Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Интерпретация спектров

    На основе теории валентных связей (МЕС) и теории кристаллического поля (ТКП) невозможно достаточно полно описать свойства комплексных соединений. МВС, хотя и дает наглядное представление о химической связи между атомами, но ограничивается только качественными объяснениями. Не приводится интерпретация спектров комплексов и детальное объяснение магнитных свойств, не учитываются энергетические и другие факторы при образовании комплексов. Достоинство ТКП в возможности количественных расчетов и в сопоставлении теории с экспериментом, ио это сопоставление далеко не всегда на пользу ТКП. Для комплексов, в которых энергия делокализации играет значительную роль, например для систем, в которых существуют я-связи, электростатическая теория непригодна. ТКП не рассматривает электронную структуру лигандов и принимает их как неизменные частицы. Невозможность удовлетворительного описания свойств комплексов в МВС и ТКП в значительной степени связана с тем, что обе теории исходят из одностороннего и абстрактного предположения о природе связей в комплексах — чисто ковалентной (в МВС) или чисто ионной (в ТКП). Эти недостатки в известной мере преодолеваются в теории поля лигандов, которая использует метод молекулярных орбиталей (метод МО). [c.232]


    Протон На, связанный с центральным углеродным атомом, во всех случаях оказывается наименее экранированным. Его сигнал представляет собой сложный симметричный мультиплет, обусловленный расщеплением на двух парах концевых протонов. Два других сигнала принадлежат сим-протонам Нь и амги-протонам Не, каждый из них представляет собой дублет, вызванный расщеплением на центральном протоне. Различие в величинах констант спин-спинового взаимодействия /аЬ = 6—8 Гц и /ас = 10—15 Гц позволяет делать однозначное отнесение сигналов при интерпретации спектров ЯМР. си -Протоны Нь всегда менее экранированы, чем анти-протоны Не, и поэтому дают сигнал в более слабом поле. [c.108]

    Решение более общих задач исследования смесей также зависит от количества имеющихся спектроскопических данных. Для интерпретации спектра в первом приближении используются таблицы характеристических частот колебаний отдельных структур и связей [79, 80, 82, 149, 187, 189, 150 и др. ]. При углубленном анализе материала привлекаются уже более подробные данные, которые также имеются по всем классам органических соединений [79, 81, 197, 158, 151, 189, 207]. [c.117]

    КАЧЕСТВЕННАЯ ИНТЕРПРЕТАЦИЯ СПЕКТРОВ ЯМР ПАРАМАГНИТНЫХ МОЛЕКУЛ [c.173]

    Данная глава является продолжением гл. 9, и прежде, чем приступить к чтению изложенного здесь материала, следует хорошо понять принципы, рассмотренные в гл. 9—11. Однако в случае комплексов ионов переходных металлов основой интерпретации спектров ЭПР служит теория поля лигандов, и по этой причине изложение материала в настоящей главе связано с его изложением в гл. 9 лишь косвенно. [c.203]

    Применение масс-спектрометрии для идентификации очевидно. Чтобы получить воспроизводимый спектр, обычно используют электронный пучок с энергией 40 — 80 эВ, поскольку этот ускоряющий потенциал выше потенциала возникновения большинства фрагментов. Как показывают уравнения (16.6) — (16.16), может происходить много различных процессов фрагментации, приводящих к большому числу пиков в спектрах простых молекул. На рис. 16.3 изображены пики достаточной интенсивности, обнаруженные в масс-спектре этанола. Учитывая очень слабые пики, которые на этом рисунке не показаны, в общей сложности в масс-спектре этанола наблюдается около 30 пиков. Эти пики низкой интенсивности представляют большую ценность для идентификации, но обычно при интерпретации спектра (т. е. при отнесении процессов фрагментации, приводящих к этим пикам) их не рассматривают. Полезная сводка литературных источников по масс-спектрам многих соединений (в основном органических) приведена в списке литературы в конце главы. Интересный пример идентификации продемонстрирован на рис. 16.4, где показаны масс-спектры трех изомеров этилпиридина. Спектры этих трех очень сложных соединений заметно различаются, что представляет ценность для идентификации. Оптические антиподы и рацематы дают идентичные спектры. Проблему при идентификации создают примеси, поскольку основные фрагменты этих примесей приводят к появлению в масс-спектре нескольких пиков низкой интенсивности. Если одно и то же вещество приготовить в двух различных растворителях, то спектры могут достаточно различаться при условии, что весь растворитель не удален из вещества. Загрязнение углеводородной смазкой также может привести ко многим линиям. [c.320]


    Использование электронных спектров для получения структурной информации прекрасно иллюстрируют результаты исследования электронной структуры иона ванадила [38]. При интерпретации спектра ва-надил-иона VO полагают, что в связи V — О имеет место значительное я-связывание. Соединения, в которых, согласно данным рентгеноструктурного анализа, содержится группа VO , дают сходные электронные спектры переноса заряда и в твердом состоянии и в растворе. Поэтому можно предположить, что водные растворы этих комплексов содержат группы УОЩ О) , а не ViH O) . Протонирование VO в принципе должно заметно влиять на спектр переноса заряда. Предполагается, что кислород не протонируется, поскольку его основность ослаблена из-за образования я-связи с ванадием. Полный расчет по методу МО для VOiHjO) представлен в статье [38], там же дано отнесение полос в спектре водного раствора V0S04-5H20. Аналогичные исследования других окси-катионов также свидетельствуют о значительном п-связывании металл — кислород [39] и помогают установлению электронной структуры этих частиц. [c.108]

    Спектры молекул обычно хорошо известны. Колебательный спектр радикалов в первом приближении можно получить из спектра молекулы путем исключения из известного спектра молекулы трех колебаний (одного валентного и двух деформационных), связанных с колебаниями исчезнувшей С—Н связи при условии, конечно, если известна интерпретация спектров соответствующих молекул. [c.190]

    Интерпретация спектров соответствует таковой в оригинальных работах [118, 176, 248]. Д.ЛЯ обеих молекул наблюдено по 9 (из общего числа 10) фундаментальных частот (табл. 16) их отнесение не вызывает сомнений. Интерпретация слабых полос, наблюденных в работе [176], много менее надежна. [c.510]

    В чем состоит аналогия в интерпретации спектров ионов с конфигурациями и d  [c.611]

    Если даже ограничиться рассмотрением только октаэдрических комплексов переходных металлов первого ряда, то и для них имеется большое разнообразие, так как у них может быть до 10 -электронов и до 5 неспаренных электронов. При анализе спектров ЭПР этих систем необходимо знать число указанных электронов, рассматривать возможные эффекты Яна — Теллера и крамерсовское вырождение (см. выше). Для переходных металлов второго и третьего рядов спин-орбитальное взаимодействие возрастает, так что наблюдение и интерпретация спектров ЭПР их комплексов становится еще гораздо труднее. [c.72]

    ПРИЛОЖЕНИЯ И ИНТЕРПРЕТАЦИЯ СПЕКТРОВ ЯКР [c.98]

    Сложную картину представляют фотоэлектронные спектры комплексов переходных металлов. В связи с наличием -электро-нов в них значительно сильнее, чем у молекул с замкнутыми оболочками, релаксационные эффекты, а порядок расположения уровней у иона и молекулы может быть разным. Для разумной интерпретации спектров этих комплексов необходимо сопоставление их в рядах родственных соединений. Важным моментом при изучении фотоэлектронных спектров комплексов является также то, что -электроны сильнее возбуждаются линией Не (II), чем Не(1а), в отличие от 5- и р-электронов. Поэтому в спектре, возбуждаемом линией Не (II), полосы, относящиеся к ионизации с -орбиталей, интенсивнее, чем в спектре того же образца, возбуждаемом линией Не(1 ). [c.154]

    Глава X. Анализ и интерпретация спектров. Определение симмет рии и структуры молекул........... [c.266]

    Кроме спектра ПМР и брутто-формулы вещества для установления структурной формулы имеются данные о его природе или происхождении, без которых однозначная интерпретация спектра была бы невозможна. [c.16]

    Второй, не менее важный этап интерпретации спектра ЯМР состоит в определении положения в молекуле магнитных ядер, дающих обнаруженные в спектре сигналы. Основанием для такого соотнесения сигналов служат их положение (химический сдвиг) и структура (мультиплетность, значения констант спин-спинового взаимодействия). Прежде чем сопоставлять химический сдвиг каждого из сигналов с табличными данными, полезно учесть перечисленные ниже общие закономерности расположения сигналов в спектрах ПМР. [c.18]

    Совместное использование спектров ЯМР 1 С и ПМР, а также интерпретация спектра ЯМР С в комплексе данных нескольких физических методов рассматривается в последней главе книги. [c.146]

    Следует быть особо внимательным при разметке шкалы массовых чисел, так как ошибка в определении массовых чисел главных пиков даже на единицу может сделать интерпретацию спектра невозможной. [c.173]

    Для правильной интерпретации спектров ЯГР необходимо учитывать и довольно большое время наблюдения . Так, при изучении Ре не было обнаружено линий Ре что по- [c.203]

    Отметим, что знание значений потенциалов в позициях ионов и электростатической энергии кристаллов представляет интерес при решении задач, связанных с рассмотрением наиболее вероятных путей диффузии и самодиффузии в твердом теле, энергией образования вакансий и внедренных ионов при интерпретации спектров ядерного гамма-резонанса. [c.224]

    Приведенная выше интерпретация спектров ЯМР аддуктов (С4071Ч11)2 с изопреном основана на том, что сын-протоны метиленовой группы двух геометрических изомеров IV и V имеют небольшое различие в химических сдвигах. Однако наиболее существенная разница между этими двумя комплексами состоит в положении метиновых протонов (Не в комплексе IV и Н в комплексе V). Изучение взаимодействия (С407Ы11)2 с 1,1,4,4-тетрадейтеро изопреном (СВ2=С—СН=С02) позволило более четко и наглядно [c.119]


    Выводы термодинамического анализа подтверждаются данными ЯМР. Например, коэффициент самодиффузии адсорбированной воды в двухслойном гидрате Ма-вермикулита (0 я=10 м / ) [86] почти на порядок ниже, чем в жидкой воде см /с). Тем не менее время жизни протонов (т) в гидратационной оболочке обменных катионов короче, чем в жидкой воде. Это указывает на более высокую степень диссоциации (более выраженную кислотность) молекул воды, адсорбированной слоистыми силикатами, по сравнению с объемной водой. К сожалению, из-за неточностей в интерпретации спектров ЯМР первые оценки кислотных характеристик межслоевой воды монтмориллонита в работах [99, 100] оказались сильно завышенными. По данным [99], степень диссоциации воды в однослойном гидрате На- и двухслойном Са-монтморил-лонита в 10 раз выше, чем в жидкой воде. Согласно [100], в однослойном гидрате На-фтормонтмориллонита около 60% межслоевой воды существует в виде ионов НаО+ и ОН . [c.38]

    При изучении системы С6Н5С2Н5—А1Вгз [160, с. 173] в присутствии кислорода методом ЭПР наблюдается два рода сигналов. Сигнал а (рис. 3.4), появляющийся сразу после продувки кислородом воздуха, имеет семь групп линий, которые обусловлены взаимодействием неспаренного электрона с щестью эквивалентными протонами, характеризующимися константой взаимодействия йи равной 7,40 Э. Каждая линия в группе дополнительно расщепляется не менее чем на 11 линий с константой Яг., равной 1,17 Э. Для интерпретации спектра построены теоретические спектры с набором констант и числа протонов. Полное совпадение экспериментального и теоретического спектров наблюдается для парамагнитной частицы, у которой щесть эквивалентных протонов с й1 = 7,40 Э, четыре эквивалентных протона с 2 = 2,28 Э и два эквивалентных протона с аз=1,14 Э. Отсутствие в исходном этилбензоле шести эквивалентных протонов свидетельствует о том, что свободный радикал представляет собой продукт превращения углеводородов. [c.83]

    Приступая к обсуждению энергии переходов ЭПР, прежде всего познакомимся с электрон-ядерным сверхтонким взаимодействием (СТВ). Атом водорода (в свободном пространстве) представляет собой достаточно простую систему ввиду его сферической симметрии и отсутствия анизотропных эффектов. Рассматривая явление ЭПР, мы будем использовать оператор Гамильтона, называемый эффективным спин-гамильто-нианом, который количественно описывает все наблюдаемые эффекты и позволяет осуществить полную интерпретацию спектра ЭПР. [c.9]

    Если электрон делокализован на нескольких неэквивалентных атомах, общее число ожидаемых. линий получают, умножая числа линий, ожидае.мые для каждого атома. Схема, представленная на рис. 9.10 для электрона, делокализованного на двух неэквивалентных ядрах с / = 1, часто используется для того, чтобы показать возможное расщепление. Три линии в ряду А представляют расщепление линии ЭПР на ядре с / = 1 и константой СТВ а. Каждая из этих линий расщепляется на три компоненты в результате делокализации электрона на втором неэквивалентном ядре с / = 1 н константой СТВ а, что приводит к девяти линиям (ряд Б). В последующих разделах для интерпретации спектров используется схема, аналогичная приведенной на рис. 9.Ш. Форма спектра и pa тoянtfe между линиями в нем будут зависеть от резонансного поля, -фактора и констант СТВ а и а. Часто в наблюдаемом спектре не удается обнаружить всех ожидаемых линий, поскольку щирина линий велика по сравнению с а/др и две соседние линии могут не разрешаться. Например, спектр, приведенный на рис. 9.11, может быть обусловлен поглощением гипотетического радикала Н -Х" Н —X". где /= 1 для X. [c.20]

    Полезно связать энергии наблюдаемы.х с1 — -переходов с энергетическими уровнями, используемыми при описании октаэдрических комплексов с помощью метода молекулярных орбиталей (МО). На рис. 10.15 показана диаграмма МО для комплекса (л-связывание не учитывается). Разность энергий и составляет ЮОд. По мере увеличения прочности ст-связи металл - лиганд Е понижается, а Е увеличивается на ту же самую величину, в то время как Од возрастает. Если электроны. vJeтaллa образуют п-связи со свободными р- или -орбиталями лиганда, энергия уровня в комплексе снижается, а Од увеличивается. Электрон-электронные отталкивания электронов и несвязывающих электронов металла повышают энергию совокупности и понижают Д. Изложенные выще соображения были использованы при интерпретации спектров ацетилацетонатов некоторых переходных металлов [15, 16]. [c.97]

    ЭПР комплексов переходных металлов. Важность их изучения обусловлена использованием для идентификации соединений по специфической картине СТС, получаемой информацией о распределении электронной плотности, спиновой плотности на разных ядрах, о том, какие заняты -орбитали, т. е. о направлении ян-теллеров-ского возмущения и т. д. При этом следует, конечно, заметить, что интерпретация спектров указанных комплексов встречает немалые трудности. Дело в том, что переходные металлы могут иметь несколько приближенно вырожденных орбиталей и несколько неспаренных электронов. В свободном ионе 5 /-орбиталей вырождену, но в комплексе взаимодействие их с лигандами различно и происходит разделение на две или более групп орбиталей. Например, в октаэдрическом комплексе имеется трижды вырожденный нижний уровень и дважды вырожденный верхний (у других типов комплексов орбитали группируются по-другому). [c.72]

    Основное их применение — изучение систем со сложными и размытыми спектрами ЭПР, так как эффект ДЭЯР упрощает задачу интерпретации спектра, позволяя проводить идентификацию и измерение слабых взаимодействий, а также определять спиновую плотность на разных ядрах. [c.81]

    В результат<5 расчетов установлено, что точность определения параметров структуры в явных методах выше (при соответствующем качестве эксперимента), чем при использовании неявных методов. Достоинством последних являетс5 меньшие затраты на получение экспериментальных дан1-1ых, более широкая область применимости. Например, значений потенциалов в позициях ионов могут быть использованы при интерпретации спектров ядерного гамма-резонанса. [c.207]

    Кроме особенностей в методике регистрации спектров, отличительной чертой метода ИК-спектроскопии отражения-поглощения является и интерпретация спектров. Сопоставление спектрального хода оптических постоянных слоев в области полосы поглощения и спектрального хода фактора поглощения показывает, что для слабопоглощающпх (к<0,2) молекулярных веществ спектры отражения-поглощения совпадают со спектрами пропускания, и их интерпретацию следует проводить аналогично спектрам пропускания. Для сильнопоглощающих веществ, например оксидных слоев, положение максимума поглощения в спектре отражения-поглощения не совпадает с максимумом коэффициента поглощения 2, а зависит также от показателя преломления Лз слоя и находится с высокочастотной стороны от максимума в области, где 2— 2- Эта частота близка к частоте продольных колебаний атомов вещества слоя и является вполне характеристичной, т. е. позволяет выполнять качественный анализ исследуемых соединений. [c.150]


Библиография для Интерпретация спектров: [c.7]    [c.286]    [c.385]   
Смотреть страницы где упоминается термин Интерпретация спектров: [c.119]    [c.352]    [c.108]    [c.352]    [c.49]    [c.481]    [c.504]    [c.505]    [c.511]    [c.665]    [c.665]    [c.18]    [c.83]   
Смотреть главы в:

Прикладная ИК-спектроскопия -> Интерпретация спектров

Прикладная ИК-спектроскопия Основы, техника, аналитическое применение -> Интерпретация спектров


Руководство по аналитической химии (1975) -- [ c.237 , c.242 , c.244 , c.288 ]




ПОИСК







© 2022 chem21.info Реклама на сайте