Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нафталин реакция с этиленом

    На основании данных термодинамических подсчетов равновесие реакции (2) практически полностью сдвинуто в сторону образования нафталина, свободного углерода и водорода. Менее сдвинуто вправо равновесие реакции (1) с превращением бензола в нафталин и этилен. [c.179]

    На основании термодинамических подсчетов равновесие реакции (2) практически полностью сдвинуто в сторону образования нафталина, свободного углерода и водорода. В меньшей степени сдвинуто вправо равновесие реакции (1) с превращением бензола в нафталин и этилен. Еще меньше сдвигается вправо равновесие реакции (3), приводящей к образованию дифенила и водорода. Экспериментальные же данные показывают, что ни (1), ни (2) реакции почти не имеют места. [c.183]


    Для получения такого депрессатора (присадки для понижения температуры застывания масел типа парафлоу) конденсируют твердый парафин, хлорированный нри температуре 80 до содержания хлора, равного 14%, с нафталином в присутствии хлористого алюминия. В качестве разбавителя применяют хлористый этилен. Конденсацию ведут нри температуре 30— 35°, повышая ее перед концом реакции до 60°. [c.123]

    Другим способом синтеза бифункциональных металлорганических катализаторов является взаимодействие щелочных металлов с некоторыми ароматическими углеводородами (нафталин, антрацен, фенантрен, дифенил, терфенил и т.- п.), а также с некоторыми ароматическими производными этилена (стильбен, 1,1-дифенил-этилен, трифенилэтилен и т. д.). Реакция протекает обычно в полярных растворителях через стадию образования ион-радикала [3, с. 365]  [c.413]

    Из относящихся сюда реакций изучалось термическое превращение этилена в смеси с нафталином (123). Опыты проводились в автоклаве из хромованадиевой стали емкостью 100 мл. Концентрация этилепа колебалась в пределах от 0,3 до 2,0 молей в 1 л, температура реакции — от 270 до 414" С. Реакция полимеризации этилена изучалась как с одним этиленом, так и в смеси с нафталином при одинаковой концентрации этилена в обоих случаях. [c.220]

    В ряде патентов [114] в качестве катализаторов алкилирования нафталина этиленом, пропиленом и другими олефинами среднего молекулярного веса рекомендуются отбеливающие земли, глинозем или силикагель и природные глины. Реакция проводится обычно при повышенном давлении и температуре 200—400° С.,  [c.122]

    О. Лоран, производя опыты по хлорированию нафталина, этилена и других углеводородов, пришел к выводу о сохранении структуры соединений в реакциях замещения водорода хлором. Получил производные нафталина с нитро-и сульфогруппами, подтвердив тот же вывод. Па этом основании выдвинул теорию ядер, согласно которой а) все органические соединения являются производными углеводородов как основных ядер б) образование различных органических соединений из углеводородов происходит путем как присоединения к ядрам различных атомов (например, брома к этилену), так и замещения в них водорода в) молекула любого химического соединения представляет собой некое единство атомов, а не является объединением двух радикалов, способных к самостоятельному существованию. [c.640]

    Если сравнивать с бензолом, например, этилен, то легко констатировать отсутствие ароматических свойств у последнего этилен легко вступает в реакции присоединения (но не замещения) и легко окисляется. Однако уже при сравнении ароматичности бензола и нафталина возникают трудности нафталин легче вступает в реакции замещения и в то же время легче окисляется. Аналогичное положение [c.457]


    Рессель и Готтель (123) изучали крекинг смеси нафталина с этиленом и нашли, что нафталин совершеино пе вступал в реакцию и играл роль инертного разбавителя.  [c.210]

    На практике ведут работу так, что смесь бензола и нафталина обрабатывают этиленом в присутствии хлористого алюминия. Бензол при этом легко алкилируется, а полилтилбензол уже при 50° передает свои этильные группы нафталину. После присоедипеппяг шести этильных групп к нафталину при даппых условиях реакции превращение прекращается. После отгонки нолиэтилбензола в качестве кубового остатка остается полиэтил-нафталин, который, однако, еще не обладает свойствами смазочного масла. Для этого его в заключение дополнительно алкилируют пропиленом или бутиленом. [c.632]

    Нагревание нафталина с этиленом хлористый водород в присутствии таких конденсирующих средств, как АЮ3 или Fe ls, приводит к образованию этил-(соотв. полиэтил-) нафталина. Ход реакции здесь вероятно таков [c.418]

    При нагревании бензола в течение 20 мин при 720° в наклонной железной трубке 36 см. длины можно достигнуть 70 /о-ного выхода дифенила. Бензол предварительно испаряется введением по каплям в медную колбу, нагретую до 150°. Такие же опыты были проведены между 600—800° при нагревании в течение от 7 до 42 мин. Очевидно единственным путем, позволяющим избежать образования побочных продуктов при высоких температурах, является разбавление паров бензола водянылм паром до концентрации бензола 23% по объему. Условия реакции по патенту следующие температура 700 , давление 4 ат (60 фунт, на кв. дюйм), применение контактной поверхности — например, пемзы. Ниже 500° бензол почти не изменяется. Оптимальной температурой для образования дифенила является 750°, хотя при этой температуре также образуется дифенилбензол. Ниже 800° в продуктах реакции этилен и нафталин не наблюдался, но заметно образование углерода. [c.83]

    Некоторые наиболее важные процессы алкилирования ароматики практикуются в промышленности реакция бензола с этиленом с образованием этилбензола, который затем дегидрируется в стирол алкилирование моноядерной ароматики с пропиленом, что дает соответствующие изопропил-производные, которые в свою очередь превращаются в фенол, крезол и т. д. через промежуточные гидроперекиси (т. е. фенол и ацетон от гидроперекиси цимола) алкилирование бензола и нафталина с алкил-хлоридами с длинными цепочками для производства соответствующей алкилароматики, которая сульфируется в ядре серной кислотой (натриевой солью) для применения в очистке и, наконец, алкилирование фенолов с олефинами или алкильными галогенидами с целью получения алкилированных фенолов, использующихся как присадки (или как промежуточные продукты в производстве присадок) к топливам и маслам. Первый и третий процессы проходят в присутствии хлористого алюминия, который наряду с другими галогенидами металлов является наиболее важным [c.133]

    Распад на элементы — не единственная реакция пиролиза метана. Сокращением длительности нагревания и регулированием скорости oxJ[aждeния продуктов реакции из метана можно получить также газообразные и жидкие углеводороды. При 850— 1200 С, пропуская метан с большой скоростью через нагретые фарфоровые и кварцевые трубки, получают конденсат, содеря<а-щий непредельные углеводороды, бензол, толуол, нафталин и тяжелую смолу, содержащую высшие ароматические углеводороды. В газообразных продуктах обнаруживают этилен, ацетилен и бутадиен. Некоторые катализаторы (SiOj, W, Mo, Sn) ускоряют эпу реакцию, другие (железо, графит) — замедляют. Максимальный выход олефинов наблюдается при температурах до 1000 °С, ароматических углеводородов — при 1000—1200 С, а ацетилена — при 1500 С. Образование всех этих продуктов объясняют возникновением нри высоких температурах кратковременно су1цествующих свободных радикалов, например метиленового радикала Hg  [c.411]

    Для объяснения выходов ароматики и конденсированных систем при крекинге были использованы положения этиленовой теории с тем только отличием от последней, что бутадиен как промежуточный продукт на пути превращения в ароматику и конденсированные соединения сам возникаег вследствие полимеризации этилена с последующей дегидрогенизацией бутилена до бутадиена. Шестичленные ненасыщенные циклические углеводороды образуются в результате реакций бутадиена с этиленом. Нафталин является продуктом конденсации бензола с бутадиеном, а нз нафталина аналогичным путем могут получаться антрацен и фенантрен [8]. [c.18]

    Специфическое влияние жидкого агрегатного состояния по сравнению с газообразным на кинетику крекипга олефинов и диолефинов почти не изучалось. Рессель и Готтель (123) провели сравнительное изучение кинетики полимеризации этилена в газовой фазе и в растворе нафталина в условиях одинаковой концентрации и в пределах температур 270—414° С. Нафталин совершенно не вступал в реакцию. В растворенном состоянии этилен реагировал почти так же, как и в отсутствии растворителя. Скорость полимеризации была практически одинаковой в обопх случаях. Исправленная величина энергии активации реакции нолимеризации этилепа равнялась 40 ООО кал в растворе нафталина и 42 100 кал — в газовой фазе. Порядок реакции был вторым в газовой фазе и промежуточным между вторым и третьим в случае раствора в нафталине. [c.142]


    Подобные реакции несомненно имеют место при высоких температурах пиролиза нефти, каменного угля, горючих сланцев и т. п. Однако возможность подобной же реакции для объяснения образования нафталинового ядра сильно ограничена, хотя именно нафталиновое ядро является в нефти примером наиболее распространенной полипнклической системы. Нафталин легко образуется при копденсации бензола с дивинилом, ацетиленом и даже с этиленом, и эта реакция вошла во все учебники  [c.126]

    Механизм образования низкотемпературного ПУ исследовался [7-50] методом газового хроматографического анализа продуктов пиролиза, образующихся на поверхности осаждения до и в процессе отложения ПУ. Было установлено, что при 1120 С и давлении метана примерно 40 кПа отложение ПУ начинается после протекания упомянутой выше (рис. 7-20) серий последовательных реакций, в которых образуются ацетилен, этан, этилен, толуол, стирол, пропилен-бензол, нафталин, аценафтен, фенантрен, антрацен и флюорантен. Возникают также вещества с большей, чем у перечисленных, относительной молекулярной массой. Их идентификация затруднена в связи с их малым количеством. [c.455]

    Реакция ацилирования становится обратимой. Реакция ацилирования может быть проведена таким образом, чтобы получался кетон, определяемый кинетикой процесса,, или же кетон, определяемый термодинамикой процесса. В качестве примера приведем ацилирование нафталина в нитробензоле, которое приводит к образованию кетона а-ацетонафталина, определяемого кинетикой реакции, а в хлористом этилене или в отсутствие растворителя образуется -ацетонафталин — продукт, определяемый термодинамикой процесса. Реакция изомеризации Хайаши служит другим примером обратимости некоторых реакций ацилирования [5] [c.123]

    До настоящего времени механизм элементарного акта реакций катион-нон полимеризации не выяснен. В ряде работ [1, 2, 3] каталитическая активность галогенидов металлов объясняется образованием промежуточных я-комплексов. Полагают, что одним из факторов, обусловливающих протекание реакций, является поляризация ненасыщенных связей. Однако полярные свойства таких систем, за исключением систем некоторых ароматических соединений с иодом [4], а также соединений РЬОг с этиленом [5] и ЗнСи с нафталином [6] до сих пор не изучались. [c.109]

    Литературный материал, собранный мисс Вандерворт, ограничился рефератами Хемикел Абстракте за период с 1940 по 1956 г. Ею собраны данные по вопросам кинетики, механизма реакций, аппаратуры лабораторных и опытных установок, заводского оборудования, а также по катализаторам окисления в паровой фазе и по каталитическим процессам. В предметном указателе Хемикал Абстракте просматривались следующие заголовки окисление, кислород, воздух, аммиак, азотная кислота, окись азота, окись углерода, двуокись серы, серная кислота, трехокись серы, ацетилен, соединения ацетилена, бензол, этилен, окись этилена, антрацен, нафталин, ксилолы, водород, синильная кислота, амины, циклоалканы, толуол, тиолы, соединения меркаптана, альдегид, кетоны, спирты, катализ и катализаторы. В обзор включены статьи, опубликованные в 1957 г. [c.204]

    Процесс идет при 650-750 С без катализатора, подчиняясь закономерностям радикально-цепных реакций и будучи энергоавтономным за счет теплоты реакции. На опытной установке достигнуты следующие показатели конверсия толуола 40-50 %, селективность, % этилбензол + стирол 45-50, бензол 23-28, фенол 12-14, крезолы 6-8, остаток (нафталин, дифенил, дибензил) 4-5. Реакционная смесь может быть разделена ректификацией с выделением бензола в качестве одного из товарных продуктов. Еще более экономично кооперирование процесса с действующим производством этилбензола алкилированием бензола этиленом [140]. [c.236]

    Термическое разложение тетраэтилсвинца. Тетраэтилсвинец применяемый для получения свободных радикалов в парах, не принадлежит к обычным реагентам, служащим для получения этих радикалов в растворе, так как он не разлагается пои температурах ниже 200° С. Но, применяя бомбы из нержавеющей стали, Крамер сумел изучить реакции свободного этила с жидкими углеводородами при температурах в 200—270° С. Он нашел, что в жидкой и паровой фазах идут совершенно одинаковые реакции. Этильные радикалы превращаются в этан путем гидрирования и в этилен при диспронорцнонировании. Но затем значительная часть этилена превращается в результате цепной полимеризации в высококипящее углеводородное масло. Парафиновые углеводороды, в том числе циклопарафины и олефиновые углеводороды, повидимому, довольно легко дегидрируются этильными радикалами. Ароматические углеводороды, например бензол и нафталин не реагируют с этильными радикалами ниже 300° С 3. Вторичные и третичные группы С — Н отдают атомы водорода легче, чем СНэ-группы. Даже олефиновые [c.152]

    Day 1 заставлял зтилен циркулировать через нагретую стеклянную трубку, и нашел, что при 350—355° имеет место разложение, сопровождаемое уменьшением объема газа, тогда как при 400—408° уже ясно было наличие процессов полимеризации. В реакционном газе, образовавшемся при этой температуре, присутствовали этан и метан, но водорода в нем не содержалось. В том же году Norton и Noyes i пропускали этилен через нагретую до температуры красного каления стеклянную трубку и подвергл1И полученные продукты реакции тщательному исследованию. Оказалось, что твердый осадок состоял из угля, а из жидкого конденсата были выделены бензол, нафталин п, вероятно, антрацен. Ацетилена получились лишь следы бромированием же газообразных продуктов реакции удалось выделить дибромиды пропилена и бутилена, а также тетрабро-М ид бутадиена. Образование бутадиена объяснялось следующей реакцией  [c.80]

    Smith, Grandone и Rali в предварительном сообщении по вопросу о получении жидких углеводородов путем пиролиза метана в реакционной трубке из силлиманита при высоких температурах указывают, что среди продуктов реакции ими были найдены следующие углеводороды этилен, ацетилен, бензол, нафталин, антрацен и пирен. Были получены также непредельные жидкие конденсаты, кипящие как выше, так и ниже бензола, а также жидкие и твердые вещества с очень высокой температурой кипения. Добавление водорода вызывало уменьшение общего выхода высших углеводородов процентное содержание этилена и ацетилена в газообразных продуктах реакции повышалось при разбавлении метана водородом или азотом. Как и можно было ожидать, наличие этана в исходном газе способствовало увеличению выхода жидких продуктов. Максимальные выхода на 1000 метана были следующие около 40 л бензола или легкого масла, 40 кг жидкого дегтя, содержащего 35% нафталина и антрацена, а также большое количество высших углеводородов, и 1200 /и газа, состоявшего из 710 метана, 440 водорода и по 25 этилена и ацетилена. [c.189]

    Путем пиролиза смесей газообразных углеводородов (как насыщенных, так и ненасыщенных) при температуре 1000—1200° можно получать ароматические и олефиновые углеводороды в зависимости от объемных скоростей, начиная от 50 до 100 и даже более обратных минут Для получения высоких вьгходов ароматических углеводородов требуется меньшая объемная скорость при большей же скорости образуются олефины или диолефины. Реакцию можно вести в две или в большее число стадий, причем после каждой стадии жидкие масла или олефиновые углеводороды удаляются. Каждая стадия отличается От преды-дуп1ей тем, что температура в ней выше или же объемная скорость меньше. Реакционные камеры, ширина которых должна быть незначительной по сравне- нию с объемом, могут быть сконструированы из карборунда, графита или сплавов, устойчивых к действию нагревания. Если стенки покрыты огнеупором типа алюмосиликатов, то увеличивается количество образующегося нафталина. Среди промежуточных продуктов имеются пропилен, этилен и ацетилен, а К О нечные продукты представляют собой легкие масла, метан, водород и уголь. Например из газообразной смеси, состоящей из 45% метана, 24% этана, 21 %j пр Опана и 10% бутана, было получено 42,7 л легкого масла на каждую 1000 при работе в одну стадию и 144,4 л при работе в три стадии [c.205]

    Влияние дуги высокого напряжения на чистый метан исследовали Stanley и Nash 1 . Главными продуктами реакции являлись ацетилен, уголь и жидкие и твердые углеводороды, хотя в полученном газе были найдены также этилен и небольшое количество диацетилена (H s= — С СН). Кроме газообразных продуктов и угля были получены небольшие количества легкого масла, смолоподобных веществ и растворимого в хлороформе дегтя. Легкое масло имело явно ненасыщенный характер, обладало ясно выраженной тенденцией к осмолению и образовывало взрывчатыг соединения с серебром, указывая таким образом на присутствие гомологов ацетилена. Из дегтя были выделены нафталин и аценафтен. Присутствие диацетилена среди продуктов реакции интересно тем, что этот углеводород был получен при других операциях, особенно при электропиролизе спирта и при разложении топливных масел в дуге низкого напряжения [c.282]

    Bahr исследовал полимеризацию ацетилена при умеренных температурах в присутствии различных катализаторов, В случае сернистого железа при 300° образуетоя коричневаточерная смола, при 430° происходит выделение углерода. С 50% никеля и 50% олова получается бесцветный прозрачный конденсат, который позднее приобретает зеленую или коричневую окраску углерод выделяется приблизительно при 430°. Применяя железные стружки, покрытые оловом, при 250° удалось получить немного жидкости, но с хлористым оловом и пемзой реакция не идет даже при 500°. В присутствии хлористого цинка при 420—430° Лозовому удалось получить газообразные продукты, состоящие из 32% ацетилена, 2% изоолефинов, 10% нормальных олефинов, 12% водорода и 41% насыщенных парафиновых углеводородов. Среди ненасыщенных углеводородов идентифицированы этилен, пропилен, метилацетилен, а.длен и бутадиен. В жидких продуктах было немного олефинов, бензола, толуола и нафталина, но не было парафинов или нафтенов. [c.730]

    Если сравнивать с бензолом, например, этилен, то легко констатировать отсутствие ароматических свойств у последнего этилен легко вступает в реакции присоединения (но не замещения) и легко окисляется. Однако уже при сравнении ароматичности бензола и нафталина возникают трудности нафталин легче вступает в реакции замещения и в то же время легче окисляется. Аналогичное положение возникает также при сравнении ароматичности бензола и, например, пиррола. Последний, как иногда принято говорить, обладает сверхароматическими свойствами (очень легко вступает в реакции замещения), однако и окисляется он также легко. [c.317]

    Охват экзо- и эндотермических реакций гетерогенно-гомогенным механизмом был бы неполным без учета и каталитических реакций, требующих применения специальных активных контактов. К их числу относится так называемый мягкий катализ, позволяющий высокоселективно превращать этилен в окись этилена и метанол — в формальдегид при помощи серебряных контактов, нафталин — в фталевый ангидрид в присутствии нятиокиси ванадия и т. д. Механизм таких мягких каталитических реакций изучался в нашей лаборатории методом раздельного калориметрирования, т. е. в благоприятных для готерогенно-гомоген-ного катализа условиях катализаторы наносились топким слоем на поверхность стенок сосудов. В качестве покрытий применялись платина, серебро, пятиокись ванадия, бораты, силикаты, фосфаты и другие катализаторы. Объектами неполного окисления были метан, этилен, бутан-пронановая фракция нефтяных газов и метанол [11—13, 20—23, 41—45]. [c.374]

    Тетрахлордиборан СЬВВСЬ (4) вступает во многие реакции с расщеплением связи В—В [1, 36]. Если субстратом служит алкен, алкин, циклопропан или ароматический углеводород, то образуются соединения со связью В—С такие реакции можно рассматривать как метод синтеза органоборанов. Реакции с этиленом, ацетиленом, циклопропаном и нафталином протекают при комнатной или более низкой температуре схемы (21) —(24) . [c.505]

    Не подлежит сомнению, что начальной стадией термического распада метана является диссоциация его на водород и различные органические радикалы Hg, Hg и СН. В зависимости от условий эти мимолетно образуюпциеся свободные радикалы либо распадаются дальше на элементы, либо конденсируются между собой с образованием высших углеводородов. Это последнее направление реакций представляет, конечно, совершенно исключительный интерес, открывая перспективы превраш,епия метана в жидкое топливо для двигателей внутреннего сгорания или в сырье для химической промышленности. Работы последнего времени, особенно Ф. Фишера и его сотрудников, установили полную возможность такого превращения метана [13]. Его основными условиями являются достаточно высокий нагрев метана и быстрое выведение продуктов реакции из области высокой температуры. Давление, повидимому, также способствует конденсации продуктов диссоциации. В получаемой таким образом жидкой смоле обнаружено присутствие жидких и твердых насыщенных и ароматических углеводородов (бензол, толуол, ксилол, нафталин и др.), в отходящих же газах найдены водород, этилен и ацетилен. Аналогичные результаты получены также нри действии на метан электрических разрядов, и едва ли можно сомневаться, что превращение метана в жидкие углеводороды займет со временем видное место среди различных методов рациональной утилизации естественного газа. [c.773]


Смотреть страницы где упоминается термин Нафталин реакция с этиленом: [c.122]    [c.19]    [c.477]    [c.155]    [c.548]    [c.625]    [c.70]    [c.138]    [c.400]    [c.166]    [c.58]    [c.94]    [c.591]    [c.610]    [c.22]    [c.93]    [c.86]   
Безводный хлористый алюминий в органической химии (1949) -- [ c.465 , c.466 ]




ПОИСК





Смотрите так же термины и статьи:

Реакции этилена



© 2025 chem21.info Реклама на сайте