Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метан чистый, получение

    Третьим способом получения метана и других парафинов из неорганических соединений является разложение некоторых карбидов металлов водой или кислотами. Так, при обработке кислотами железа, содержащего карбид железа, выделяются предельные углеводороды. Особенно гладко, по Муассану, протекает образование метана из карбида алюминия и воды в результате реакции получается довольно чистый метан  [c.31]


    Природный газ образует самостоятельные месторождения. Химический состав природных газов, полученных из чисто газовых месторождений, приведен в табл. 11.1. В составе природных газов в основном присутствует метан. Такие газы можно отнести к сухим газам. Состав природного газа может колебаться в зависимости от условий, связанных с эксплуатацией месторождений. [c.662]

    Количество газа измеряется газометром при этом необходимо производить обычные коррекции на температуру, давление и упругость водяного пара. Анализ проводится в приборе Орса. Удельный вес и теплота сгорания рассчитываются в зависимости от химического состава, при этом для чистых газов принимают значения, представленные в табл. 98. Ввиду того, что число атомов углерода в насыщенных углеводородах все время было равно 1, эти угле-водородЕ>1 отождествили с метаном. Для всех 130 испытаний рассчитали величину стандартного отклонения в различных статьях баланса. Полученные величины приведены в табл. 99. Посредством анализа ошибок измерения попытались определить, какая часть расхождений вызывается собственно ошибками измерения (например, при взвешивании) и управлением операцией (например, температурой пиролиза). [c.481]

    Окисление пропана и бутана имеет и другие преимущества но сравнению с окислением метана и этана. Во-первых, пропан и бутан окисляются при более низких температурах. Во-вторых, пропан и бутан легче отделяются от других газообразных продуктов окисления, чем метан и этан, что исключительно важно, так как обычно окисление проводят при избытке углеводорода, который необходимо возвращать в процесс. В-третьих, при получении чистых исходных газов пропан и бутан легче отделять от метана и этана, а также друг от друга, чем метан от этана. [c.306]

    Содержащийся в коксовом газе метан затрудняет получение чистого водорода, так как еще ие найден достаточно селектив иый абсорбент для удаления из газа метана. [c.364]

    Содержание водорода в молекулярной системе можно повысить за счет введения водорода в газообразной форме, когда при благоприятных для взаимодействия реагентов условиях газификация протекает по реакции, иногда называемой гидрогенолизом. При отсутствии внешнего источника элементарного водорода его можно получать при определенных условиях на месте из пара. Полученный таким образом водород реагирует с углеводородным сырьем не хуже, чем чистый водород извне. В этом случае в результате так называемого процесса гидролиза образуются более легкие углеводороды, включая метан. [c.87]


    Критические давления для двойных систем, содержащих метан, коррелировали таким же образом для других давлений, используя соответствующие значения показателя степени п, приведенные на рис, 9. Полученные результаты представлены на рис. 10. Значения критических давлений рассчитанные по этой корреляции при использовании экспериментальных данных по составам равновесных жидкости и пара, согласуются с опытными величинами критических давлений в пределах ошибки опыта исключение составляют смеси, приближающиеся по своему" составу к чистым компонентам. [c.105]

    Получение и свойства метана. Смешать в ступке по 3 г плавленого ацетата натрия и натронной извести и всыпать смесь в сухую пробирку. Закрыть пробирку пробкой с газоотводной трубкой и укрепить пробирку в горизонтальном положении в лапке штатива, а конец газоотводной трубки погрузить в ванну с водой (большой кристаллизатор). Опустить в ванну два цилиндра один — наполненный водой целиком, а другой — наполовину. Обогреть пробирку пламенем горелки и затем нагревать ее, начиная со дна наполнить выделяющимся газом оба цилиндра, закрыть их под водой стеклами, вынуть из ванны и поднести к пламени горелки. Чистый метан горит спокойно, тогда как смешанный с воздухом взрывает (осторожно ). Составить уравнения реакций получения метана и его горения. При любых ли объемных соотношениях СН4 и Оа происходит взрыв смеси  [c.231]

    При гомогенном газофазном окислении углеводородов молекулярным кислородом получается сложная смесь продуктов, число которых значительно, даже если исходным сырьем служит чистый метан. С увеличением молекулярного веса углеводорода число продуктов окисления растет. Присутствие примесей усложняет состав продуктов окисления, и, как правило, предпочитают окислять чистые углеводороды, а не их смеси. На практике исследователи уделяли основное внимание окислению метана, этана, пропана и бутана, поскольку молекулярный вес последних невелик, а само-получение их в чистом виде достаточно легко и экономично, особенно двух последних. [c.306]

    Конверсия (от лат. onversio — превращение, изменение) — процесс переработки газов с целью изменения состава исходной газовой смеси. Конвертируют обычно газообразные углеводороды (метан и его гомологи) и оксид углерода (П) с целью получения водорода или его смесей с СО. Эти смеси используют для синтеза органических продуктов и в качестве газов-восстановнтелей в металлургии или перерабатываются для получения чистого водорода. [c.70]

    При гидрировании всего нирогаза необходимый для этого водород находится в составе смеси, а при гидрировании этиленовой фракции нужно подавать его извне. В случае использования метан-водородной фракции в этиленовую фракцию вновь попадает метан в больших количествах (до 75% на фракцию) и углеводороды Сз + высшие, поэтому в дальнейшем требуются ректифицирующие устройства для повторной деметанизации этилена и удаления Сз + высшие. В случае применения чистого водорода необходимо организовать его получение, в связи с чем производство значительно удорожается. [c.176]

    Вследствие относительно большой разницы в температурах кипения низших членов гомологического ряда (см. табл. 2.3) метан, этан, пропан, н-бутан, изобутан и изомерные пентаны можно получить тщательной фракционной перегонкой природного газя или нефти. Хотя комбинированием физических методов можно получить из нефти и некоторые другие чистые алканы, все же, если требуется чистый алкан, он должен быть синтезирован из функционального производного. В настоящем разделе рассмотрены синтетические методы, которые широко применяются в лабораторной практике. Реакции изомеризации и алкилирования, которые могут быть использованы для получения некоторых алканов, рассмотрены в разд. 2.1.9.4. [c.130]

    КОНВЕРСИЯ ГАЗОВ (лат. сопуег-510 — превращение) — процесс переработки газов с целью изменения состава исходной газовой смеси. Конвертируют метан и его производные или оксид углерода для получения водорода или его смесей с оксидом углерода — так называемый синтез-газ, который используют для синтеза органических веществ, в качестве газа-восстановителя в металлургии или для получения чистого водорода. [c.133]

    Газ из абсорбера-депропанизатора компримируется и затем Идет через дегидратор в метановую колонну. Дальнейшее разделение -этого газа происходит как описано выше. Из газа сначала выделяется метан с примесью других легких компонентов, затем этан-этиленовая фракция, подвергающаяся более четкой ректификации для получения чистого этилена. [c.86]

    На протекание плазмохимических процессов практически не влияют лримеси в исходном сырье (например, в плазмохимическом пиролизе природного газа примеси к метану составляют до 20 —25%, а при получений чистых металлов из минералов состав последних не существен и т. д.). [c.362]


    Белки биологического синтеза. Одна из ближайших проблем современности — изыскание возможности расширения ресурсов кормового белка — необходимой составной части животной иищи. За последние 20 лет в этой области достигнуты выдающиеся успехи. В настоящее время во всех технически развитых странах организовано нромышленное получение кормового белка [20]. Сырье.м являются чистые нормальные алканы нефтяного газойля, метан природного газа и метанол [21]. [c.326]

    Подводя итоги произведенному в настоящей главе анализу, MOAHO сказать, что из рассмотренных термических способов фиксации азота наиболее перспективными, по крайней мере в пределах чисто термодинамического анализа, являются фиксация азота через кислород и через метан с получением окиси азота или синильной кислоты. [c.108]

    Кислород предварительно подогревают до 315° и затем в смеси с нагретым до 650° природным гаэом под давлением 20—21 ат подают в футерованную камеру сгорания, где проходит реакция и развивается температура примераю 1350°. Продукты реакции направляются затем в котел-утилизатор, где они охлаждаются до 315° с получением примерно 45-атмосферного пара. После этого синтез-газ проходит теплообменник, холодильник и, наконец, промыватель для удаления сажи. При конверсии природного газа, не являющегося чистым метаном, получается газ с соотношением СО Нг примерно 1 1.8 [18]. [c.78]

    На рис. 6 представлены данные Тропша и Эглоффа [92] по концентрациям ацетилена и этилена во время пиролиза чистого этана ири 1400° С и давлении 50 мм рт. ст. Процентное содержание этана определяется по величине п во время анализа С Н2п + 2 при условии, что присутствуют только этан и метан. Другие исследователи [20, 31] приводят данные, полученные при различных температурах и давлении, сходные в значительной степени с данными Тропша, с тем, однако, отличием, что в случае этилена по их данным требуется более длительное время для достижения максимума концентрации. Причиной такого расхождения является, по-видимому, тот факт, что в последнем случае исходный продукт быд разбавлен до 90% водородом. [c.78]

    При хлорировании метана целевыми продуктами обычно являются хлористый метилен, хлороформ или их смесь с четыреххлористым углеродом. При целевом синтезе метиленхлорида мольное отношение метана к хлору берут равным 4 1, возвращая непревращенный метан и хлористый метил на реакцию. Прн целевом получении хлороформа мольное соотношение СН4 СЬ составляет 0 8 1, причем непревращенный метан и СНзС возвращают на реакцию, получая наряду с хлороформом метилеихлорид и четырех) лористый углерод. Хлорирование метана ведут как чисто тер-мич( ским путем при 500—550 °С, так и термокаталнтическим при 350--400°С. [c.120]

    На установке такого типа [2] крекинг-газ компримируется до 10 ат двухступенчатыми поршневыми компрессорами, сушится путем пропускания через окись алюминия и затем охлаждается, проходя через серию парциальных конденсаторов, до температуры —110° С. В этих условиях конденсируется около 96% этилена. Далее жидкая фаза отделяется от остаточного газа и подается в деметанизатор, работающий под давлением 7 ат, дефлегматор которого охлаждается жидким метаном до температуры —140° С. Следующая колонна для отгона углеводородов Сд и Сд, работающая под давлением 4 ат, охлаждается этиленом, испаряющимся при этом давлении. Хладоагентом для ректификационной колонны, на которой осуществляется разделение этилена и этана, является жидкий этилен, испаряющийся при атмосферном давлении. Сама колонна работает под давлением, слегка превышающем 1 ат. Колонна, дающая пропан-пропиленовую смесь, охлаждается испаряющимся жидким пропаном, циркулирующим по замкнутому циклу. Конденсация пропана осуществляется в рибойлере деме-танизатора. Установка не предназначена для получения чистого пропилена, и последняя колонна С4/СД работает полностью при температуре выше окружающей. Температура в дефлегматоре поддерживается около - -60° С путем охлаждения его холодной водой. [c.26]

    В холодильнике третьей ступени собирается метан в смеси с некоторым количеством окиси углерода и азота. Конденсат из холодильника второй ступени по содержанию этилена сходен с газом высокотемпературного крекинга, а следовательно, этот конденсат является удобным источником получения этилена. Процесс разделения коксового газа проводят с целью получения чистого водорода, причем этиленовый концентрат является отходом производственных операций. Поэтому стоимость чистого этилена складывается из стоимости этилена, присутствующего в коксовом газе, с небольшой надбавкой и из стоимости его выделения в чистом виде из фракции, сконденсированной во втором холодильнике. Очевидно, такой метод получения этилена можно реализовать на заводах, на которых перерабатывают большие количества коксового газа с целью производства чистого водорода. Этот путь в течение многих лет используют континентальные европей- [c.124]

    Оба способа нмеют свои преимущества и недостатки. Карбидный ацетилен дорог (на получение карбида кальн,ия расходуется много электроэнергии), и.о легче поддается очистке. Метан—очень дешевое сырье, однако и его пиролиз требует немалых энергетических затрат, а кроме того в ходе пиролиза образуется сложная смесь веществ, выделить из котс. рой чистый ацетилен нелегко. В настоящее время доля карбидного ацетилена в мировом производстве составляет более половины. [c.254]

    Обычно метан получают из природного газа (см. стр. 51 и 65). Это почти чистое и доступное органическое сырье, которое служит для получения хлористого метила ( H3 I), хлороформа ( H I3), четыреххлористого углерода ( I4) и др. Все эти продукты широко применяются в химической промышленности (см. стр. 113). [c.58]

    По-видимому, сущность рассматриваемых способов заключается в том, что в результате взаимодействия водорода с графитом (способ М. М. Бабича), углем или углеродом, отлагающимся при пиролизе пропана, образуется метан, который затем разлагается на поверхности науглероживающихся частиц [4]. В связи с этим нам представлялось целесообразным выяснить возможность науглероживания твердосплавных прессовок непосредственно метаном в смеси его с водородом и определить оптимальные условия осуществления этого процесса. Прежде всего необходимо было определить температурные условия науглероживания, когда процесс идет с максимальной скоростью, но без выделения свободного углерода. В качестве науглероживающего агента было предложено использовать чистый метан, получаемый из природного газа его очисткой от гомологов метана. Применение метана, получаемого из природного газа, значительно упрощает и удешевляет процесс получения науглероживающей газовой среды. [c.146]

    Реакции дегидрогенизации мсжно рассматривать как процессы разложения, при которых отщепляется водород. Часто, однако, дегидрогенизация в присутствии специальных катализаторов протекает более гладко, чем простой пиролиз. Так, например, при получении олефинсв, каталитическая дегидрогенизация может дать лучшие результаты, чем простой пиролиз парафинов, при котором выход олефинов меньше и водород загрязняется такими газами, как метан и этан. Чистое каталитическое расщепление может быть представлено дегидрогенизацией этана в этилен  [c.612]

    Чистые олефины можно выделить из газообразных продуктов крекинга, применяя серию соединенных последовательно ректификационных колонн. Предварительно сырьевой газ должен быть очищен от некоторых примесей. На рис. 1 показана принципиальная схема установки для разделения этим методом и наиболее удобная последовательность стадий разделения. Смесь, частично сжиженная, вводится в первую ректификационную колонну, с верха которой отбираются водород и метан. Остаточный продукт, состоящий из этилена и компонентов с большей температурой кипения во второй колонне разделяется на головную этилен-этановую фракцию и остаточный продукт, содержащий пропилен, пропан и более высококипящие углеводороды. В третьей колонне этилен отделяется от этана, и в четвертой — смесь пропилена и пропана отделяется в виде головного погона от остатка, содержащего углеводороды С4 и более высококипящие компоненты. В некоторых случаях (например, когда выделяемый продукт идет на производство изопропанола или тетрамера пропилена) фракция С3 может использоваться без разделения. В других случаях (например, при использовании в установках для получения полипропилена) должно применяться дальнейшее разделение с целью [c.23]

    Выделенный этан подвергается пиролизу, а образовавшаяся газовая смесь (этап, этилен, водород, метан и пр.) — низкотемпературному фракционированию. При этом выделяются легкая метановодо-родпая фракция и отдельно этан-этиленовая. Последнюю ректифицируют для плучения чистого этилена, который далее используют для получения полиэтилена, этилового спирта и других продуктов. [c.81]

    Большой интерес представляет процесс Linde-Bronn, применяемый в Германии и в Бельгии для разделения составных частей йза коксовых печей, так как ЧЭН служит иллюстрацией потенциальных возможностей низкотемпературного фракционирования. Bronn i"- приводит описание этого процесса, который состоит в том, что газ коксовых печей охлаждается под давлением, причем сперва выделяются легко сжижаемые примеси, а затем получается конденсат, содержащий этилен и метан. В этой стадии сжижения газ коксовых печей охлаждают ж идким воздухом или жидким азотом. При фракционировании этилен-метанового конденсата получается практически чистый этилен. Полное отделение метана и окиси углерода от сопутствующего водорода может быть достигнуто охлаждением газа коксовых печей, после удаления смеси этилена и метана, до температуры около —209° при давлении в 10 ат. Для получения этой температуры жидкий азот поддерживается при пониженном давлении. [c.157]

    Аналогичные результаты получили Stanley и Nash которые пропускали чистый метан с большой скоростью через кварцевые трубки, нагретые до 1000—1200°. Образующиеся при этом твердые и жидкие продукты подробно не исследовались газообразные же продукты были тщательно исследованы методами низкотемпературной конденсации. Наи лучший выход высших углеводородов был получен при температуре 1150° и при длительности нагрева, равной 0,6 сек. При этих условиях выход легкого масла составлял 4,8%, или 1,23 л на 1 метана. Применение сравнительно более длинных периодов нагрева вызывает разложение метана почти исключительно на элементы, причем стремление к разложению усугубляется применением таких каталитически активных веществ, как железо и никель. [c.187]

    Влияние дуги высокого напряжения на чистый метан исследовали Stanley и Nash 1 . Главными продуктами реакции являлись ацетилен, уголь и жидкие и твердые углеводороды, хотя в полученном газе были найдены также этилен и небольшое количество диацетилена (H s= — С СН). Кроме газообразных продуктов и угля были получены небольшие количества легкого масла, смолоподобных веществ и растворимого в хлороформе дегтя. Легкое масло имело явно ненасыщенный характер, обладало ясно выраженной тенденцией к осмолению и образовывало взрывчатыг соединения с серебром, указывая таким образом на присутствие гомологов ацетилена. Из дегтя были выделены нафталин и аценафтен. Присутствие диацетилена среди продуктов реакции интересно тем, что этот углеводород был получен при других операциях, особенно при электропиролизе спирта и при разложении топливных масел в дуге низкого напряжения [c.282]

    Очищенная азотоводородная смесь, вводимая в цикл синтеза, может содержать, в зависимости от исходного сырья п способа получения синтез-газа, большие или меньшие количества аргона и метана. Из смешанного водяного газа получается чистый синтез-газ, содержащий в сз мме около 0,4—0,5% аргона и метана, причем метана обычно содержится немногим больше, чем аргона. Водород, полученный конверсией метана, может содержать 1% и более метана, азот, полз чаемый ректификацией воздуха, обычно очень чист. Аргон и метан являются инертными газами в процессе синтеза аммиака, но присутствие их нежелательно, так как они постепенно накапливаются в циркуляционном газе. При полной герметизации аппаратуры только небольшое количество циркуляиио нного газа выводится из цикла (в результате растворения газа в сепараторах жидким аммиаком). Вследствие этого Содержание аргона и метана в газе значительно возрастает, что приводит к уменьшению парциальных давленнй азота и водорода и к снижению производительности установки синтеза аммиака. [c.539]

    Аналогичные результаты были получены при неполном окнслешш углеводородной смеси, содержап1ей 80% метана и 20% пропана [16]. Катализатором в поставленных экспериментах также служили окислы азота. Найдено, что бинарная смесь начинает окисляться нри более низкой температуре, чем чистый метан. Выход формальдегида, полученный, при окислении бинарной смеси, в 1,8 раза выше, чем при окислении чистого метана. Присутствие пропана увеличивает глубину превращения метана. [c.17]

    Рассматривая полученные Н. В. Кельцевым (1957) изотермы адсорбции чистого метана при 17° С на углях Г-23 и АГ-2 (рис. 65), можно заметить быстрый рост адсорбируемости метана с повышением давления. Рост изотермы наблюдается до определенного давления, после которого кривая начинает сравнительно медленно снижаться. Максимальные значения адсорбционной способности цо отношению к чистому метану для угля Г-23 приходятся на вбласть давлений 30—80 атм, а для угля АГ-2 от 20 до 60 атм. В 10 же время абсолютные значения адсорбционной способности [c.276]

    При хлорировании метана целевыми продуктами обычно являются метиленхлорид, хлороформ, тетрахлорметан или их смеси. При целевом синтезе метиленхлорида мольное отношение метана к хлору берут равным л 4 1, возвращая непревращенный метан и хлорметан на реакцию. При целевом получении хлороформа мольное соотношение СН4 С1г составляет 0,8 1, причем непревращенный метан и СН3С1 возвращают на реакцию, получая наряду с хлороформом метиленхлорид и тетрахлорметан. Хлорирование метана ведут как чисто термическим путем при 500—550°С, так и термокаталитическим при 350— 400 °С. [c.113]


Смотреть страницы где упоминается термин Метан чистый, получение: [c.39]    [c.492]    [c.122]    [c.233]    [c.940]    [c.403]    [c.219]    [c.4]    [c.53]    [c.284]    [c.265]    [c.47]    [c.181]    [c.150]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.1199 ]




ПОИСК





Смотрите так же термины и статьи:

Метан получение



© 2025 chem21.info Реклама на сайте