Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо окисление бактериями

    Это уравнение показывает, что железо и бактерии, окисляющие железо и серу, играют важную роль в таких реакциях. Окисление ими железа (П) и серы обеспечивает условия, необходимые для растворения сульфидных минералов, т. е. поддерживает уровень концентрации железа (П1) и серной кислоты. [c.215]

    Однако в пластовых и сточных водах, содержащих сероводород, кислород, отмечаются скорости коррозии оборудования 6—8 мм/год. В присутствии тионовых сероокисляющих бактерий возможно окисление сульфида железа до сульфат ионов серной кислоты и, в результате, заметное подкисление среды. [c.19]


    На механизм низкотемпературной коррозии влияет много различных причин переменная температура и влажность воздуха, переменный состав газовой и электролитной среды и даже бактериальная флора, например при почвенной коррозии, так как некоторые виды бактерий способствуют окислению железа. Развитие коррозии в результате контакта разных металлов можно иллюстрировать схемой, представленной на рис. 236. Наибольшее коррозионное разрушение наблюдается рядом с контактом, так как здесь сопротивление наименьшее и, следовательно, наибольшая плотность тока. [c.513]

    Окисление двухвалентного железа происходит в 500 ООО раз быстрее в ирисутствии бактерий, чем без иих. Процесс проводится ири pH 2,2-2,0 и ири темиературе 25-30 °С. [c.445]

    Примером последнего могут служить окисление железа и марганца бактериями. Так, железобактерии получают энергию в результате окисления солей двухвалентного железа до соединений трехвалентного железа  [c.242]

    Наряду с широким развитием исследований по бактериальному, подземному и кучному выщелачиванию, появились первые исследоваиия по применению биохимических методов очистки сточных вод.. Бактерий использованы для разложения вредных примесей в сточных водах коксохимического производства и окисления ионов железа в отходах гидрометаллургии [110, 212]. [c.8]

    Установлено, что амилазы представляют собой белки и являются однокомпонентными ферментами. Амилазы плесеней, бактерий, поджелудочной железы, а также а-и Р-амилазы ячменного солода выделены в кристаллическом виде. Опыты, проведенные с препаратами амилазы, привели к предположению, что активность этого фермента связана с наличием в его молекуле сульфгидрильных групп. При окислении сульфгидрильных групп амилазы ее активность снижается и, наоборот, при восстановлении окисленного фермента его активность увеличивается. [c.93]

    Накопление окислов железа и марганца на поверхности бактериальных клеток — результат двух взаимосвязанных процессов аккумуляции (поглощения) клетками этих металлов из раствора и окисления, сопровождающегося обильным отложением нерастворимых окислов на поверхности бактерий. Процесс аккумуляции тяжелых металлов из растворов в основе имеет физико-химическую природу и в значительной мере обусловлен химическим составом и свойствами поверхностных структур клетки. Он включает связывание металлов внеклеточными структурами (капсулы, чехлы, слизистые выделения), клеточной стенкой и ЦПМ. Сорбционные свойства поверхностных клеточных структур определяются в большой степени суммарным отрицательным зарядом молекул, входящих в их состав. Поглощение металлов приводит к значительному концентрированию их вокруг клеток по отношению к среде. Коэффициент накопления для железа и марганца может достигать значений 10 —10 . [c.376]


    Биокатализаторы интересны еще и с другой точки зрения реакции, катализируемые ими, протекают с достаточной скоростью при обычных температурах и давлениях многие реакции в присутствии химических катализаторов возможны лишь при высоких температурах, а часто и высоких давлениях. К биокатализаторам указанного действия относятся бактерии, обеспечивающие, например, фиксацию азота воздуха (азотобактеры), выделение железа и окислов железа (железные бактерии), получение серы из сероводорода и других сернистых соединений (серные бактерии), различные превращения углеводородов (нефтяные бакте-рии), образование белков из нефти и т. д. В результате таких процессов получаются продукты, обладающие более высокой энтропией, чем исходные. Происходит это за счет параллельно идущих экзотермических процессов, особенно процессов окисления. Необходимо глубже вникнуть в механизм действия такого рода ферментативных систем, чтобы изыскать возможности восироизведения их с помощью искусственных катализаторов. Пока мы еще не создали таковых, здесь нужны широкие исследования возможностей осуществления промышленных процессов с применением природных ферментов в виде соответствующих бактерий и грибков. [c.19]

    При культивировании бактерий с применением электрохимического восстановления окисленного железа концентрация бактерий может быть достигнута до десятков граммов в литре- Для непрерывного культивирования T.ferrooxidans этим способом необходимо применять сбалансированные среды [16]. Это вытекает из следующих закономерностей. [c.136]

    Биологический синтез протеинов. В этих целях используются в основном алканы средней молекулярной массы. Тем не менее белково-внтаминный концентрат (БВК) может быть получен не только из жидких, но и газообразных нормальных алканов, а также из продуктов нх окисления. Последние лучше растворяются в воде и поэтому легче усваиваются микроорганизмами, что обеспечивает ббльшую экономичность процесса. Микроорганизмы представляют собой аэробные формы бактерий, избирательно использующие алканы в присутствии кислорода воздуха и питательной водной среды, содержащей неорганический или органический азот, соли фосфора, магния, калия, микроэлементы — железо, цинк, медь, марганец и другие, содержащиеся обычно в пресной и морской воде. Температура биосинтеза 25—40 °С. [c.204]

    Несмотря на то что это и не имеет прямого отношения к транспорту железа и кислорода, следует упомянуть также о получении синтетических биомиметических моделей особого парного бактериохлорофилла а [247], поскольку в процессе фотосинтеза при первичном поглощении света фотореакционными центрами молекулярных ассоциатов хлорофилла зеленых растений и фотосинтезирующих бактерий, по-видимому, происходит окисление особых парных молекул хлорофилла. Димерные производные хлорофилла, изображенные на рис. 6.6, в которых пор-фириновые макроциклы связаны простой ковалентной связью, проявляют некоторые фотохимические свойства, моделирующие in vivo особый парный хлорофилл. [c.373]

    С, Н. Виноградский сыграл большую роль в развитии микробиологии. Им были изучены серобактерии (1887), железобактерии (1888) и нитрифицирующие бактерии (1890), исследования которых дали результаты важного научного значения. Эти бактерии обладали способностью развиваться на сре.аах, не содержащих органических веществ, и синтезировать составные части своего тела за счет углерода угольной кислоты. Необходимую энергию эти бактерии получают за счет биохимических процессов, протекающих при окислении азота аммонийных солей в нитриты и нитраты, или за счет окисления двухвалентного железа в трехвалентное. Такой своеобразный процесс синтеза органического вещества из угольной кислоты 1 воды назьпзается хемосинтезом. Это явилось кр 1шспшим открытием в области физиологии микроорганизмов. [c.241]

    Необходимую для жизнедеятельности энергию они получают или при фотосинтезе (усвоение углекислоты зелеными растениями и пурпурными серными бактериями), или хемосинтезе — путем окисления аммония, серы, нитритов, солей железа (П) и т. д. К ним относятся нитрифицирующие бактерии, железобактерии, бесцвет пые серные бактерии и тионовокислые. [c.255]

    Железобактерии относятся к автотрофной группе организмов и могут разви-паться в среде, не содержащей органических веществ. На 1 г синтезированного ими клеточного вещества они окисляют 279 г железа (II) с образованием 534 г Г е(ОН)з. Соотношение между окисленным железом и ассимилированным из углекислоты углеродом (500 1) показывает, какое большое количество Р е(ОН)з образуется при автотрофном росте. Гидроокись железа (III) после отмирания бактерий служит материалом для образования болотных и озерных руд. Вода, содержащая железо (II), способна давать железистые отложения в трубах и теплообменниках при малых скоростях движения воды и небольших температурных перепадах. [c.255]


    Наконец, в морской воде зародились впервые вирусы, бактерии, простейшие одноклеточные водоросли и дрожжевые грибки началось развитие анаэробного брожения запасенных в результате абиогенного фотосинтеза органических молекул затем начали появляться живые клетки, использующие для своей жизни энергию окисления органических молекул за счет кислорода сульфатов, превращаемых в сульфиды начали все более развиваться разнообразные живые автотрофы, получающие энергию от окисления сероводорода (с выделением свободной серы) или от окисле1шя железа (И) до железа (И1). [c.376]

    Аэробные бактерии сероокисляющие, тиосульфатоокисляющие и железобактерии получают энергию, необходимую для их жизнедеятельности, за счет окисления серы и железа кислородом, содержащимся в почве. Это приводит к тому, что в местах скопления бактерий образуются участки с ма- [c.16]

    В природе аэробные и анаэробные бактерии существуют сов-/iie THo. В почве наиболее интенсивная коррозия наблюдается в болотистых местах (рЯ=6,8...7,8), насыщенных органическими /остатками с пониженным содержанием кислорода., Поверхность конструкций, имеющих значительную протяженность (трубопровод), становится анодной по отношению к участкам, контакти-/ рующим с более аэрированной почвой, и коррозия ускоряется, п В анодных зонах возможно окисление гидрозакиси железа железо-бактериями. [c.26]

    Влияние микроорганиз.мов. В природных водах могут иметься всякого рода живые организмы (серо- и железобактерии, водоросли, грибы и т.п.). В благоприятных условиях они образуют на поверхности металла слизеобразные и нитеобразные колонии. Развитие микроорганизмов способствует ускорению коррозии. Наиболее интенсивную деятельность проявляют анаэробные бактерии, которые способны восстанавливать соединения серы (сульфаты) до сульфидов, и аэробные бактерии, окисляющие серу и ее соединения до серной кислоты. Наряду с серобактериями ускорение коррозионных процессов вызьшают также железобактерии. Необходимую для своего развития энергию они получают при окислении ионов двухвалентного железа до трехвалентного. Эти бактерии производят больпгое количество слизи, на которой оседают продукты коррозии и твердые частицы. Образующийся осадок снижает эффективность работы оборудования (например, холодильных установок). [c.68]

    Среди бактерий в очистных сооружениях сосуществуют гетеротрофы и автотрофы, причем перимущественное развитие та или иная группа получает в зависимости от условий работы системы. Эти две группы бактерий различаются по своему отношению к источнику углеродного питания. Гетеротрофы используют в качестве источника углерода готовые органические вещества и перерабатывают их для получения энергии и биосинтеза клетки. Автотрофные организмы потребляют для синтеза клетки неорганический углерод, а энергшо получают за счет фотосинтеза, используя энергию света, либо хемосинтеза путем окисления некоторых неорганических соединений (например, аммиака, нитритов, солей двухвалентного железа, сероводорода, элементарной серы и Др.). [c.100]

    В илах многих соляных озер в ландшафте сухих степей и низин также возникают сероводородные барьеры. Их формирование связано с процессами жизнедеятельности сульфатредуцирующих бактерий. Для развития этих бактерий в ландшафтах создаются весьма благоприятные условия есть органика (остатки различных водорослей и мелких животных) и сульфаты, а свободного кислорода для окисления органики не хватает. На таких барьерах концентрируется черный коллоидный минерал железа — гидротроилит Ре(Н5)2 пЩО. Он придает илам специфический цвет, а не прореагировавший НзЗ — запах. Железа для образования таких количеств гидротроилита практически всегда достаточно в природных водах и горных породах. [c.46]

    Бактерии используют соединения железа в целях получения энергии для своего метаболизма (например, окисление закисного железа в окисное). Поскольку эти бактерии извлекают энергию при окислении неорганических веществ, они развиваются там, где нет органических веществ, используя в качестве источника углерода (С) углекислоту (СО ). Однако окисление железа не является эффективным способом получения энергии для продуцирования 1 г клеточного углерода должно быть окислено примерно 220 г Fe +. В результате там, где живут железоокисляющие бактерии, образуются большие отложения оксида железа (П1). [c.85]

    Окисление железа при pH > 4 обычно осуществляют бактерии Galionella, Leptolhrix с образованием минерала гидрата окиси железа — ферригидрита, который служит ключевым соединением в цикле железа. Ферригидрит спонтанно превращается в гетит. — Прим. ред. [c.85]

    После того как свободный кислород был потреблен, окисление органического вещества протекает с помощью набора микробиологически опосредованных реакций (см. п. 3.7.4). Несмотря на то, что в морских отложениях небольшие количества нитратов (N0 ), марганца (Мп) и железа (Ре) пригодны как акцепторы электронов, значение их невелико по сравнению с SOi , которого много в морской воде (см. табл. 4.1). При значении pH морской воды около 8 органическое вещество включается сульфатредуцирующими бактериями в обмен веществ согласно следующему упрощенному уравнению  [c.181]

    Источниками железа для синтетических целей являются пищевые продукты, а также железо, освобождающееся при постоянном распаде эритроцитов в клетках печени и селезенки (около 25 мг в сутки). Простетические группы пищевых хромопротеинов (гемоглобин, миоглобин), включая хло-рофиллпротеины, не используются для синтеза железопротеинов организма, поскольку после переваривания небелковый компонент гем подвергается окислению в гематин, который, как и хлорофилл, не всасывается в кишечнике. Обычно эти пигменты выделяются с содержимым толстой кишки в неизмененной форме или в виде продуктов распада под действием ферментов кишечных бактерий. Следовательно, гемсодержащие соединения пищи не используются в качестве источника порфиринового ядра, а синтез сложного пиррольного комплекса в организме протекает из низкомолекулярных предшественников de novo. [c.504]

    Бактерии ТЬ. 1егГоох1(1ап8 способствуют быстрому накоплению в растворах сульфат-аниона с образованием серной кислоты и растворимых сульфатов. Практически важный результат окислительной деятельности бактерий—образование и постоянная регенерация сульфата железа (ИI)—растворителя многих сульфидных минералов и металлов. Использование этого растворителя в гидрометаллургии сдерживается помимо прочих причин трудностями его регенерации, так как обычное химическое окисление ферросульфата в феррисульфат кислородом воздуха протекает медленно и возможно только в слабокислых растворах. [c.150]

    Элементарная сера, по данным Г. И. Каравайко с сотрудниками [11], растворяется липидами, выделяемыми бактериями во внешнюю среду, и в коллоидном состоянии поступает в периплаз-матическое пространство клетки. Сера окисляется на поверхности цитоплазматической мембраны и во внутриклеточной мембранной системе. Считают, что механизм синтеза АТФ при этом окислении такой же, как и при окислении железа (II). [c.151]

    По данным публикаций Унипромеди (1986), интенсифицирую-щее действие тионовых бактерий при перколяционном выщелачивании сульфидных медных и медно-цинковых руд составляет от 30 до 270 %. Но микробиологические исследования на действующих установках кучного и подземного выщелачивания показали что содержание имеющихся в растворах и рудной массе бактерий (Ю —10 клеток) недостаточно для обеспечения активных процессов окисления сульфидов и оксида железа (И). [c.152]

    Раствор после выщелачивания, содержащий железо (II), регенерируется путем окисления кислородом воздуха при участии же-дезоокисляющих бактерий ТЬ. 1еггоох1(1ап8, без которых окисление Келеза (II) в кислых растворах происходит очень медленно. [c.179]

    При недостатке железа НгЗ выходит в придонную воду. В окислительных условиях аэробы - сероокйсляющие бактерии — снова переводят его в сульфат или выпадает элементная сера, которая может образовываться в осадках только в результате окисления сероводорода и сульфидов. В осадках она присутствует в большинстве случаев в рассеянном мелкодисперсном состоянии. Крайне редко можно видеть капельки элементной серы в телах бактерий, окисляющих сульфиды. [c.133]

    Группа 20. Аэробные хемолитотрофные бактерии и близкие к ним организмы. К этой группе относятся прокариоты, получающие энергию за счет окисления восстановленных неорганических соединений азота, серы, железа, а также молекулярного водорода. Группа разделена на 4 подфуппы в зависимости от химической природы окисляемых неорганических соединений. [c.175]

    В первую подфуппу включены грамотрицательные бактерии, объединенные в семейство Nitroba tera eae, источником энергии для которых являются процессы окисления аммонийного азота или нитритов. Во второй подгруппе объединены бактерии, способные окислять неорганические восстановленные соединения серы. У большинства из них доказана способность использовать этот процесс для получения клеточной энергии. Облигатно хемолитотрофные водородные бактерии, представленные одним родом Hydrogenoba ter, вьщелены в третью подгруппу. В четвертую подгруппу отнесены бактерии, способные окислять и/или откладывать вне клетки окислы железа и марганца. Последние накапливаются в капсулах или во внеклеточном материале, редко — внутри клетки. Поскольку большинство бактерий этой подфуппы не получено до сих пор в чистой культуре, многие стороны их метаболизма остаются неясными. [c.175]

    Цианобактериям мы обязаны появлением молекулярного кислорода в атмосфере Земли. Однако вначале весь выделяемый ими Оз поглощался земной корой, в которой происходили интенсивные процессы окисления. По имеющимся геологическим данным, содержание кислорода в атмосфере достигло 1 % от его содержания в современной атмосфере только в среднем протерозое, и к этому времени можно отнести возникновение первых аэробных прокариот. В пользу этого свидетельствуют обнаруженные в отложениях, возраст которых около 2 млрд лет, звездчатые образования, свойственные облигатно аэробной свободноживущей бактерии Metal ogenium. Этот организм откладывает на поверхности клеток окислы железа. В природе встречается при разных концентрациях О2, но всегда в аэробных условиях, так что может служить индикатором молекулярного кислорода. [c.204]

    Описанные выще процессы протекают в капсулах, чехлах, слизистых выделениях, на поверхности клеточной стенки, в которых концентрируются все компоненты реакции восстановленные формы железа и марганца, перекись водорода, каталаза. Физиологический смысл процессов окисления Ре " и с участием Н2О2 — детоксикация вредного продукта метаболизма. Ни в одном случае окисление железа и марганца не приводит к получению бактериями энергии. [c.377]


Смотреть страницы где упоминается термин Железо окисление бактериями: [c.240]    [c.15]    [c.96]    [c.151]    [c.190]    [c.448]    [c.82]    [c.317]    [c.350]    [c.84]    [c.134]    [c.135]    [c.176]    [c.371]   
Жизнь зеленого растения (1983) -- [ c.12 ]




ПОИСК





Смотрите так же термины и статьи:

Окисление железа



© 2025 chem21.info Реклама на сайте