Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Радиационный метод воздействия

    Суммарное воздействие перечисленных выше параметров решающим образом влияет на чувствительность радиационного метода контроля. Поэтому оператор должен так подобрать режимы просвечивания, чтобы обеспечить обнаружение недопустимых дефектов и высокую производительность контроля. Для конкретного изделия оператор должен выбрать источник излучения, тип пленки и усиливающего экрана, а затем определить фокусное расстояние и время экспозиции (МЭД). Фокусное расстояние можно определить, задаваясь величиной геометрической нерезкости изображения Р = О  [c.120]


    Требования по технике безопасности при применении различных методов значительно отличаются. Магнитный, ультразвуковой и токовихревой контроль не требуют специальных мер защиты. При капиллярном контроле необходима защита от жидкостей, паров и органических растворителей, а также от ультрафиолетового облучения, а при радиационном — от воздействия ионизирующих излучений и образующихся в воздухе вредных для организма человека газов— озона и окислов азота. [c.74]

    Развитие фотохимии и радиационной химии породили такие методы, как импульсный фотолиз и импульсный радиолиз. Данные методы основаны на получении мощного светового потока или жесткого излучения за короткий промежуток времени, которые воздействуют на химическую систему и приводят к созданию больших концентраций реакционноспособных молекул. Отличие от релаксационных методов заключается в том, что под действием мощных световых, рентгеновских или Y-излучений происходят коренные изменения системы, а не просто небольшой сдвиг равновесия. Импульсные методы исследования широко применяются в излучении механизмов химических и физических процессов в химии, физике и биологии. При помощи метода импульсного фотолиза можно изучать такие реакционноспособные частицы, как свободные радикалы, ио Н-радикалы, ио ны, а также различные промежуточные продукты и состояния, образующиеся в ходе фотохимических превращений. [c.155]

    Радиационный метод воздействия начинает находить все более разнообразное применение при проведении химических реакций, главным образом для возбуждения процессов, обладающих цепным механизмом взаимодействия. Мы уже встречались с этим явлением при рассмотрении цепных реакций и встретимся еще при [c.556]

    Радиационный метод воздействия начинает.находить все более разнообразное применение при проведении химических реакций, главным образом для возбуждения процессов, обладающих цепным механизмом взаимодействия. Мы уже встречались с этим явлением при рассмотрении цепных реакций и встретимся еще при рассмотрении процессов получения высокополимеров, и их модифицирования. ,.  [c.548]

    Для систем, проводящих электрический ток (например, для растворов электролитов), методом, который позволяет осуществить химическое превращение, служит пропускание постоянного электрического тока — электролиз. В ряде случаев помогает радиационно-химическое воздействие на систему — облучение рентгеновскими либо радиоактивными лучами. [c.48]


    Радиационные методы возбуждения упругих волн [12] основаны на локальном в пространстве и времени воздействии ионизирующих излучений на вещество, при этом возможны два основных механизма возбуждения упругих волн  [c.81]

    Резонансный метод исследования и контроля реакторных материалов и изделий используется достаточно эффективно, прежде всего при отработке технологии новых материалов. Этим методом изучали свойства металлических и керамических материалов в широком интервале изменения температуры (от 4,2 К до 2500...3000 К), концентрации, при механических, химических, радиационных воздействиях [22]. Зависимость модуля упругости от плотности и зависимость резонансных частот от размеров изделия позволили использовать этот метод для изучения спекания керамических материалов. Основу указанных применений составляла связь характеристик упругости и плотности с другими физическими свойствами материала. Например, изучение изменения модуля упругости двуокиси урана при облучении в активной зоне ядерного реактора позволило сделать заключение о механизме радиационного повреждения этого материала на начальном этапе его работы в реакторе. О возможности использования резонансного акустического метода для контроля топливных таблеток ядерных реакторов уже упоминалось. [c.154]

    Из физических методов воздействия на поверхность политетрафторэтилена с целью изменения его поверхностных свойств следует прежде всего упомянуть радиационную прививку. Прививка полистирола и полиметилметакрилата на политетрафторэтилен была проведена как непосредственно при облучении в присутствии мономера [6], так и после предварительной радиационной обработки [7]. [c.515]

    А. С. Фрейдин, Ф. М. Малинский и В. Л. Карпов [129] разработали радиационный метод модификации древесины и других волокнистых материалов. Как известно, древесина в результате облучения становится хрупкой. Если же древесину пропитать некоторыми мономерами и подвергнуть воздействию -излучения Со ° до доз, значительно меньших, чем те, при которых наблюдается ухудшение ее свойств, то образуются материалы, обладающие свойствами как исходного продукта, так и образовавшегося полимера. [c.292]

    За последние годы в химической промышленности все чаще используют новые физические методы воздействия на вещество и течение различных реакций и процессов — сверхвысокие давления и температуры, радиационные излучения, упругие колебания звукового и ультразвукового диапазона частот и другие. [c.3]

    Успешно используются также физико-хими еские, в частности радиационные, методы модификации пластмасс. Поскольку воздействие на полимер жесткого излучения вызывает в нем [c.12]

    Радиационное окисление [5.5, 5.20]. Метод основан на воздействии ионизирующего излучения (V и р-лучи, ускоренные электроны, ускоренные ионы, нейтроны и др.) на обезвреживаемое соединение с получением ионов и возбужденных молекул, которые затем участвуют в реакциях. При действии излучений высоких энергий на разбавленные водные растворы органических соединений возникает большое число окислительных частиц, обусловливающих радикальное окисление. Полнота разложения соединений зависит от вида соединения, его начальной концентрации, продолжительности облучения и температуры стоков. Так, при очистке сточных вод от фенола с начальной концентрацией 100,0 мг/л разложение на 100% происходит через 1,5 ч, а при концентрации 10 мг/л — за 0,33 ч. [c.497]

    Несомненно, что дальнейшее развитие радиационной химии приведет к более широкому использованию этих новых мощных средств воздействия на химические и биологические процессы. Так, применение этих методов в медицине (рентгенотерапия, радиотерапия) уже в настоящее время привело к весьма ценным результатам. [c.557]

    Преимуществом стабильных изотопов являются их устойчивость и отсутствие ядерных излучений. Недостатки метода меченых атомов с применением стабильных изотопов сравнительно сложная техника обнаружения и наличие изотопных эффектов у легких элементов. В противоположность стабильным радиоактивные изотопы можно получать практически для всех элементов Периодической системы. Кроме того, радиоактивные изотопы обладают высокой чувствительностью, специфичностью и точностью определения. С другой стороны, возможность радиационного воздействия введенного изотопа на исследуемую систему является нежелательной. Влияние этого эффекта снижают применением низких концентраций радиоактивных изотопов. В настоящее время большинство исследований по методу меченых атомов проводится с радиоактивными изотопами. К сожалению, у некоторых элементов (таких, как кислород и азот) отсутствуют радиоактивные изотопы с подходящими значениями периода полураспада. При этом приходится прибегать к более трудоемким методам с применением стабильных изотопов (например, О, Ы). Ранние исследования по методу меченых атомов базировались почти исключительно на использовании стабильных изотопов, так как большинство радиоактивных изотопов еще не было известно или не было доступно исследователям. [c.412]


    Таким образом, с помощью мессбауэровской спектроскопии можно получить информацию, необходимую для определения структуры химических соединений, выявления тонких деталей химической связи и описывать быстрые реакции. Возможно и чисто аналитическое применение, которое в дальнейшем будет расширяться. Чувствительность метода позволяет даже исследовать динамику атома примеси при концентрации 10- % (ат.), изучать радиационные и другие дефекты в материалах (в том числе на поверхности высокодисперсных систем и в пленках), механизм воздействия ультразвука и радиочастотных колебаний на параметры технологических процессов, диффузию атомов в твердых телах и на их поверхности. Установлено, например, что ионы Ре -ь, локализованы на поверхности силикагеля и цеолита даже после адсорбции воды, в то время как в ионообменной смоле КУ-2 после адсорбции воды ионы Ре + диффундируют в поры смолы, образуя диффузный слой, компенсирующий отрицательный заряд сульфогрупп. По-видимому, большое значение будут иметь методы определения состояния элементов с переменной степенью окисления (табл. 31.8), выявления фаз, включенных в сложные композиции в незначительных количествах, и др. [c.748]

    К Р. близко примыкает ядерная химия, важнейшие задачи к-рой-изучение хим. методами продуктов ядерных реакций, выявление связи между физ.-хим. и ядерными св-вами в-в. В ряде случаев, напр, при изучении хим. св-в сверхтяжелых элементов (ат. н. 2 100), к-рые доступны для исследования только непосредственно после их получения в ядерных р-циях, ядерная химия смыкается с Р. Радиационная химия, изучающая превращения в в-вах под воздействием ионизирующих излучений, тесно связана с Р. в тех случаях, когда ионизирующее излучение обусловлено радиоактивными атомами, содержащимися в самом исследуемо.м в-ве. [c.172]

    В свою очередь, результаты химической кинетики составляют научный фундамент синтетической химии и химической технологии. Разработанные в кинетике способы воздействия на реакцию используются для управления химическим процессом и создания кинетических методов селективного получения химических соединений. Приемы замедления (ингибирования) химических процессов используют для стабилизации веществ и материалов. Кинетическое моделирование применяют для прогнозирования сроков службы изделий. Кинетические параметры реакций веществ, содержащихся в атмосфере, используют для прогнозирования протекающих там процессов, в частности образования и распада озона (проблема озонного слоя). Кинетика в качестве важной составной части входит в фотохимию, электрохимию, биохимию, радиационную химию, гетерогенный катализ. [c.17]

    Металлические материалы широко применяют в аппарато- и машиностроении, катализе, электротехнике, радио- и электронной промышленности. Действительно, чтобы осуществить любой процесс, например химико-технологический, необходимо располагать соответствующей аппаратурой. Использование представлений макрокинетики, теории химических реакторов, а также методов математического и физического моделирования в принципе позволяет найти оптимальную для данного процесса конструкцию и размеры аппарата. Но тогда возникает вопрос, из каких материалов следует делать эту аппаратуру, чтобы она была способна противостоять разнообразным агрессивным воздействиям, в том числе химическим, механическим, термическим, электрическим, а в ряде случаев также радиационным и биологическим. Выбор конструкционных материалов осложняется, когда перечисленные воздействия сопутствуют друг другу. Кроме того, в последнее время требования к материалам, используемым только в химической технологии, повысились по двум причинам. Во-первых, значительно шире стали применять экстремальные воздействия, такие, как сверхвысокие и сверхнизкие температуры и давления, ударные и взрывные волны, ионизирующие излучения, биологические ферменты. Во-вторых, переход к аппаратам большой единичной мощности по производству основных химических продуктов создает исключительно сложные проблемы в изготовлении, транспортировке, монтаже и эксплуатации подобных установок. Например, на современном химическом предприятии можно видеть контактные печи для производства серной кислоты диаметром 5 м, содержащие до 5000 различных труб, реакторы синтеза аммиака и ректификационные колонны высотой более 60 м. Сочетание механических свойств, таких, как прочность, вязкость, пластичность, упругость и твердость, с технологическими свойствами (возможность использования приемов ковки, сварки, обработки режущими инструментами) делает металлические материалы незаменимыми для построения химических реакторов самой разнообразной формы и размеров. [c.135]

    Наиболее перспективными из указанных воздействий следует считать электрохимические, магнитные и вибрационные ( в том числе ультразвуковые). В будущем могут оказаться эффективными также радиационные, фотохимические и звуковые методы повышения эффективности отдельных стадий разделительных процессов. [c.127]

    Физико-химические методы воздействия на разделяемые системы— такие, как магнитная (М), ультразвуковая (У), электрическая (Э) обработка, коагуляция (К), флотация (Ф), флокуля-ция (Фл), увлажнение (В), радиационное окисление (Р) и введение вспомогательных материалов (ВМ), — как правило, ускоряют процессы отстаивания и самостоятельно не используются. [c.472]

    Практич. измерения в И. м. осуществляют с помощью мостов перем. тока или приборов с фаэочувствит. системой, напр, вектор-полярографа. В первом способе измеряют составляющие импеданса системы, во втором — ток или пропорциональное ему напряжение, к-рые соответствуют составляющим импеданса. р. М. Салихджанова. ИМПУЛЬСНЫЙ РАДИОЛИЗ, метод исследования быстрых хим. р-ций и их короткоживущих продуктов при радиационно-хим. воздействии на в-во коротким импульсом излучения, чаще всего пучком быстрых электронов. В осн, испольэ. для исследования быстрых р-ций атомов водорода, радикала гидроксила, сольватированных и <сухих электронов, не захваченных средой. В кач-ве источников электронов примен. гл. обр. линейные ускорители регистрацию частиц осуществляют в осн. скоростной спектроскопией. [c.218]

    Фотополимериаация) распада различных соединений, содержащих лабильные связи, или при окислительно - восстановительных реакциях. Иногда свободные радикалы образуются при разрыве связей С—С в полимерных цепях в результате воздействия механич. напряжений, осмотич. сил, ультразвуковых колебаний и т. д. эти реакции используют для инициирования процессов получения привитых сополимеров (см. Механохимия, Привитые сополимеры). Существенное значение приобрели радиационные методы И. п. (см. Радиационная полимеризация). [c.420]

    Я начал свое выступление с того, что круг вопросов, рассматриваемый симпозиумом, представляется мне относящимся к обширной области экстремальных воздействий, частью которой и является сама химия высоких энергий. Мне хотелось бы обратить внимание на большой интерес, который может представлять сочетание различных типов экстремальных воздействий на вещество. Например, в последние годы новые перспективы открыло сочетание методов химии высоких энергий с низкими температурами. Это сочетанк е в условиях твердого тела создает ситуацию, в которой процессами, определяющими химические превращения, являются процессы переноса энергии и процессы переноса заряда. Из изученных к настоящему времени очень интересными оказались, например, процессы радиационной полимеризации в твердых телах при низкой температуре. С другой стороны, процессы твердофазной полимеризации, возможно, и в отсутствие радиации связаны с передачей возбуждения, и применение радиационных методов служит здесь для расшифровки роли переноса энергии вообще. [c.8]

    Частичная деполимеризация угля сопровождается повышением реакционной способности в процессе ожижения. При превышении оптимальных параметров активагщи интенсифицируются процессы сшивания органической массы угля, приводящие к снижению ее способности к термохимической деструкции. Показано, что радиацион-но-химическая обработка пучком ускоренных электронов в присутствии полярного растворителя при дозе 10 — 50 Мрад является наиболее эффективным методом воздействия на бурый уголь. Наибольший активационный эффект в ожижении достигается для угля с повышенным содержанием щелочноземельных катионов металлов, который в исходном состоянии отличается низкой способностью к ожижению. [c.232]

    Радиозащитные свойства отдельных химических соединений (радиопротекторов) известны уже около сорока лет, но интерес к ним не снижается, а возрастает. Некоторые из радиозащитных средств стали фармакопейными препаратами. Поиск новых эффективных радиопротекторо и изучение механизма их действия — одно из перспективных направлений радиобиологии. И это не случайно. Ионизирующая радиация все шире внедряется в практику. Радиотерапия злокачественных новообразований продолжает оставаться одним из эффективных методов лечения. Поэтому химическая защита окружающей опухоль здоровой ткани от повреждающего воздействия ионизирующей радиации является перспективной проблемой радиационной медицины. Можно согласиться с автором книги, который говорит о необходимости защиты человека от проникающей радиации при ликвидации последствий аварий на ядерных установках (работа аварийных бригад). [c.7]

    Успехи X. 20 в. связаны с прогрессом аналит. X. и физ. методов изучения в-в и воздействия на них, проникновением в механизмы р-ций, с синтезом новых классов в-в и новых материалов, дифференциацией хим. дисциплин и интеграцией X. с другими науками, с удовлетворением потребностей совр. пром-сти, техники и технологаи, медицины, строительства, сельского хозяйства и др. сфер человеческой деятельности в новых хим. знаниях, процессах и продуктах. Успешное применение новых физ. одов воздействия привело к формированию новых важнЬ1х направлений X., напр, радиационной химии, плазмохимии. Вместе с X. низких температур (криохимией) и X. высоких давлений (см. Давление), сонохимией (см. Ультразвук), лазерной химией и др. они стали формировать новую область - X. экстремальных воздействий, играющую большую роль в получении новых материалов (напр., для электроники) или старых ценных материалов [c.259]

    Оптически детектируемый ЭПР (ОД ЭПР) дает информацию о своб. радикалах в радикальных парах, возникающих при радиационном или УФ воздействии в кристаллах и жвдкой фазе. Спиновое состояние радикальной пары (синглетное или триплетное) можно изменить вынужденным путем, вызывая спиновые переходы партнеров пары под действием резонансного микроволнового поля во внешнем магн. поле. Спектр ЭПР при этом регисфируется пзтем изменения выхода продуктов из радикальной пары любым аналит. методом. Наиб, чувствительность получается при использовании оптич. методов, особенно по измерению люминесценции. При изменении напряженности мат. поля записываемый спектр люминесценции в точности повторяет спектр ЭПР радикалов, возникающих в радикальных парах. Чувствительность метода составляет 10-10 частиц в образце, что позва иет получать сведения о спектрах ЭПР, строении и превращениях короткоживущих радикалов, время жизни к-рых составляет порядка 10 с. [c.451]

    Свободные радикалы в полимернзацноннон среде могут возникать в результате теплового воздействия (тер. ическое инициирование), под действием света (фотоипициирование), радиоактивного облучения радиационное инициирование). Однако эти способы инициирования на практике применяются редко, поскольку они или не обеспечивают нужной скорости полимеризации, или вызывают нобочные процессы. Поэтому в промышленных условиях применяют метод химического инициирования, прн котором используют вещества (инициаторы), легко распадающиеся с образованием свободных радикалов, К ним относятся пероксиды, гидропероксиды, азо- и диазосоединения, окислительно-восстановите [ьные системы. [c.112]

    Метод радиационного окисления может быть использован для очистки сточных вод от фенолов, цианидов, красителей, инсектеци-дов, лигнина, а также ПАВ. Очистка сточных вод осуществляется при воздействии на них излучения высоких энергий, в качестве источников которых используются радиоактивный кобальт и цезий, ТВЭЛы, радиационные контуры, ускорители электронов. Загрязняющие воду вещества вступают в реакцию с продуктами радиолиза воды ОН, НО2 (в присутствии кислорода), Н2О2 — перечисленные вещества являются окислителями, а также Н" и е гидр, (гидратированный электрон). [c.124]

    Основные достоинства полимерных. материалов низкая стоимость, сравнительная простота изготовления,. малая энергоемкость и. шлоот-ходность методов по.лучсния и переработки, невысокая плотность, высокая стойкость к агрессивным средам, атмосферно гу и радиационному воздействиям и ударным нагрузкам, низкая теплопроводность, высокие оптические, радио- и электротехнические свойства. Основные недостатки низкая тепло- и тер.мостойкость, большое тепловое расширение, склонность к ползу-чести и релаксации напряжений, ДJ я многих полимеров - горючесть. [c.48]

    Поликонденсацией ароматических диаминов и дихлорангидридов ароматических дикарбоновых кислот получают ароматические полиамиды, обладающие повышенными физико-механическими свойствами и теплостойкостью, например полифениленизофта-ламид, называемый в СССР фенилоном-. Фенилон обладает высокой радиационной и химической стойкостью, а также стойкостью к воздействию высоких температур. Он получается из л1-фениленди-амина и дихлорангицрида изофталевой кислоты методом межфазной поликонденсации или низкотемпературной поликонденсации в растворе  [c.227]

    Физико-химические процессы переработки отходов широко применяются в индустриальных технологиях металлургии, основных химических производств, органического синтеза, энергетики и особенно в природоохранных технологиях (пыле- и газоулавливание, очистка сточных вод и т.п.). В утилизационных способах они образуют наиболее представительную группу методов, используемых в основном не столько для переработки и тилизации, сколько для обезвреживания промышленных и бытовых отходов. В этом плане можно назвать методы коагуляции и флокуляции, экстракции, сорбции, ионного обмена, флотации, ультрафиолетового излучения, радиационного воздействия и другие, подробно рассмотренные ранее (Авт. Экология.,.). [c.19]

    Радиационно-химические методы очистки относятся к числу новых физико-химических процессов, разрабатываемых в нашей стране и за рубежом. В их основе лежит воздействие на выбросы потоком ускоренных электронов. Как следствие, в них образуются валентноненасыщенные возбужденные частицы с пЬложительными или отрицательными зарядами (ионы, радикалы), обладающие повышенной химической активностью. Под их воздействием в газах происходит радиолиз токсичных элементов, т.е. их химические превращения. Продукты радиолиза нетоксичны. [c.395]

    Сравнивая рентгеновские толщиномеры листовых полуфабрикатов и изделий с толщиномерами аналогичного назначения, реализующими другие методы нераэрушающего контроля качества, следует отметить их бесконтактность по сравнению с ультразвуковыми толщиномерами, слабое влияние небольших вариаций химического состава, термообработки и других воздействий на материал по сравнению с магнитными и вихретоковыми методами. Недостатками радиационных толщиномеров является их сложность и повышенные требования к соблюдению правил техники безопасности при их использовании. [c.347]

    Благодаря большой чувствительности УЗ-волн к изменению свойств среды с их помощью регистрируют дефекты, не выявляемые другими методами. Возможны различные варианты УЗ-методов, осуществляемые в режиме бегущих и стоячих волн, свободных и резонансных колебаний, а также в режиме пассивной регистрации упругих колебаний, возникающих при механических, тепловых, химических, радиационных и других воздействиях на объект контроля. При обработке информахщи могут быть определены различные характеристики УЗ-сигналов - частота, время, амплитуда, фаза, спектральный состав, плотности вероятностей распределения указанных характеристик. Наконец, простота схемной реализации основных функциональных узлов позволяет соз -дать простые и легко переносимые приборы для УЗ-контроля, имеющие автономные источники питания, рассчитанные на многие месяцы работы в полевых условиях. Отмеченные достоинства УЗ-метода в полной мере реализуются при проектировании и эксплуатации УЗ-приборов и систем НК только при правильном и достаточно глубоком понимании физических основ УЗ-конт-роля. Даже при автоматизированном УЗ-контроле остается значительной роль человеческого фактора в определении оптимальных условий контроля, интерпретации его результатов и обратном влиянии контроля на технологический процесс. Не менее важным является и дальнейшее развитие УЗ-метода с целью улучшения основных показателей его качества - чувствительности и достоверности - применительно к конкретным задачам технологического и эксплуатационного контроля. [c.138]

    Другие беспленочные методы радиационного контроля. Развитие электрорентгенографической техники привело к созданию сканирующих электрорентгено-графических систем. В этих системах могут быть использованы пластины со слоями толщиной 300. .. 600 мкм аморфного селена с добавками мышьяка, на которые накладываются однородные электрические заряды до потенциала выше 1000 В. После воздействия рентгеновского излучения потенциальный рельеф считывается матрицей микроэлектрометров, содержащей, например, 130 элементов. После нескольких проходов по пластине в двух взаимно перпендикулярных направлениях может быть считан потенциальный рельеф с пластин достаточно большой площади за 1,5 мин. Линейный диапазон [c.99]


Смотреть страницы где упоминается термин Радиационный метод воздействия: [c.151]    [c.2]    [c.183]    [c.128]    [c.460]   
Краткий курс физической химии Издание 3 (1963) -- [ c.550 ]




ПОИСК





Смотрите так же термины и статьи:

Методы радиационные

Радиационное воздействие



© 2025 chem21.info Реклама на сайте