Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ферменты лабильность

    Другая особенность ферментов как белков — большая лабильность, легкая изменяемость свойств в зависимости от условий среды (pH, температуры, присутствия активаторов и ингибиторов и др.). Это позволяет проводить химические реакции в очень мягких условиях в отличие от применения неорганических катализаторов— при низкой температуре, нормальном давлении, невысоком pH среды и т. д. [c.115]


    Заверщение трансляции С-цистрона первыми рибосомами приводит к тому, что в системе появляются свободные молекулы белка оболочки. По мере трансляции этот белок накапливается и в будущем будет вовлечен в самосборку готовых вирусных частиц. Однако он оказался обладающим также и другой функцией он имеет сильное специфическое сродство к определенному участку MS2 РНК между С- и S-цистронами, включающему инициирующий кодон S-цистрона. Соответственно, он присоединяется к этому участку и репрессирует инициацию трансляции S-цистрона. Вероятно, репрессия происходит вследствие стабилизации лабильной вторичной структуры, показанной на рис. 11, белком оболочки фага и получающейся отсюда недоступности инициирующего кодона S-цистрона. Следовательно, через сравнительно короткое время после того, как трансляция S-цистрона была разрешена трансляцией предшествующего цистрона, происходит репрессия инициации трансляции S-цистрона вследствие накопления белкового продукта трансляции предшествующего цистрона. В этих условиях рибосомы, уже начавшие трансляцию, продолжают ее и в конце концов заканчивают синтез соответствующего количества молекул субъединиц синтетазы. Ограниченного количества этого белка достаточно, чтобы образовать активные молекулы РНК-репликазы, которые начнут репликацию MS2 РНК. В то же время репрессия дальнейшего синтеза этого белка позволяет избежать ненужной суперпродукции фермента. Белок оболочки фага, являющийся репрессором S-цистрона, [c.235]

    Большинство ферментов являются лабильными белками. При переводе их в экстракт они лишаются своего естественного (в клетке) окружения и легко подвергаются денатурации и инактивации под влиянием различных факторов. В связи с этим при выделении и очистке ферментов необходимо соблюдать целый ряд предосторожностей. Как правило, все операции следует проводить при 2—4° С (лучше — в холодной комнате), а фракционирование органическими растворителями — при температуре ниже О С. [c.196]

    Среди оксигеназ, включающих в продукт оба атома Ог, наиболее известны ферменты, разрывающие двойные связи ароматических соединений в положениях, соседствующих с ОН-группами или между ОН-группами, как показано в уравнении (10-43). Другие диоксигеназы расщепляют алифатические соединения. Хорошо известным примером является расщепление р-каротина с образованием витамина А (дополнение 12-В). Несколько диоксигеназ было выделено в кристаллическом виде из бактерий. Они оказались белками, содержащими негемовое железо мол. вес одной субъединицы составлял 50000 или более. Эти белки обычно содержат Ре(П), но у них нет лабильной серы [1]. С другой стороны, триптофандиоксигеназа (триптофанпнрролаза гл. 14, разд. И) является гемовым ферментом. Она катализирует реакцию, описываемую уравнением (10-45). Атомы кислорода, помеченные звездочкой, поступают из Ог. [c.435]


    При воздействии кавитационного ультразвука происходит необратимая инактивация лизоцима [64], вызванная, видимо, разрушением какой-либо важной для каталитической активности функциональной группы активного центра фермента. В роли такой лабильной группы могут выступать, например, остатки триптофана 62, 63 или 108 активного центра лизоцима, модификация которых приводит к потере ферментативной активности [66—69]. Умень-ше(гие ферментативной активности лизоцима ирй озвучивании раствора фермента следует кинетике первого порядка [64]. [c.160]

    В обычной аффинной хроматографии для иммобилизации субстратов в качестве носителей используются агароза и сшитая сефароза. В качестве сшивающего агента обычно выступает ВгСМ, а мостик образован а,о)-диамином. Эти полисахаридные носители подвержены биодеградации, и, следовательно, органические полимерные гели более удобны в качестве матрицы и допускают более широкий набор химических модификаций. Именно эти причины побудили Уайт-сайдса и сотр. разработать новый метод иммобилизации ферментов в сшитых органических полимерных гелях [126]. По своей простоте и универсальности этот метод превосходит ранее предложенные. Особенно ценен он при иммобилизации относительно лабильных ферментов для использования в ферментерах большого размера при проведении реакций органического синтеза, катализируемых ферментами. [c.257]

    Таким образом, роль катализатора заключается в том, что по крайней мере один из реагентов превращается в химически лабильное соединение, подвергающееся быстрому превращению. Набор катализаторов столь же разнообразен, как и широк круг реакций, ими ускоряемых. Чрезвычайно важен катализ в биологии, где ферменты обеспечивают протекание с нужной скоростью всех реакций, необходимых для жизнедеятельности организмов. [c.253]

    Ферменты, содержащие этот кофермент, катализируют реакции цикла трикарбоновых кислот и глиоксилат-ного цикла. Во всех случаях кофермент А связывается с ацильным остатком лабильной тиоэфирной связью (схема 10.3.11). [c.290]

    Осн. направления совр. исследований Ф.к.- выяснение механизма, обусловливающего высокие скорости процессов, высокую селективность (специфичность действия ферментов), изучение механизмов контроля и регуляции активности ферментов. Оказалось, в частности, что р-ции Ф. к. включают большое число стадий с участием лабильных промежут. соед., времена жизни к-рых изменяются в нано- и миллисекундном диапазонах. На активных центрах ферментов протекают быстрые (нелимитирующие) стадии, в результате чего понижается энергетич. барьер для наиб, трудной, лимитирующей стадии. [c.81]

    Из некоторых железо-серных белков можно удалить железо и лабильную серу, а затем снова реконструировать активный фермент, соответствующим образом добавляя сульфид и атомы железа. Аналогичным образом можно произвести обмен природного изотопа Ре (с нулевым ядерным спином) на изотоп = Ре, имеющий магнитные ядра [50]. Точно так же 5 можно заменить на 5е. Образующиеся белки функ- [c.383]

    На первой стадии реакции исходный пенициллин специфически гидролизуется по эфирной связи, при этом не затрагивается весьма лабильное р-лактамное кольцо. На второй стадии фермент при избытке фенилуксусной кислоты дает новый антибиотик — бензилпенициллин. [c.201]

    Для понимания ферментативной активности необходимо рассмотреть конформационное поведение макромолекулы белка. Конформационная лабильность белка обеспечивает возможность его специфического взаимодействия с субстратами и другими лигандами. В некоторых конформациях белок более эффективно связывает субстрат. Одновременно происходит отбор конформаций субстрата. В ФСК отбираются те конформации белка и субстрата, которые находятся в структурном соответствии друг с другом, обеспечивающем оптимальное значение свободной энергии взаимодействия. При образовании ФСК происходит взаимная подгонка конформаций белка и субстрата, т. е. их специфический отбор. Посредством конформационных превращений реализуется структурное соответствие фермента и субстрата. [c.189]

    Ряд фактов действительно свидетельствует о конформационных превращениях ферментов при их взаимодействиях с субстратами. В присутствии субстратов некоторые ферменты становятся более жесткими, другие, напротив, более лабильными — легче денатурируются при нагревании. Субстраты индуцируют диссоциацию глутаматдегидрогеназы и гексокиназы на субъединицы. Под действием субстрата изменяется реакционная способность аминокислотных остатков фермента. Спектр поглощения химотрипсина меняется при его взаимодействии с субстратом и эти изменения могут быть интерпретированы как вызванные изменением конформации. Изменения конформаций проявляются и в спектрах люминесценции как ароматических аминокислотных остатков, так и сорбированных на белке красителей. Методами спектрополяриметрии установлены изменения а-спирально-сти,. возникающие при взаимодействиях ферментов с субстратами, коферментами и другими лигандами. Сведения о конформационных изменениях в ФСК дают также спектры ЭПР ферментов, содержащих парамагнитные метки, спектры ЯМР и т. д. [c.190]


    Рассматривая денатурацию протеинов, мы остановили на ней особое внимание ввиду важности ее для техники. Выше уже указывалось, что при получении пластических масс из белковых веществ дело не ограничивается одной пластикацией. Кроме того необходимо перевести протеины из лабильного состояния в стабильное. Для этого необходимо, во-первых, ограничить гидрофильность протеинов и, во-вторых, сделать их инертными по отношению к ферментам. Первое условие, ограничение гидрофильности, легко достигается различными способами денатурации, однако при этом доступность протеинов воздействию ферментов во многих случаях не уменьшается, а в некоторых, например при денатурации нагреванием, даже увеличивается. Надежным способом стабилизации протеинов с выполнением обоих условий является способ денатурации альдегидами. Поэтому в технике пластических масс и пользуются для обработки пластического материала раствором формальдегида. [c.30]

    Белковая молекула очень лабильна, легко денатурирует, в результате чего изменяются ее биологические и физико-химические свойства. Под действием ферментов, а также кислот белки расщепляются, образуя ряд промежуточных продуктов дезагрегации (протеозы, пептоны, пептиды) и конечные продукты гидролиза — аминокислоты. [c.35]

    В отличие от этого процесс активного транспорта протекает в направлении, обратном градиенту химического потенциала соответствующего вещества, и поэтому требует затрат энергии. Доказано, что в мембранных структурах клеток животных энергия, необходимая для переноса ионов с участием транспортных белков, обеспечивается за счет гидролиза АТФ, осуществляемого ферментом АТФ-азой. (АТФ-аза представляет собой полифункциональный фермент, участвующий в обеспечении энергетических потребностей фотосинтетического и окислительного фосфорилирования, транс-гидрогеназной реакции, ионного транспорта и в целом процессов активного переноса этот фермент лабильно связан с фосфолипидами или сульфолипидами мембран.) АТФ-аза активируется двухвалентными катионами, одновалентные ионы могут способствовать дальнейшей активации ферментов. [c.48]

    Ферменты обладают свойствами, позволяющими им участвовать в обоих каталитических процессах (гетерогенном и гомогенном). Они способствуют взаимному приближению реагирующих веществ на белковой поверхности либо экстрагируют их из водной фазы внутрь гидрофобной полости. Они связываются с реагентами, благодаря чему скорость химической реакции значительно увеличивается. Например, катализ гидролиза амидной связи ферментом происходит не только благодаря протеканию реакции на белковой поверхности, но и вследствие того, что фермент химически взаимодействует с субстратом, образуя более лабильный эфир, который затем и подвергается гидролизу (см. ниже). [c.192]

    Лабильная связь всегда перпендикулярна плоскости пиридинового кольца, и совокупность ионных, полярных и гидрофобных взаимодействий в ферменте определяет, какой из конформеров будет преобладать. Это легко показать, например, с помощью пью-меновской проекции процесса ферментативного декарбоксилирова-ния. В конформации, необходимой для декарбоксилирования, карбоксильная группа в значительной степени выходит из плоскости конъюгированной системы. Следовательно, специфичность реакции определяется главным образом этой стадией. Так, ферментативное декарбоксилирование аминокислот идет с сохранением конфигурации и обеспечивает, таким образом, синтез оптически чистых а-дейтерированных аминов, если реакцию проводят в тяжелой воде [304]. [c.439]

    Третий путь к освоению приемов , которыми пользуется живая природа в своих лабораториях in vivo, состоит в значительных, причем полученных в самые последние годы, достижениях химии иммобилизованных систем. Как было уже сказано, энзимология давно уже накопила информацию об уникальных качествах биокатализаторов. Но вместе с тем она указала и на их крайнюю лабильность, неустойчивость при хранении и быструю потерю активности при перенесении в реакционные системы, функционирующие in vitro. Ведь именно поэтому техническая биохимия не могла пойти далее нескольких ограниченных областей промышленности, где применяются преимуп ественно гидролитические ферменты, выделяемые микроорганизмами. Эти области — производство вин, пива, чая, хлеба и некоторых других пищевых продуктов, обработка кожи. Все попытки использовать богатейший набор ферментов, которым располагает природа, для осуществления лабораторных и промышленных процессов наталкивались на, казалось бы, неразрешимые проблемы 1) трудную доступность чистых ферментов и их непомерно высокую стоимость 2) их нестабильность при хранении и транспортировке 3) быстро наступающую потерю их активности в работе, даже если удалось их выделить и пустить в дело. Но теперь оказалось, что эти проблемы удается решить. Благодаря успехам микробиологической промышленности стало возможным получать многие ранее трудно доступные или недоступные ферменты по ценам в 100—1000 раз ( ) ниже цен на ферменты растительного и животного сырья. Но, главное, теперь открыты пути стабилизации ферментов, и именно это обстоятельство стало основанием химии иммобилизованных систем, или биоорганического катализа . Сущность этого открытия и всех последующих исследований, направ- [c.184]

    Фруктозо-6-фосфат под действием фермента фосфофруктокиназы присоединяет по месту первого углеродного атома второй остаток фосфорной кислоты за счет АТФ и превращает в фруктозо-1,6-днфосфат. Эта реакция практически необратима. Молекула сахара переходит в оксоформу и становится лабильной, способной к дальнейшему превращению, так как ослабляется связь между третьим н четвертым углеродными атомами. [c.205]

    Уравнение Михаэлиса-Ментена отражает фундаментальную особенность ферментативных реакций - участие в механизме ц оцессов лабильных, промежуточинх соединений субстрата и активное центра фермента. [c.42]

    П р и м е р 5. Очистка ДНК-полимеразы I из Е. oli [Rhodes et al., 1979]. На первых этапах здесь использовали грубую очистку осаждением полиэтиленимином и сульфатом аммония. Затем следовал этап хроматографической очистки на колонке фосфоцеллюлозы, уравновешенной 0,04 М К-фосфатным буфером (pH 6,9) с обычными добавками, включая 5% глицерина. Введение глицерина продиктовано лабильностью фермента — его активность снижается вдвое за сутки. Препарат вносили в том же буфере, им же промывали колонку, а затем вели элюцию линейным градиентом концентрации этого буфера (0,04—0,3 М). Таким образом, вытесняющий белок контрион (К+) поставлялся самим буфером. [c.304]

    Качество получаемых сорбентов во многом определяется полнотой реакции. Теоретически в указанную реакцию может вступить примерно половина всех силанольных групп. Однако оставшиеся группы не могут взаимодействовать с сорбентами, так как экранируются глицерильными группами. При недостаточной степени покрытия полного экранирования не пооисходит и начинает проявляться силанольная активность незамещенных групп. Содержание таких активных групп, характеризующее уровень дезактивации сорбентов, часто оценивают по степени сохранения ферментативной активности лабильных ферментов после их пропускания через хроматографическую колонку. [c.108]

    Известный интерес представляют пектины и пектинаты, растворяющиеся в воде с образованием плотных гелей. Полностью метилированная пектовая кислота содержит около 14% метоксилов, но природные продукты содержат и карбоксильные группы. В зависимости от того, метилировано больше или меньше 50% карбоксильных групп, различают Н- и -пектины, отличающиеся коллоиднохимической и желирующей активностью. Щелочные пектины хорошо растворимы, поскольку солеобразующий одновалентный катион связан лишь с одной полимерной цепью остатков /)-галактуроновой кислоты. Пектины разрушаются щелочами и легко подвержены термоокислительной и ферментативной деструкции. Фермент пектин-эстеразы каталитически расщепляет эфирные связи с выделением карбоксильных групп и метанола. Фермент полигалактуроназы гидролизует гликозидные связи. Подобная лабильность пектинов обусловливает их неперспективность как защитных коллоидов. [c.187]

    Другим примером является инсулин, который не удается ренату- рировать, если его нативные дисульфидные связи были разрушены тиолами или если их структура менялась при ферментативных воздействиях [101]. Этот факт стимулировал поиски предшественни->ка, который был действительно обнаружен в форме проинсулина 442]. Проинсулин стабилен к действию фермента дисульфидизомеразы (рис. 4.3) в опытах по денатурации — ренатурации он самопроизвольно повторно свертывается [443]. Протеолитическое расщепление проинсулина in vivo приводит к инсулину, стабильность которо-го обеспечивается энтропийным вкладом его нативной системы связей "S—S (разд. 8.3). Лабильность структуры инсулина имеет, по-види- мо.му, физиологическое значение [444], поскольку скорость инактивации является фактором, контролирующим степень и продолжительность действия гормона. [c.183]

    Слившиеся белки имеют некоторые преимущества. Прежде всего функциональные домены синтезируются в стехиометрических количествах. Второе преимущество состоит в возможности появления выгодных домен-доменных взаимодействий, которые (в отличие от подобных взаимодействий в олигомерных белках) не зависят от концентраций белков [76]. И наконец, в спецггализированных биосинтетических путях образование лабильных промежуточных соединений, ведущих непосредственно к следующему ферменту, может оказаться весьма полезным. [c.229]

    Получены полинуклеотиды и нуклеозидтрифосфаты, содержащие фосфамидные связи [87], но они не нащли применения для изучения механизма действия ферментов из-за лабильности связи Р—N в мягких кислотных условиях. [c.170]

    Новые данные свидетельствуют о том, что в клетках фосфопротеины синтезируются в результате посттрансляционной модификации, подвергаясь фосфорилированию при участии протеинкиназ. Этот процесс подробно рассматривается в главе 14. Здесь лишь укажем на существенную роль специфической протеинкиназы, катализирующей фосфорилирование ОН-группы тирозина, в биосинтезе онкобелков. Таким образом, уровень фосфопротеинов в клетке зависит в значительной степени от регулирующего действия ферментов, катализирующих фосфорилирование (протеинкиназы) и дефосфорилирование (протеинфосфатазы). Следует отметить, что фосфопротеины содержат органически связанный, лабильный фосфат, абсолютно необходимый для выполнения клеткой ряда биологических функций. Кроме того, они являются ценным источником энергетического и пластического материала в процессе эмбриогенеза и дальнейшего постна-тального роста и развития организма. [c.90]

    Для каталитической активности фермента существенное значение имеет пространственная структура, в которой жесткие участки а-спиралей чередуются с гибкими, эластичными линейными отрезками, обеспечивающими динамические изменения белковой молекулы фермента. Этим изме-неням придается больщое значение в некоторых теориях ферментативного катализа. Так, в противоположность модели Э. Фищера ключ-замок Д. Кощлендом была разработана теория индуцированного соответствия , допускающая высокую конформационную лабильность молекулы белка-фермента и гибкость и подвижность активного центра. Эта теория была основана на весьма убедительных экспериментах, сввдетельствующих о том, что субстрат индуцирует конформационные изменения молекулы фермента таким образом, что активный центр принимает необходимую для связывания субстрата пространственную ориентацию. Иными словами, фермент только в присутствии (точнее, в момент присоединения) субстрата будет находиться в активной (напряженной) Т-форме в отличие от неактивной Я-формы (рис. 4.10). На рис. 4.10 видно, что присоединение субстрата 8 к ферменту Е, вызывая соответствующие изменения конформации активного центра, в одних случаях приводит к образованию активного комплекса, в других—неактивного комплекса вследствие парущения пространственного расположения функциональных групп активного центра в промежуточном комплексе. Получены экспериментальные доказательства нового положения о том, что постулированное Д. Кощлендом индуцированное соответствие субстрата и фермента создается не обязательно изменениями [c.132]

    Эта картина полностью согласуется с концепциям электрон-но-конформационных взаимодействий (ЭКВ) и конформона. Применительно к ЦПЭ можно предположить, что в пункте сопряжения создается лабильный комплекс между переносчиком и некоторой группой в активном центре фермента сопряжения, роль которой, вероятно, играет аденин связанного АДФ. Прп релаксации 1 II в какой-то момент энергетический уровень, на котором находится электрон, понижается до акцепторного уровня аденина. Эти два уровня разделены барьером, по возможен под-барьерный туннельный переход электрона на аденин. Увеличение электронной плотности на аденине сопровождается резким повышением основности аминогруппы. Если в активном центр АТФ-синтетазы имеется электрофильная группа (папример, карбоксил), то аденин реагирует с нею, образуя амидную связь. В следующий момент релаксации уровень переносчика опускается ниже уровня адепнна и электронная плотность переходит с аденина обратно на редокс-группу того же пли следующего переносчика электрона в ЦПЭ. [c.440]

    Из конформационной лабильности макромолекулы белка следует специфическое взаимодействие фермента с субстратом и другими лигандами. Возможно, что в некоторых конформациях белок более эффективно связывает субстрат, чем в других. При связывании может происходить отбор конформаций субстрата. Каруш объяснил способность альбумина плазмы связывать различные вещества конфигурационной адаитабильностью этого белка [63]. [c.387]

    Ряд фактов свидетельствует о конформационных превращениях ферментов (см. [68, 71]). В присутствии субстратов некоторые ферменты становятся более жесткими, другие, напротив, более лабильными — легче денатурируются при нагревании [75]. Субстраты индуцируют диссоциацию глута-матдегидрогеназы [76] и гексокиназы [77]. Под действием субстрата изменяется реакционная способность аминокислотных остатков фермента так, иодирование пен.ч-циллиназы усиливается субстратом [78]. Эти явления можно объяснить моделью Кошланда [79] (см. также обзоры [80, 81]). [c.390]


Смотреть страницы где упоминается термин Ферменты лабильность: [c.318]    [c.160]    [c.183]    [c.195]    [c.478]    [c.261]    [c.303]    [c.369]    [c.62]    [c.132]    [c.403]    [c.426]    [c.41]    [c.287]    [c.401]    [c.403]    [c.478]    [c.62]   
Ферменты Т.3 (1982) -- [ c.27 , c.28 ]




ПОИСК







© 2024 chem21.info Реклама на сайте