Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Смеси растворителей качественный анализ

    Следующим этапом является выбор системы, в которой будет проведено распределение. Если смесь, подлежащая качественному анализу, состоит из многих компонентов, концентрация каждого из которых не превышает 95%, то такую смесь можно вводить в любую систему растворителей. При определении примесей в чистых продуктах (содержание основного компонента 95% и выше) в качестве одной из фаз системы должно быть выбрано само чистое вещество. Для определения компонентов, температура кипения которых не выше 150° С, а упругость пара над выбранными растворителями при температуре опыта достаточно высока (при анализе паровой фазы четко фиксируются пики, причем их величина достаточна для хорошо воспроизводимого обсчета), можно в качестве распределительной выбрать систему жидкость—пар, В остальных [c.56]


    Чалмерс и Дик [725] предложили схему качественного анализа 22 катионов. Они использовали четыре реагента — ацетилацетон, дитизон, диэтилдитиокарбаминат натрия и 8-оксихинолин, а в качестве растворителей — хлороформ, четыреххлористый углерод т[ смесь (5 2) хлороформа с ацетоном. Пригодными для практического использования они считали условия, при которых элемент [c.222]

    Получение замещенных тиомочевин присоединением первичных или вторичных аминов к фенилизотиоцианату (общая методика для качественного анализа). Растворяют 0,2 г амина в 5 мл спирта и прибавляют раствор 0,2 г фенилизотиоцианата в 5 мл спирта. Если реакция не идет при комнатной температуре, реакционную смесь слегка подогревают в течение 1—2 мин. Если при последующем охлаждении и трении стеклянной палочкой о стенку стакана кристаллы не выпадают (это бывает в случае ароматических аминов), снова нагревают в течение 10 мин или проводят реакцию сначала без растворителя, а затем осаждают продукт 50%-ным водным спиртом. Тиомочевины перекристаллизовывают из спирта. [c.120]

    В литературе описаны некоторые попытки анализа сме- сей жирных кислот адсорбцией Многие исследователи применяли способ элюирования, испробовав большое число растворителей и адсорбентов. Элюирование в большинстве случаев связано с большими потерями вещества кроме того, применение достаточно сильных растворителей приводило к элюированию веществ без разделения. Весьма трудно было также контролировать условия эксперимента, так как способ элюирования не был пригоден для качественного анализа. Однако в некоторых случаях удалось разделить группы жирных кислот, а также насыщенные и ненасыщенные кислоты. Наибольшее число таких опытов было проведено методом хроматограммы в потоке. Фильтрат разделяли на фракции, которые анализировали стандартным методом. [c.82]

    Качественный анализ осуществ.ляли методом тонкослойной хроматографии на закрепленном слое ш,елочной окиси алюминия. В качестве элюента использовал смесь растворителей ацетон—гептан—метанол—вода = 20 40 1,5 0,5 (по объему). [c.46]

    Количественное определение аминов осаждением в виде труднорастворимых солей применимо далеко не всегда. Его можно успешно использовать только в тех случаях, когда, на основании литературных сведений или из предварительных опытов, известно, что исследуемый амин действительно образует с данной кислотой соль, труднорастворимую в воде или в другом растворителе. Несмотря на то, что такое определение аминов не является обшим для всех аминов, для многих соединений метод вполне применим. Особенно удобно использовать этот метод для соединений, образование труднорастворимых солей которых уже используется в виде качественной реакции. Имея предварительные сведения, легко подобрать наиболее благоприятные условия осаждения, т. е. выбрать подходящий растворитель или смесь растворителей, концентрацию основания и реагента-осадителя, и таким образом превратить качественную пробу в количественное определение. Однако в большинстве случаев образующиеся осадки в какой-то степени растворимы в применяемом растворителе. Поэтому для получения результатов, обеспечивающих ошибку не более 1%, допустимую при обычных методах количественного анализа органических соединений, необходимо оцределять растворимость образующейся соли в данных условиях и вводить соответствующую поправку при вычислении результатов анализа. В соответствии с изложенным нельзя дать общей прописи проведения анализа. Ниже приведены некоторые примеры определения аминов в виде труднорастворимых солей. [c.668]


    Элюентный анализ, фронтальный анализ и вытеснительное проявление. Кроме применяющегося обычно элюентного анализа, описанного выше, существует еще два основных метода проявления хроматограмм (хроматографического анализа) фронтальный анализ и вытеснительное проявление. Оба метода были разработаны Тизелиусом (в 1940 и в 1943 гг.). Условия работы с колонкой по этим трем методам соверщенно различны. Фронтальный анализ состоит в пропускании раствора через колонку из адсорбента, предварительно промытую чистым растворителем, в определении концентрации выходящего из колонки раствора и установлении зависимости между его концентрацией и объемом. Таким образом, получают характерные кривые с одной ступенью для каждого из растворенных веществ. При проявлении методом вытеснения вещества, подлежащие разделению, адсорбируются в верхней части колонки и через колонку пропускают раствор вещества, обладающего большей энергией адсорбции. Это вещество играет роль проявителя, вытесняющего вещества, подлежащие разделению, которые, в свою очередь, вытесняют друг друга. Определяют зависимость между концентрацией вещества в исходящей из колонки жидкости и ее объемом. Измерения высоты и длины каждой ступени кривой дают возможность провести качественный и количественный анализ составных частей смеси при условии, что проявитель количественно вытесняет исследуемую смесь. Методы Тизелиуса, усовершенствованные Клессоном и другими, особенно важны для разделения бесцветных веществ и при применении таких адсорбентов, как уголь. За концентрацией составных частей смеси в жидкости, исходящей из колонки, непрерывно следят по показателям преломления, электропроводности или других физических свойств. Клессон показал, что методом фронтального анализа можно осуществить количественный анализ смеси, состоящей из шести жирных кислот (на- [c.1490]

    Перспективным направлением для качественного анализа является комбинированное использование осадочной хроматографии в сочетании с распределительной. Идея такого рода комбинации в хроматографическом методе разделения смесей заключается в следующем. Вначале получают первичную осадочную хроматограмму ионов на бумаге, пропитанной органическим осадителем, а затем промывают ее не водой, а органическим растворителем, способным частично растворять осадки и переносить их с различной скоростью. Например, можно получить осадочную хроматограмму путем нанесения раствора, содержащего смесь катионов меди, кобальта и никеля (двухвалентных) на бумагу, предварительно обработанную рубеановодород-ной кислотой и парами аммиака, а потом разогнать образовавшиеся зоны осадков водно-бутаноловым и водно-про-паноловым растворителями [161]. [c.209]

    Аналитическая химия эластомеров требует значительных усилий, так как речь идёт о разветвленных, сильносшитых высокомолекулярных соединениях. В зависимости от вида и количества содержащихся веществ, таких как мягчители, противостарители или вулканизующие агенты, вводимых с целью достижения специфических технологических свойств и создания устойчивости к нагреванию и внешней среде, можно проводить анализы экстрактов, полученных с подходящими растворителями. При этом необходимо принимать во внимание, что особенно вулканизующие агенты, как, впрочем, и противостарители, первоначально введённые в смесь, во время реакций сшивания или при использовании эластомеров количественно изменяются или химически связываются. При этом, исходя из побочных продуктов, можно сделать заключение о механизме реакций и качественном составе смеси. Наряду с тонкослойной хроматографией, для грубого качественного анализа в литературе в качестве метода исследования рассматривается газовая хроматография (ГХ). Использование высокоэффективной жидкостной хроматографии (ВЭЖХ) для аналитических исследований эластомеров описано в литературе лишь при разрешении специальных проблемных задач [8]. [c.584]

    В работе Берозы и Боумана [1], выполненной с целью проведения качественного анализа пестицидов, эксперимент проводили следующим образом. Из 5 мл аликвотной части раствора анализируемой смеси в неполярном растворителе отбирали пробу (5 мш) для проведения анализа методом газовой хроматографии. Оставшуюся часть раствора (5 мл) волюметрической пипеткой помещали в градуированную центрифужную пробирку, снабженную притертой стеклянной пробкой. Затем в эту же пробирку добавляли равный объем полярного растворителя. Пробирку встряхивали в течение 1 мин. (температура опыта, при которой устанавливалось межфазное равновесие, 25,5° С). Объемы используемых жидких фаз перед смешением и после установления равновесия измеряли с целью контроля изменения объемов фаз. Как правило, изменения объемов фаз не наблюдалось. В случае образования эмульсии при смешении двух жидких фаз смесь подвергали центрифугированию с целью разделения слоев. Затем верхний (обычно неполярный) слой анализировали в тех же условиях, что и исходный раствор до экстракции. Принятая и используемая Берозой и Боулганом характеристика распределения, так называемая р-величина, определялась как отношение количеств анализируемого компонента в верхнем слое до и после экстракции. Используемые в качестве жидких фаз растворители были первоначально взаимно насыщены друг другом при температуре эксперимента. Чтобы избежать операции взаимного насыщения и иметь возможность проводить работу с неравными объемами растворителей, Боуман и Бероза предложили проводить распределение в аппарате, показанном на рис. 4. [c.39]


    Все же следует отметить, что реакции сухим путем в качественном анализе являются вспомогательными и применяются главным образом для предварительного испытания веществ. Главную роль играют реакции мокрым путем, происходящие между веществами в водных растворах. Поэтому исследуемое вещество должно быть предварительно растворено. В качестве растворителей употребляют чаще всего дистиллированную воду и кислоты (больше всего НС1 и HNO3) и реже другие жидкости, например царскую водку (смесь из 3 объемов концентрированной НС1 и I объема концентрированной HNO3), растворы щелочей и др. Одни вещества легко растворяются при обыкновенной температуре, другие приходится нагревать. [c.55]

    Подавляющее большинство реакций, применяемых в качественном анализе, проводится мокрым путем. Поэтому если анализу подлежит твордое вещество, то большая часть его переводится в раствор. Растворителями могут быть вода, соляная и азотная кислоты, смесь этих кислот (царская водка) и некоторые другие растворители. Иногда перед растворением испытуемое твердое вещество приходится предварительно сплавлять с некоторыми веществами (плавнями) при высокой температуре. Растворение вещества в воде чаще всего ограничивается распадом его на ионы и их гидратацией, например [c.13]

    Применение других растворителей (метилбутил- и пропилкетонов, содержащих НС1) рассмотрено в работе [80]. О неирерьшном хроматографическом разделении Li и К см. [81]. Хроматография на бумаге нашла в основном применение для качественного анализа щелочных металлов и для приближенного количественного их определения. Описано выделение с ее помощью изотопа s - из хлорида бария, облученного нейтронами [77], и из азотнокислого раствора облученного урана [69], причем в последнем случае опыты могут проводиться на колонках из целлюлозы. Для качественного разделения смеси щелочных металлов наиболее пригодны смеси, содержащие фенол [64, 67], и, в частности, фенол-метанольная смесь с H L Недостатком метода хроматографирования на бумаге является то, что разделение может производиться с максимальным количеством (100— 200 мкг) металла. Чувствительность химических методов обнаружения редких щелочных металлов в зонах — 1 —5 мкг. Эти два обстоятельства су- [c.42]

    Однако попытки автоматического перенесения хорошо зарекомендовавших себя принципов, приемов и методов масс-спектраль-ного анализа легких и средних нефтяных фракций на высокомолекулярную часть нефти успеха, как правило, не приносят. Этому факту можно дать много достаточно убедительных объяснений — здесь и увеличивающееся с ростом молекулярных масс компонентов число теоретически возможных изомеров, и все возрастающие трудности моделирования подобных смесей из-за отсутствия эталонных соединений, и, как следствие, невозможность строгой метрологической аттестации таких аналитических методик. Однако основной, более глубокой и принципиальной причиной является, по-видимому, неправомочность применения формализма структурно-группового анализа к тяжелой высоко-моле1 улярной части нефти [2]. Эту часть нефти нельзя рассматривать как смесь независимых невзаимодействующих более простых составляющих (компонентов), так как экспериментально установлена зависимость поведения ее (в том числе и количества выпадающей из нее дисперсной фазы) от температуры, рода и количества растворителя [3], а энергия межмолекулярных взаимодействий в этой части нефти близка к энергии обычной С — С связи [4]. Ввиду перечисленных особенностей поведения тяжелой части нефти попытки воспроизводимого фракциошфова-ния ее на более простые составляющие могут оказаться (и практически оказываются) неудачными из-за малейших неконтролируемых вариаций препаративного процесса. Поэтому априорная регламентация качественного состава тяжелых нефтяных смесей — обычный прием при разработке и использовании методик структурно-группового анализа средних нефтяных фракций — недостаточно корректна. [c.113]

    Если для жидкостей можно избежать применения растворителей, ведя измерения в тонких слоях, то для твердых веществ задача становится гораздо более сложной. Метод приготовления пленок испарением при нагревании в вакууме не является надежным, так как для многих испытанных образцов были обнаружены новые полосы поглощения, что могло явиться результатом различных превращений вещества (образование изомеров, полиморфные превращения), происходящих при испарении [23]. Приготовление взвеси мелко растертого вещества в очищенном парафиновом масле (Ыи]о1) или гексахлорбута-диене в основном пригодно лишь для качественных измерений из-за наличия сильных полос поглощения носителя и из-за невозможности определения содержания вещества с достаточной точностью. То же можно сказать и о различных видоизменениях этих методов [24]. В последнее время рекомендуется новый способ приготовления образцов в виде тонких таблеток. Для этого порошок, представляющий смесь мелко растертого КВг, прозрачного в инфракрасной области, и исследуемого вещества, подвергается в течение 15—20 мин. давлению порядка 20 г. В результате таблетка принимает вид стеклообразной массы КВг с равномерно распределенными вкраплениями частичек исследуемого вещества. Опытная проверка показала пригодность нового метода для количественных измерений [25—27]. Однако надо иметь в виду, что применение спектров поглощения веществ, снятых в твердом состоянии, для анализа жидких фракций, в которых эти вещества находятся в растворенном состоянии, может привести к ошибочным выводам. Имеющиеся опытные данные го ворят о наличии довольно значительных расхождений между ними. Так, для твердых парафинов в области 13—14,5 ц наблюдается дублет, тогда как в жидком состоянии и в растворе изооктана сохраняется лишь одна длинноволновая компонента с резко ослабленной интенсивностью [28]. Не исключена возможность, что аналогичным свойством обладают спектры многих других классов органических соединений с длинными парафиновыми цепями. В настоящее время делаются попытки объяснить эти явления с точки зрения теории поворотной изомерии и особенностей меж-молекулярного взаимодействия в кристаллической решетке [81]. [c.421]

    Качественная идентификация и количественное определение деспироля методом тонкослойной хроматографии [1, 2]. После выполнения газо-хроматографического анализа раствор в колбе упаривают до объема 0,2—0,3 мл и остаток количественно наносят на пластинку на расстоянии 1,5 см от края. Диаметр пятна должен быть не более 1 см. С двух сторон от пробы наносят стандартные растворы препаратов группы ДДТ и деспироля в количестве 5 и 10 мкг. Пластинку после нанесения проб помещают в хроматографическую камеру, содержащую смесь гексана и ацетона (4 1). После того как фронт растворителя поднимется на 10 см, пластинку вынимают и высушивают на воздухе, затем обрабатывают проявляющим реактивом АеМОз и облучают ультрафиолетовым светом в течение 30 мин. [c.23]

    Среди современных хроматографических методов, в значительной мере способствовавших развитию анализа органических и биоорганических соединений и совершенствованию способов препаративного разделения, заметное место занимает тонкослойная хроматография. В процессе разделения указанным методом анализируемая смесь перемещается вместе с подвижной фазой по тонкому слою порошкообразного сорбента, обычно нанесенного на стеклянную пластинку. В зависимости от природы сорбента при этом допускается использование одного или сразу нескольких принципов хроматографического разделения. Тонкослойная хроматография начала быстро развиваться примерно с 1958 г. главным образом благодаря работам Шталя [46] усовершенствовавшего методику ТСХ и предложившего практи чески современный ее вариант. До 1958 г. в печати, безусловно появлялись отдельные статьи, посвященные данной теме так первые статьи были опубликованы еще в конце прошлого века но они почти не были замечены. Истории развнтия хроматогра фии посвящен специальный раздел монографии Кирхнера [26] Главная причина относительно быстрого распространения ТСХ заключается в следующем этот метод позволяет достаточно быстро осуществить довольно эффективное разделение (400— 3000 теоретических тарелок в зависимости от характера и метода разделения [16]), используя простые и недорогие приспособления. Другое преимущество ТСХ — широкая область применения— от качественного и полуколичественного анализа до препаративного разделения. Так, методом ТСХ можно обнаруживать следы соединений и выделять за одну о-перацию порядка одного грамма соединения, пользуясь легкодоступными сорбентами, растворителями и обнаруживающими реагентами. Кроме [c.85]

    Детерс [20] использовал кислый силикагель с хлороформом в качестве подвижной фазы для качественного и кол чествен-ного анализа пентахлорфенола слои силикагеля он предварительно обрабатывал 0,05 н. щавелевой кислотой. Чтобы оценить количественно содержание пентахлорфенола, пятна элюировали с хроматограммы и измеряли поглощение элюата в УФ-области спектра. Фурукава [21] разделил смесь фенолов на хроматографических полосках с кислым силикагелем. Хусаин [,22] хроматографировал на тонких слоях силикагеля G группу из 23 хлорпроизводных крезолов и ксиленолов. При этом были исследованы различные системы растворителей, лучшей из них оказался ксилол, насыщенный формамидом. л-Хлоркрезолы не удалось отделить от исходных крезолов, а 6-хлор-2-метилфенол не удалось отделить от 4,6-дихлор-2-метилфенола. Этот метод применялся для того, чтобы проследить за ходом хлорирования 2,5-диметилфенола газообразным хлором в среде тетрахлорида [c.242]

    Нейроактивное вещество для анализа выделено следующим путем. Спнрто-вый экстракт лиофильного диализата крови хроматографировали на бумаге, пpи 5e-няя в качестве растворителя смесь бутанола 1, уксусной кислоты и воды (4 1 5). Активное вещество, -кстрагированное из полосок бумаги, соответствующих значению 0,6, повторно хроматографировали, используя в качестве растворителя смесь бензола, воды, бутанола и метанола (1 1 1 2). Для анализов брали вещество, экстрагированное из полосок, соответствующих значению Р 0,90—0>95. Для проведения каждой качественной пробы брали вещество в количестве соответствующем содержащемуся в 10 жл крови каждую пробу повторяли 3 раза. [c.157]

    Пятый, наиболее простой способ получения хроматограмм в потоке был предложен в 1940 г. Тизелиусом [40, 41] и описан С. Классоном [8, 12]. Этот способ называется фронтальным анализом, и он заключается в том, что через столбик адсорбента пропускается только исследуемая смесь, и хроматограмма не проявляется. Это дает возможность произвести качественный и количественный анализ смеси без разделения ее на отдельные компоненты при этом наиболее слабо адсорбирующийся компонент может быть отделен от смеси в чистом виде, но не количественно. Указанный способ широко применяется для определения относительной силы адсорбционного сродства, т. е. адсорбируемости какого-либо вещества в растворе любого растворителя, по отношению к данному адсорбенту, и он весьма удобен для определения изотермы адсорбции. Обычно при определении адсорбируемости и снятии изотермы адсорбции метод заключается в том, что измеряется объем вытекшего чистого растворителя до проскока (т. е. до появления в фильтрате) исследуемого вещества на основании выделившегося объема чистого растворителя вычисляют количество адсорбированного вещества, которое характеризует силу сродства данного вещества к адсорбенту. О том, как экспериментально определять адсорбируе-мость веществ, будет сказано ниже. [c.47]


Смотреть страницы где упоминается термин Смеси растворителей качественный анализ: [c.39]    [c.21]    [c.53]    [c.53]    [c.131]    [c.232]    [c.368]    [c.528]    [c.151]    [c.154]   
Методы органической химии Том 2 Издание 2 (1967) -- [ c.933 ]

Методы органической химии Том 2 Методы анализа Издание 4 (1963) -- [ c.933 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ качественный

Смеси ПАВ качественный анализ



© 2025 chem21.info Реклама на сайте