Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пластические материалы, обработка

    С целью экономии каучука в резиновую смесь иногда добавляют регенерат (пластический материал, полученный переработкой старой резины) или фактис (суррогат каучука, полученный при обработке высыхающих растительных масел серой). [c.301]

    На каландрах осуществляются следующие технологические процессы листование ткани, промазка ткани, изготовление профилированной ленты или полосы, тиснение поверхности материала, дублирование ткани или листов пластического материала, обработка поверхностей жестких материалов и удаление избыточной жидкой фазы из листов и лент жестких материалов. [c.7]


    Рассматривая денатурацию протеинов, мы остановили на ней особое внимание ввиду важности ее для техники. Выше уже указывалось, что при получении пластических масс из белковых веществ дело не ограничивается одной пластикацией. Кроме того необходимо перевести протеины из лабильного состояния в стабильное. Для этого необходимо, во-первых, ограничить гидрофильность протеинов и, во-вторых, сделать их инертными по отношению к ферментам. Первое условие, ограничение гидрофильности, легко достигается различными способами денатурации, однако при этом доступность протеинов воздействию ферментов во многих случаях не уменьшается, а в некоторых, например при денатурации нагреванием, даже увеличивается. Надежным способом стабилизации протеинов с выполнением обоих условий является способ денатурации альдегидами. Поэтому в технике пластических масс и пользуются для обработки пластического материала раствором формальдегида. [c.30]

    Винипроз С—пластический материал, получаемый термической обработкой непластифицированного сополимера хлорвинила с метилметакрилатом с добавкой стабилизатора. [c.715]

    В различных отраслях промышленности полимеры перерабатывают в изделия разными методами из раствора или из расплава полимеров, из размягченного (пластического) материала, а также непосредственной обработкой твердых полимеров. [c.646]

    Регенератом называется пластический материал, получаемый путем переработки старой резины (автомобильные покрышки, галоши и некоторые бестканевые резиновые изделия), а также отходов резинового производства (обрезки резины, вырубки, вы-прессовки, заусеницы). Процесс обработки этого сырья для [c.21]

    Из рассмотрения механизма цепной полимеризации (стр. 348) видно, что продукты полимеризации являются полимергомологами с разной длиной цепи и могут быть охарактеризованы лишь величиной среднего молекулярного веса. Молекулярный вес полимеров является наиболее важной их характеристикой, так как от степени полимеризации (длины цепей макромолекул) зависят важнейшие физикомеханические свойства этих материалов. Большое значение имеет также степень ориентированности линейных цепей, их изогнутость и степень разветвленности. Чем более выпрямлены и ориентированы друг относительно друга цепи полимера, чем менее они разветвлены, тем сильнее проявляются силы взаимного притяжения, тем выше механическая прочность материала. Степень ориентации линейных молекул полимера может быть повышена при последующей обработке пластического материала путем дополнительной вытяжки пленок и нитей, при литье под давлением через узкие каналы и т. д. [c.384]


    Интересен белок, содержащий фосфор — казеин. В молекуле казеина остатки фосфорной кислоты связаны главным образом с серином. Казеин получается из молока и не является однородным веществом. При осаждении растворами кислот удается получить три фракции а-, р-, у-казеин, отличающиеся аминокислотным составом и, вероятно, тоже неоднородные. Казеин можно растворить в щелочах. Из этого раствора обработкой формальдегидом получают пластический материал, пригодный для изготовления волокон, а также для конструкционных целей. [c.63]

    Для повышения пластических свойств двухслойных труб и снятия остаточных напряжений иосле волочения футерованные трубы подвергают термической обработке (отжигу), в результате которой предел прочности, ударная вязкость и микротвердость наружных труб принимают значения, близкие к исходным. После волочения микроструктура материала наружных и внутренних труб по сравнению с исходной не изменяется. Отжиг двухслойных труб внутренними трубами из титановых сплавов производят в защитной среде. Для этих целей в процессе отжига через титано-70 [c.70]

    Устойчивость пластических материалов и резин к действию микроорганизмов также снижают вещества, входящие в состав пластического материала в процессе получения или обработки. Такими веществами могут являться остатки эмульгаторов, аппретуры для текстиля, изготовленной на крахмале или на клею, и т. п. Например, хлористый винил полимеризуется в присутствии многих веществ, большей частью органических соединений, выполняющих различные функции. В данном случае наибольший интерес представляют эмульгаторы и стабилизаторы эмульсий. В качестве эмульгаторов применяются сульфированные масла, щелочные соли высших жирных кислот, их эфиры и амины, сульфокислоты и различные алкил- и арилсульфонаты. В качестве стабилизаторов применяют казеин, крах- мал, поливиниловый спирт, желатин, метилцеллюлозу, полиакрилат натрия и т. п. [c.162]

    Фланцы. Это наиболее распространенные разъемные соединения аппаратов и трубопроводов. Они служат для соединений отдельных частей аппаратов съемных крышек, отдельных царг, люков и др. Ответственная часть фланцевого соединения — узел уплотнения, Различают уплотнения с пластической деформацией уплотняющих элементов и соединения с упругой деформацией. В наиболее распространенных соединениях с пластической деформацией уплотнение достигается тем, что значительно более мягкая, чем основной материал фланца, прокладка деформируется при затягивании соединения и заполняет все неровности на уплотнительной (привалочной) поверхности фланцев. Соединения с упругой деформацией требуют тщательной обработки уплотнительных поверхностей. Их применяют значительно ре е как правило, при повышенных давлениях. Герметичность соединения возрастает с увеличением удельного давления, действующего на прокладку. Чем меньше ширина прокладки, тем больше удельное давление прн одной и тон же силе сжатия, поэтому прокладки для соединений высокого давления делают более узкими. [c.51]

    Сырые фаолитовые листы и фаолитовая масса — хорошо формующийся пластический материал, который отверждается при термической обработке по опреде-ленному режиму. На этом свойстве фаолита основывается технология изготовления различных изделий, в том числе и химической аппаратуры. [c.362]

    Обработка и подготовка для численного моделирования большого количества эмпирических данных, снимаемых с машинных диаграмм испытаний образцов, являются достаточно трудоемкими процессами, сопряженными с возможностями внесения ошибок. Поэтому здесь удобно использовать модели упруго-пластического материала, где зависимость напряжение - деформация аппроксимируется (для всей кривой или только ее части) гладкой нелинейной функцией, определяемой несколькими материальными параметрами. В последнее время такой подход находит широкое применение при численном моделировании процессов обработки металлов давлением. В частности, одним из наиболее простых (но в то же время эффективных и часто применяемых при моделировании операций холодной формовки стальных листов и трубных заготовок [283]) законов нелинейного упрочнения материала является двухпараметрическая степенная аппроксимация пластического участка диаграммы одноосного растяжения образцов (см., например, [153])  [c.571]

    Например, сродство к кислороду того или иного элемента препятствует протеканию технологических процессов восстановительного свойства сцепление частиц материала препятствует его деформации силы поверхностного натяжения препятствуют дроблению жидкости и т. д. Для преодоления указанных сил должна быть совершена работа с затратой того или иного количества энергии. Ту энергию, которая непосредственно совершает работу по преодолению сил, препятствующих протеканию данного технологического процесса, удобно называть рабочим видом энергии. В промышленности в качестве рабочего вида энергии наиболее часто используются тепло и механическая энергия. Так, например, при обработке металла на токарном станке непосредственно затрачивается механическая энергия, при обработке металлов давлением на прокатном стане и кузнечном молоте затрачивается также механическая энергия, но для того чтобы перевести металл в удобное для обработки давлением пластическое состояние, нужно его нагреть до той или иной температуры, затратив тепло. Тепло нужно затратить для того, чтобы расплавить материал, осуществить процесс сушки или возгонки, восстановить руду до металла и т. п. [c.7]


    Технологические свойства характеризуются способностью материала подвергаться различным видам обработки — пластической деформации гибке, вальцовке, сварке, термической обработке и др. Учет технологических свойств весьма важен при проведении ремонтных работ. Работоспособность оборудования в значительной степени зависит от надежности сварных соединений. На свариваемость стали наибольшее влияние оказывает содержание в ней углерода. Ориентировочную оценку свариваемости низколегированной стали можно дать, пользуясь значением углеродного эквивалента [c.24]

    Оказалось, что в пластических массах часто сочетается несколько ценных свойств. Так, примером прочного материала является сталь, легкими и твердыми веществами являются дерево и алюминий пример прозрачного материала—стекло. Однако сталь химически неустойчива, она ржавеет трудно поддается механический обработке дерево гниет, непрозрачно, плохой изолятор электричества стекло—хрупко, трудно обрабатывается в холодном виде. Пластмассы же не имеют этих недостатков. Большинству пластмасс присущи легкость хорошие электроизоляционные свойства, высокая прочность они легко поддаются механической обработке. Многие пластмассы прозрачны, не гниют, стойки к действию сильных кислот и щелочей и др. [c.116]

    Предварительная подготовка поверхности с помощью пескоструйной или дробеструйной обработки [18, 19] представляет собой механическую обработку поверхности металлов струей рабочего материала, выбрасываемого с большой скоростью на поверхность обрабатываемого материала, без удаления стружки. Исходя из этого, на данный способ нельзя распространять законы обработки резанием или шлифованием. При такой обработке струя рабочего материала направляется на поверхность металла, и часть кинетической энергии падающей гранулы расходуется на пластическую деформацию поверхностных слоев и пластическую деформацию или раскалывание гранулы. Характер обработанной поверхности определяется формой гранул. [c.66]

    При качественной оценке пескоструйной или дробеструйной обработки мож-но установить, что происходит просечка окалины, местная пластическая деформация металла, отделение слоя окалины в непосредственной близости к краю просечки и выступание металла по ее краям выше уровня исходной поверхности (рис. 80). Отсюда следует, что количество выбрасываемого струей материала, необходимое для удаления окалины, примерно равно количеству материала, необходимому для полного покрытия поверхности следами падающих гранул. [c.67]

    В последние годы развивается направление по созданию высокопрочных материалов путем управления характером, числом и распределением несовершенств в металле, которые могут быть созданы при применении пластической деформации. Одним из способов создания высокопрочного состояния является термомеханическая обработка, при которой комбинированным воздействием на материал операций деформации, нагрева и охлаждения создается оптимальная дислокационная структура стали [69—72]. [c.45]

    После механической обработки все операции, за редким исключением, проводят в ваннах, заполненных соответствующими растворами или водой для промывки. 11анны чаще всего изготовляют из стали и футеруют внутри для предотвращения коррозии. В качестве футеровочного материала широко используют пластические массы (чаще всего винипласт), эбонит, свинец и др. Материал футеровки выбирают с учетом дальнейших условий эксплуатации. [c.347]

    Методы интенсивной пластической деформации могут обеспечить формирование наноструктур в различных материалах. Однако получаемый размер зерен и характер формирующейся структуры зависят от применяемого метода ИПД, режимов обработки, фазового состава и исходной микроструктуры материала. Ниже будут приведены примеры типичных наноструктур, полученных методами ИПД, обсуждаются пути получения минимального размера зерен в различных материалах, рассмотрены данные об эволюции микроструктуры в ходе интенсивных деформаций. [c.19]

    Изготовление резиновых изделий осуществляется с помощью ряда последовательных процессов, которые в принципе можно рассматривать в виде трех основных этапов приготовление резиновых смесей путем введения необходимых ингредиентов в каучук, формование и вулканизация. Из материала с ярко выраженными пластическими свойствами в итоге получают эластичное изделие, в идеале не способное к пластическим деформациям. Для того чтобы осуществить смешение и различные процессы формования, каучук и резиновая смесь должны иметь определенную пластичность, т. е. способность к необратимым деформациям. Таким образом, суть всего технологического процесса выглядит как придание каучуку пластических свойств, достигаемое механической или тепловой обработкой и добавкой необходимых веществ, сохранение этих свойств на всех этапах технологического процесса и превращение полученного материала путем вулканизации в резину, т. е. высокоэластический материал, не обладающий пластическими свойствами. [c.15]

    Непроницаемость затвора обеспечивается тем, что в рабочем состоянии уплотняемые поверхности воспринимают нормальное удельное усилие Q или удельное давление д, величина которых не меньше определенного значения [Р] или [ ] в зависимости от способа уплотнения. В затворах и уплотнениях с прокладкой из мягкого материала ее необходимо довести до пластического состояния. В упругих затворах требуется обеспечение минимальной величины нормального удельного усилия или давления. Эту величину выбирают из опытных данных в зависимости от ряда факторов (давления, среды и ее свойств, твердости и чистоты обработки уплотняемых поверхностей, ширины уплотнения и т. д.). Усилия, воспринимаемые уплотнением при затяжке и в рабочих режимах, определяются из условия герметичности и могут являться исходными при расчете деталей затвора на прочность. [c.227]

    Однако получение кристаллов без дислокаций — не единственный путь упрочнения материалов. Оказывается, что повышенной прочностью обладают не только кристаллы без дислокаций, но и кристаллы с повышенной плотностью дислокаций. Например, давно известен метод упрочнения металлов за счет их механической обработки (ударные нагрузки) в холодном состоянии ( наклеп металлов). В результате пластической деформации при наклепе плотность дислокаций резко увеличивается, а прочность повышается. Это объясняется тем, что отрицательное влияние на прочность материала обусловливается не самим присутствием дислокаций, а их способностью к передвижению. Если эту способность каким-либо образом ограничить, прочность материала повысится. [c.98]

    Пластические свойства, придаваемые битуму серой, быстро теряются, и происходит превращение пластического материала в кристаллический. Добавление к битуму вместо элементарной серы полиметилентетрасуль-фида сопровождается также возрастанием пенетрации и понижением температуры хрупкости (по Фраасу). Однако пластические свойства полимера сохраняются значительно дольше. Недостатком простых органических полисульфидов является их низкая устойчивость к действию высоких температур, имеющих место при обычном использовании битумов. Себестоимость осерненного битума оказалась высокой, так как расход серы составил 20—25%- Поэтому производство осерненного битума широко не распространилось. При обработке сырья серой выделяется значительное количество сероводорода и летучих сернистых соединений. В готовом битуме остается лишь небольшое количество серы. По-видимому, сера, отнимая водород, превращает простые связи в двойные, а затем образовавшиеся ненасыщенные соединения полимеризуются. [c.156]

    При стеклодувной обработке следует использовать шланги подходящих размеров обычный стеклодувный шланг представляет собою резиновую Т1рубку длиной 0,5—1 м (диаметром 6—8 мм) такая трубка имеет на одном конце мундштучный наконечцик, а на другом конце — устройство, облегчающее ее присоединение к обрабатываемому изделию. Для того чтобы резиновую трубку можно было вращать, не подвергая ее при этом скручиванию, рекомендуется снабжать трубку вращающимся шарнирным сочленением. Для того чтобы избежать попадания паров из выдыхаемого стеклодувом воздуха внутрь обрабатываемой аппаратуры (а также для предупреждения попадания паров из обрабатываемого изделия в органы дыхания стеклодува), следует использовать промежуточный сосуд с резиновым или пластиковым мешком внутри него (рис. 2-57,а). Если нужно опаять две загрязненные стеклянные детали (что, например, имеет место при ремонте стеклянных изделий, использованных для работы с радиоактивными или токсичными веществами), можно применить устройство, показанное на рис. 2-57,6. Через мундштук 1 стеклодув оказывает давление выдыхаемым воздухом на тонкую диафрагму 2 из пластического материала майлар (толщина примерно 25 мкм). Эта подвижная диафрагма в результате изменения оказываемого на пее давления изменяет свое расположение по отношению к отверстию трубопровода, по которому [c.91]

    Предназначенная для покрытия металлическая деталь должна быть предварительно очищена, высушена и обезж(ирена. Поверхность детали хорошо высушивается и обезжиривается пламенем горелки или бензином Затем деталь обрабатывают пескоструйным или дробеструйным методом (кварцевым песком, корундом или мелкоизмельченным отбеленным чугуном). Эта обработка придает шероховатость поверхности изделия, что улучшает сцеп- ление пластического материала с металлом. После нагрева детали до необходимой температуры в термостате ее помещают в камеру (фиг. 45), в которой во взвешенном, взвихренном состоянии находится порошкообразный термопласт 1. Завихрение порошка производится нагретым в трубчатом змеевике 2 сжатым воздухом, нагнетаемым через пористую перегородку 3 (фильтрующая керамика, набор металлических сеток и т. д.). Температура сжатого воздуха обычно не превышает 70° [35]. Во избежание закупорива-74 [c.74]

    Расплавленный пластический материал, выходя из головки шприцмашины, может иметь любую форму поперечного сечения, любую температуру и соответственно обладать самой различной жесткостью. Охлаждающее, приемное и отборочное оборудование представляет собой совокупность механизмов и приспособлений, которые служат для охлаждения, поддержки, вытягивания, придания окончательной формы и закатывания шприцуемого изделия. Иначе говоря, эти механизмы так или иначе воздействуют на изделие с того момента, когда оно вышло из головки, и это воздействие продолжается до тех пор, пока обработка изделия не заканчивается полностью. Вследствие большого многообразия условий переработки эти механизмы компануются так, чтобы обеспечивать выполнение определенного комплекса требований, соответствующих особенностям шприцевания данного конкретного изделия. Однако некоторые элементы, входящие в такие технологические схемы, носят общий характер. Ниже будет приведено краткое описание наиболее широко использующихся механизмов. [c.321]

    Осаждение на пластиках. Осаждение никеля восстановлением из раствора используется с целью получения тонких покрытий для обеспечения первоначальной электропроводности поверхностного слоя пластического материала перед процессом нанесения на него различных покрытии электролитическим методом. При обычной методике на первой ступени подготовки пластик подвергается травлению в растворе хромовой или серной кислот для облегчения закрепления металлического осадка на поверхности. После этого для осаждения никеля путем восстановления из раствора без наложения э. д. с. поверхность делают каталитически активной, обычно наиболее успешно путем обработки в растворе, содержащем соединения олова и соединения металлов платиновой группы. За осаждением никеля путем восстановления без наложения э. д. с. следует стадия электроосаждення необходимого покрытия. [c.442]

    Качество материала деталей оказывает большое влияние на работу трущейся пары, в частности на износостойкость пары трения. От качества материалов зав.исит интенсивность и характер пластических деформаций, усталостные явления, изменения в металле под действием теплоты трения и т. д. На износ оказывает также влияние обработка поверхности (например, закалка, цементация, азотирование). Для уменьшения износа применяются специальные антифрикционные чугуны, баббиты, бронзы и другие материалы. [c.34]

    Ответственная часть фланцевого соединения - узел уплотнения. Различают уплотнения с пластической деформацией уплотняпцих элементов и соединения с упругой деформацией. В наиболее распространенных соединениях с пластической деформацией уплотнение достигается тем, что значительно более мягкая, чем материал фланца, прокладка деформируется при затягивании соединения и заполняет все неровности на уплотнительной поверхности фланцев. Соединения с упругой деформацией требуют тщательной обработки уплотнительных поверхностей. Их п акнение значительно редкое как правило, при повышенных давлениях. Герметичность соединения возрастает с увеличением удельного давления на прокладку. Чем меньше ширина прокладки, тем больше удельное давление при одной и той же силе сжатия, поэтому прокладки для соединения высокого давления дела-т более узкими. [c.92]

    На многих иллюстрациях, помещенных в гл. 1, в частнос1и на рис. 1.о и 1.5, представлены сложные конфигурации системы труб, часто применяемых в теплообменниках. Операция по гнутью труб определяет стоимость изготовления теплообменников. Гнутье труб обычно производится в холодном состоянии при этом металл на внутренней стороне изгибаемого изделия испытывает напряжение сжатия, а снаружи он подвергается растягивающим усилиям. Если пластическая деформация металла не должна превышать 25%, минимально допустимый радиус изгиба должен быть равен двум диаметрам. Материал трубы, термическая и механическая обработка и отношение толщины стенки к диаметру в совокупности оказывают существенное влияние на величину минимального радиуса изгиба. [c.34]

    В процессе изготовления деталей большой длины и малой жесткости часто применяют операцию холодной правки заготовки. При холодной правке возникают остаточные деформации в детали, направление которых противоположно направлению деформаций, имеющихся до правки, и равные им по величине. При нагружении балки поперечной силой Р (рис. 1.36) на участке АБ возникают упругие деформации, подчиняюишеся закону Гука, а -на участках АГ и БВ - пластические деформации. После снятия нагрузки деталь начинает упруго деформироваться в противоположном направлении под действием упругих напряжений, оставшихся в ее средней части. После наступления равновесия напряжений упругие деформации детали прекращаются. В результате на последующую обработку деталь поступает в напряженном состоянии и при снятии с нее слоя материала равновесие нарушается и она деформируется. [c.59]

    Пластические и упругие деформации материала оказьшают при обработке резанием влияние на поверхностный слой дета ш. Поверхностный слой детали из пластических материалов деформируется, в результате чего [c.61]

    Такое предположение основывается на то.м, что максимальные напряжения, возникающие вблизи вершины трещины, будут зависеть от легкости релаксации пластической деформации и протяжеиности ее зоны. В пользу этой гипотезы имеется несколько доказательств. Во-первых, как можно видеть из рис. 38, наклон кривой в области / зависит от термической обработки и уменьшается с ростом предела текучести материала. Во-вторых, из результатов [124] для межкристаллитного характера роста трещин (= область / ) в титане марки СР-50А был получен меньший наклон кривой 0,055 МПа-м / . [c.390]

    Стекло органическое — прозрачная бесцветная пластическая масса, получаемая полимеризацией метилового эфира метакриловой кислоты СН2=С(СНз)СООСНз, иногда стирола. Легко поддается механической обработке. Применяют как листовой материал в авиа- и машиностроении и для изготовления бытовых изделий. Иногда С. о. называют плексигласом. [c.127]

    При реставрации памятников деревянного зодчества довольно часто приходится встречаться с разрушением бревен сруба био разрушителями при сохранении целостности наружной части бревен. В этом случае или заменяют отдельные венцы сруба, или ставят так назьшаемый протез (заменяют часть бревна на новое), или освобождают внутреннюю полость бревна от деградированной древесины и образовави юся полость заполняют композицией из опилок и связующего. Вначале внутреннюю полость бревна очищают от пылеобразной разрушенной древесины и в полость закачивают кремнийорганический лак КО-921 или органосиликатный материал типа Б-2 для пропитки древесины с целью ее укрепления, гидрофобизации и подавления жизнеспособности биоразрушителей. Готовят пластическую массу из кремнийорганического лака или органосиликатного материала и опилок. Соотношение компонентов подбирают таким образом, чюбы бьшо удобно ввести эту массу в полость бревна и уплотнить ее. В результате такой обработки восстанавливается 60-70% механической прочности исходной древесины и сохраняется ее газопроницаемость (не менее 25 % от первоначальной). [c.123]

    На свойства пластической массы значительно влияет петрографический состав углей. Многочисленными исследованиями установлено, что витринит и липтинит углей средних стадий зрелости при термической деструкции образуют вещества, составляющие жидкую часть пластической массы, что и обусловливает их спекаемость. Отсутствие у инертинита свойства спекаться отмечалось еще в 20-е годы. Незначительные изменения его структуры в процессе термической обработки угля и в связи с зтим сохранение морфологических признаков позволяет с помощью микроскопа наблюдать инертинит даже в коксе, поэтому считают, что инертинит — материал, практически инертный при коксовании. К практически инертным компонентам может быть отнесен также и семивитринит. Однако в связи с тем, что некоторые микрокомпоненты группы семивитринита при нагреве проявляют слабые пластические свойства, образуют пластическую массу, И.И.Аммосов и И.О.Еремин предложили к неспекающимся отощающим компонентам (20/С) относить условно лишь /3 содержания в угле семивитринита 10/С = /+ /з51/. [c.159]

    Пользуясь полученным соотношением, достаточно легко объяснить связь износостойкости материалов со способностью их к самонаклепуили наклепу различными методами поверхностного пластического деформирования (ППД) следующим образом. Если произведение 4 = onst или бкр onst характеризует способность материалов работать в условиях нормального износа, то величина р может быть представлена в виде двух слагаемых называемая "структурная" компонента деформации, реализованная при злектро-кристаллизации или в процессе получения и обработки материала -величина, характеризующая способность материала к наклепу или оамо-наклепу - так называемый резерв. [c.134]


Смотреть страницы где упоминается термин Пластические материалы, обработка: [c.130]    [c.135]    [c.144]    [c.49]    [c.99]    [c.446]    [c.148]    [c.99]   
Химия коллоидных и аморфных веществ (1948) -- [ c.25 ]




ПОИСК





Смотрите так же термины и статьи:

Материалы пластические

Обработка материалов

Пластическая



© 2025 chem21.info Реклама на сайте