза этнх веществ в адипиновую кислоту требуется повышенная температура). Положительно влияет также медь-ванадиевый катализатор, добавляемый в виде оксида меди и метаванадата аммония (в количестве 0,07% каждого компонента в расчете на взятый циклогексанол). Медь связывает оксиды азота в комплексы, а ванадиевые соединения ускоряют целевую реакцию и повышают выход адипиновой кислоты до 90—95%. [c.392]


    Энергия активации ( ) реакции дегидрирования циклогексана в бензол по данным работы (15] 70,0—72,9 кДж/моль (в зависимости от способа приготовления катализатора), по данным (16] 97,8 кДж/моль. В первой из этих работ данные получены при дегидрировании циклогексана с разбавлением его азотом, во второй — с разбавлением водородом. [c.10]

    Скорость процесса. Даже при сравнительно высоких температурах энергия активации молекул азота велика и процесс синтеза аммиака в гомогенной газовой фазе практически неосуществим. Для снижения энергии активации используются катализаторы, позволяющие значительно уменьшить температуру процесса. [c.198]

    По данным тех же авторов вычисленная величина энергии активации сильно зависит от начального давления углеводорода. На фиг. 4 даны кривые зависимости величины энергии активации от начального давления углеводорода при крекинге н.-бутана в присутствии окиси азота и при нормальном крекинге н.-бутана, причем в последнем случае величины энергии активации вычислялись с иомощью констант скорости крекинга для 25% и для нулевого превращения. При низких давлениях указанные величины энергии активации сильно отлича-лись друг от друга. При экстраполяции же к бесконечному давлению все три кривые совпали практически в одной точке. Поэтому величину энергии активации необходимо вычислять с помощью констант скорости крекинга, экстраполированных к бесконечному давлению или найденных экспериментально при высоком давлении. [c.14]

    Какой тиг] энергетических схем реакций на рисунке 85 соответствует реакции а) образования оксида азота (II) нз простых веществ б) )аспада оксида азота (II) на простые вещества Как соотносятся значення теплового эффекта и энергии активации прямой и обратной реакций  [c.152]

    Влияние температуры полимеризации на молекулярный вес полимера и строение его макромолекул. Общая энергия активации процесса полимеризации в присутствии инициаторов составляет около 20—22 ккал/моль. Это соответствует повышению скорости полимеризации в 2—3 раза при возрастании температуры реакции на 10°, одновременно с этим уменьшается средний молекулярный вес полимера (рис. 52). Полимеризация стирола в присутствии перекиси бензоила при 20° в атмосфере азота продолжается год, средний молекулярный вес образующегося полимера около 550 000. При 120° эта реакция заканчивается за 24 часа, но средний молекулярный вес полимера снижается до 167 ООО. Полимеризуя метилметакрилат в атмосфере азота при 100°, можно получить полимер, степень полимеризации которого составляет 10 500 в случае полимеризации метилметакрилата при 130° степень полимеризации снижается до 7150, а при 150°—до 5160. [c.128]

    Таким образом, на основании исследований различных авторов нельзя прийти к определенному выводу относительно однородности или неоднородности тех или иных поверхностей. Вполне возможно, что некоторые из исследованных поверхностей были однородны по отношению к изученному типу хемосорбции. Если энергия активации поверхностной миграции невелика, то та небольшая степень неоднородности, которую можно ожидать на поликристаллических материалах, может приводить к выравниванию состава адсорбированной смеси. Поэтому также вполне понятно, что опыты с одним адсорбатом (азотом) могут приводить к выводу об однородности поверхности, в то время как опыты с другим адсорбатом (окись углерода) как будто доказывают существование определенной степени неоднородности, как это и наблюдалось в опытах Эммета и Куммера. [c.130]

Рис. 36. Энергия активации хемосорбции азота на желез-но.м катализаторе [64]. Рис. 36. <a href="/info/307188">Энергия активации хемосорбции</a> азота на желез-но.м катализаторе [64].
    В обоих указанных выше случаях два одновременно хемосорбированных газа не взаимодействовали друг с другом. Если же они способны взаи.модействовать между собой, то ожидаемые закономерности будут носить более сложный характер. Изучению этих закономерностей путем прямых хемосорбционных измерений посвящено сравнительно небольшое число работ. Бик [60] изучал одновременную хемосорбцию азота и водорода на пленках железа. Как отмечалось в разделе IX, 12, энергия активации адсорбции азота после покрытия им 20 всей поверхности становится слишком высокой для того, чтобы при комнатной температуре могла протекать дальнейшая хемосорбция. Бик установил, что если водород адсорбируется первым и степень заполнения поверхности им равна Йн, то поверхность сможет адсорбировать меньшее количество азота, а именно  [c.161]

    Коэффициент самодиффузии азота при 293 К равен 0,221 см2/с, а при 353 К он равен 0,287 см /с. Определите энергию активации диффузии в Дж/моль. [c.81]


    Молекулярный азот — химически малоактивное вещество. При комнатной температуре он взаимодействует лишь с литием и щелочноземельными металлами. Малая активность азота объясняется большой прочностью его молекул, обусловливающей высокую энергию активации реакций, протекающих с участием азота. Однако при нагревании он начинает реагировать со многими метал.ла-ми — с магнием, титаном и др. С водородом азот вступает во взаимодействие при высоких температуре и давлении в присутствии катализатора. Реакция азота с кислородом начинается при 3000—4000 °С. [c.428]

    Экспериментально установлено, что заметная термическая диссоциация молекул N2 на атомы до 3000 °С не наступает. По-видимому, под обычным давлением степень диссоциации не превышает нескольких процентов даже при 5000 °С. Фотохимическая диссоциация молекул N2 протекает лишь в высоких слоях атмосферы. Искусственное получение атомарного азота может быть осуществлено путем пропускания газообразного N2 (под сильно уменьшенным давлением) сквозь поле высокочастотного электрического разряда. Так как энергии активации реакций с участием свободных атомов обычно весьма малы (часто — близки к нулю), атомарный азот гораздо активнее молекулярного уже при обычной температуре он непосредственно соединяется с 5, Р, Аз, а также с Нц и рядом других металлов. [c.388]

    Энергия активации термического распада закиси азота в газовой фазе равна 58 ккал/моль, на Pt она снижается до 33 ккал/моль, а на Аи — до 29 ккал/моль. Интересны приводимые ниже данные о наинизшей температуре (в °С) термического распада N 0 в присутствии различных окислов  [c.419]

    Примечателен факт отрицательной экспериментальной энергии активации реакции оксида азота с кислородом, а также низкие значения стерического фактора в этой и следующей реакциях. Эти явления можно объяснить, применяя теорию переходного состояния. [c.754]

    За исключением триэтаноламина, у которого отсутствует реакционноспособный атом азота, химические реакции с другими аминами подобны рассмотренным реакциям с моноэтаноламином. Шарма и Данквертс [15] измерили величину кхт для моноизо-нропаноламина, составивщую при 18 С 3200 л (г-мол-сек) для моноэтаноламина эта величина при той же температуре составляет 4100 л г-мол сек). Энергия активации для всех аминов, а также для аммония составляет 11 000 кал [15—16]. [c.148]

    Влияние окиси азота на разложение этана являлось предметом многих исследований. Стэвли [81] нашел, что с увеличением концентрации окиси азота скорость разложения снижается до минимума, достигая величины 8% от неингибированной скорости. Изучая реакции, ингибированные окисью азота, Стэвли и Гиншельвуд установили, что средняя длина цепи значительно короче предполагавшейся на основе механизма свободных радикалов. Упомянутые авторы приходят к выводу, что в рассматриваемой реакции действуют оба механизма молекулярный и свободнорадикальный. Такой же вывод был сделан Стици и Шейном [85], которые нашли, что энергия активации полностью ингибированной реакции равна 77,3 ккал, в то время как у Стэвли последняя равна 74 ккал. Любое из этих значений превышает величину, принятую для неингибированной реакции — 69,8 ккал. Ингольд и другие [43] исследовали влияние окиси азота и пропилена на разложение этана. Пропилен действует аналогично окиси азота, хотя но является окисляющим агентом. Ингольд приходит к тому же выводу, что в рассматриваемой реакции действуют оба механизма. [c.83]

    В табл. VI, 1 приведены кинетические данные о распаде кислородных соединений азота и галогенов. Обращают на себя внимание высокие значения энергии активации и предэкспонен-циального множителя (последнее — для всех соединений, кроме N20). Первой открытой мономолекулярной реакцией была реакция распада пятиокиси азота, которая, по-видимому, пр1оте-кает по схеме [c.155]

    При гидроочистке дистиллятных почти количественную деструкцию затрагивая связей С—С, т. е. без заметной деструкции сырья Удаление азота протекает много труднее. В работе с модельными соединениями — дибензтиофеном и 3-метплхинолином, добавляемыми к лигроину, — показано, что в обычных условиях гидроочистки (Со Мо на AI2O3, 380 °С, 114 кгс/см ) энергия активации реакций обессеривания составляла только 3,8 ккал/моль, а энергия активации реакции удаления азота 20,0 ккал/моль. При удалении 90% серы, удалялось только 40% азота, при удалении 99,5% серы — 75% азота В другой работе показано, что азот удалялся не только труднее серы, но и труднее кислорода, диенов и олефинов [c.280]

    Термическое разложение диоксида азота 2NO2 -> 2N0 + 0 является гомогенной бимолекулярной реакцией. При 627 К константа коростн реакции равна 1,81 10 см моль" с" . Стерический множитель равен 0,019. Вычислите энергию активаций Е, приняв молеку лярнь й диаметр NO2 равным 3,55 10 см. Определите долю молекул, обладающих при 627 К энергией, большей Е. [c.378]

    Для проверки этого положения Стиси и Фокине (140) подробно изучили состав продуктов термического крекинга нормального бутана как до, так и после торможения реакции крекинга добавкой окиси азота. Оказалось, что в обоих случаях состав продуктов крекинга бутана был одинаковым. Величина энергии активации реакции крекинга бутана (после экстраполяции к бесконечному давлению) также не изменялась от добавки окиси азота. Отсюда авторы сделали следуюв1ие выводы. Термический крекинг бутана происходит главным образом по цепному механизму в результате образования большого количества сравнительно коротких цепей. Добавка окиси азота пе уничтожает полностью цепей, а только- уменьшает их длину. [c.28]

    Деформации могут быть настолько сильными, что молекулы становятся способными разрывать свяки и переходить в атомарное состояние. Было доказано экспериментально, что водород, азот и другие двухатомные газы под действием силового поля на поверхности металла переходят в атомарное состояние окончательным подтверждением этого явилась конверсия л-водорода в о-водород (стр. 133). Разрыв связи является предельным случаем деформации, но часто последняя столь далеко не идет и ограничивается разрыхлением связей. Это делает молекулы гораздо более реакционноспособными, склонными к перестройке связей и к образованию новых соединений при затрате значительно меньшей энергии активации. [c.126]

    Каталитическая активность комплекса 1А1(С.2Нд).,+Т1С1,1 уменьшается под влиянием кислорода воздуха или следов влаги. Поэтому полимеризацию проводят в атмосфере азота, используя тщательно осушенные растворитель и пропилеи. Скорость полимеризации пронилепа пропорциона.льпа его парциальному давлению и температуре реакции. Реакцию полимеризации обычно проводят при температуре 30--70". Энергия активации составляет 12-14 ккалЬюль. Наряду со стереорегулярными изо- [c.200]

    Определены эффективные константы скорости и энергия активации процесса. Методом тепловой десорбции азота показано, что удельная поверхность шунгита Максово при взаимодействии с озоном возрастает иа 20%. Установлено увеличение степени упорядоченности структуры шунгита после озонирования. [c.77]

    На рис. 36 показан наблюдавшийся Цвитерингом и Роукен-сом [64] рост энергии активации хемосорбции азота на железе с заполнением в температурном интервале между 200 и 250° С. [c.147]

    Во всех случаях, когда энергия активации наблюдается уже прн 0=0 (например, при адсорбции азота на железе, водорода на загрязненных поверхностях металлов см. раздел V, 9), с увеличением О она возрастает. Энергия активации растет медленнее, чем падает теплота хемосорбции. Изучение рис. 37 показывает, что эти величины должны быть связаны между собоГ именно такой зависимостью. При ослаблении связи с поверхностью максимумы потенциальных кривых смещаются влево, а минимумы кривых либо остаются на том же расстоянии от поверхности (как показано на приведенном ри- [c.149]

    Зависимость энергии активации хемосорбции азота на железном катализаторе от степени заполнения по измерениям Цвитеринга и Роукенса [64] (т. е. только что упоминавшаяся кривая рис. 36) может быть представлена уравнением [c.150]

    Если с увеличением степени заполнения энергия активации становится все большей и большей (см. рис. 37), то она может возрасти настолько сильно, что дальнейшая хемосорбция прекратится, по крайней мере при температуре данного опыта. Но при повышении температуры и давления хемосорбция должна увеличиться. Согласно рис. 36, энергия активации хемосорбции азота на железе при 0=0,2 равна приблизительно 24 ккал/моль. Это означает, что даже при давлении азота в 1 атм на I см" за 1 сек. при комнатной температуре будет хемосорбироваться примерно 10 молекул азота, т, е. увеличение б будет происходить со скоростью Ю час, Следовательно, дальнейшая хемосорбция практически не будет иметь места. Бик [60] экспериментально установил, что при комнатной температуре хемосорбция азота на пленках железа происходит до значений О, не нревышаюнщх 0,2 (см. также рис. 38). При температуре жидкого воздуха хемосорбция азота носит совершенно иной характер. ГЗ этом случае она протекает быстро и без энергии активации, а теплота хемосорбции вначале равна лишь 10 ккал/моль и с увеличением покрытия падает до 5 ккал/моль. [c.155]

    Поскольку скорость каталитического образования аммиака определяется скоростью хемосорбции азота, а следовательно, энергией активации носледнего, то важно, чтобы эта эне.ргия [c.167]

    Особый интерес представляет реакционная система К + Оз. Казалось бы, в соответствии со старыми представлениями молекула — бирадикал О2 должна легко взаимодействовать с N2, но этого не происходит. Здесь для образования активированного комплекса электрон должен переходить в ВЗМО азота на НСМО кислорода, поскольку СЭ молекулы О2 выше, чем у молекулы N2. Однако переход с ст2д -орбитали N3 на % — п -орбиталь О2 запрещен по симметрии. Обратный переход с л = л -орбитали О2 (она заполнена наполовину и может играть роль как НСМО, так и ВЗМО) на НСМО молекулы азота симметрии к = = л разрешен по симметрий, однако он невозможен по химическим соображениям [СЭ(02)>СЭ(М2)]. Кроме того, уход электронов с разрыхляющей 71 = 71 -орбитали О2 только упрочил бы связь в молекуле вместо того, чтобы ослабит , ее, как происходит при образовании активированного комплекса. Итак, реакция запрещена по симметрии, вследствие чего энергия активации равна 390 кДж/моль. Вот почему в атмосфере оба газа миллионы лет существуют без взаимодействия (исключая мгновения грозовых разрядов). [c.147]

    В большинстве соединений кремний образует только простые связи. Кратные связи, столь типичные для углерода, в химии кремния являются редкостью. Тем не менее имеются данные, позволяющие утверждать, что атом кремния способен иногда использовать свободные -орбитали для образования dn—ря-связей. Такая связь, по-видимому, существует в трисилиламине Н(51Нз)з. в котором 2рг-орбиталь атома азота перекрывается с пустой -орбиталью атома кремния. Это дополнительное связывание способствует образованию плоской формы молекулы, тогда как молекула аналогичного соединения углерода Ы(СНз)з имеет форму пирамиды. В твердом кремнии энергии связи между атомами довольно прочны велики и значения энергии активации реакций с участием свободного кремния. [c.168]


Смотреть страницы где упоминается термин Энергия активации азота: [c.310]    [c.365]    [c.41]    [c.8]    [c.485]    [c.186]    [c.399]    [c.322]    [c.211]    [c.56]    [c.57]    [c.292]    [c.114]   
Технология азотной кислоты (1962) -- [ c.18 ]




ПОИСК





Смотрите так же термины и статьи:

Энергии с азотом

Энергия азот азот

Энергия активации



© 2025 chem21.info Реклама на сайте