Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цитохромов системы

    Представляет интерес вопрос о роли пигмента и ферментных систем в процессе разложения воды. Из ферментов цитохром и флавин рассматриваются как возможные участники этого процесса [345, 346]. При этом цитохромная система либо осуществляет электронный перенос между системами хлоропластов, либо непосредственно участвует в окислении воды. [c.138]


    Определена также структура солюбилизированного цитохрома Ьв из микросом печени. Хотя точная функция его неизвестна, можно думать, что он играет роль, подобную роли цитохрома с, взаимодействуя с ферментативной системой эндоплазматического ретикулума, катализирующей образование ненасыщенных жирных кислот. Белок содержит 93 аминокислотных остатка, а еще 44 (преимущественно гидрофобных) отщепляются с Ы-конца в процессе солюбилизации белка. Вероятно эта Ы-концевая часть служит гидрофобным якорем, погружаемым в мембрану эндоплазматического ретикулума. Гем в цитохроме Ьв не связан ковалентно с белком, но прочно удерживается между двумя боковыми цепями гистидинов. По способу свертывания цепи этот белок совершенно не похож ни на цитохром с, ни на миоглобин. И в этом случае не видно путей переноса электрона от атома железа на поверхность молекулы [23]. [c.375]

Рис. 60. Разделение стандартных белков в буферной системе ДАП. Условия капилляр 75 мкм, 37/44 см, поле 272 В/см детектирование 214 нм, фосфатный буфер со 100 мМ ДАП, pH 3.0 проба цитохром С, лизоцим, рибонуклеаза А. Рис. 60. <a href="/info/305126">Разделение стандартных</a> белков в <a href="/info/5192">буферной системе</a> ДАП. Условия капилляр 75 мкм, 37/44 см, поле 272 В/см детектирование 214 нм, <a href="/info/219602">фосфатный буфер</a> со 100 мМ ДАП, pH 3.0 проба цитохром С, лизоцим, рибонуклеаза А.
    Катализирует восстановление цитохрома Ъ системой дегидраз без кофермента (Восстановленный цитохром Ъ окисляется цитохромом с под действием другого фермента он может быть медленно окислен также О2 без оксидазы) [c.808]

    Есть сообщение о том, что система 1 Оз полифенолоксидаза + пирокатехин окисляет восстановленный цитохром С. В нескольких сообщениях описывается способность системы Os + [c.142]

    В опубликованной ранее работе [1] была показана способность биофлавоноидов усиливать окисление аскорбиновой кислоты (АК), а также адреналина в животных тканях, катализируемое системой цитохром С цитохромоксидаза. [c.383]

    Биохимический процесс характеризуется двумя различными эндотермическими фотопроцессами, между которыми лежит экзо-переход от цитохрома Ь к цитохрому с (рис. 188). Выяснилось, что процесс начинается с возбуждения молекулы воды и кончается образованием ЫАОФ, восстанавливаемого затем до НАОФН. Эти фотохимические реакции происходят в двух фотохимических системах, причем поглощение света идет в различных областях спектра, т. е. с разными по величине квантами. В каждой из этих двух систем, обозначаемых как ФС1 и ФСИ, имеется свой реакционный центр, [c.345]


    В митохондриях некоторых тканей (печени, почки и др.) была обнаружена еще одна НАДН-оксидазная система, которая локализована в наружной мембране и, по-видимому, легко доступна для цитоплазматического НАДН. Этот так называемый внешний, нефосфорилирую-щий путь окисления НАДН включает в себя специфический флавопротеид — НАДН цитохром os-оксидоредуктазу и цитохром O5. Цитохром 5 является слегка аутоксидабельным гемопротеидом, а физиологическим акцептором электронов с цитохрома O5, по-видимому, служит цитохром с. В экспериментальных условиях активность этого пути окисления НАДН может быть измерена только после добавления цитохро-ма с, значительная часть которого вымывается из межмембранного пространства в процессе выделения митохондрий. В отличие от НАДН-оксидазной активности дыхательной цепи митохондрий внешний путь окисления НАДН нечувствителен к ротенону. [c.437]

    Обнаружена ферментативная активность, связанная с эндоплазма-тическим ретикулумом, также требующая присутствия Ог, которая осуществляет превращение насыщенных жирных кислот в цис-ленасы-шенные кислоты (например, стеароил-СоА или олеоил-СоА табл. 2-7) [160]. Вероятно, начальной стадией этих реакций является гидроксилирование. В этой системе, по-видимому, в роли специфического переносчика элб Ктронов выступает цитохром 5, однако природа самой гидроксилазы неиз.вестна. [c.449]

    Подробнее остановимся на свойствах цитохрома Р-450 (цитохром типа Ь). Он выделяется в лаборатории из клеток печени, коры надпочечников, бактерий и др. Ферментная система цитохрома Р-450, гидроксилирующая связи С-Н субстратов, содержит три компоненты. Первая - это ассоциат из НАДФ (см. XVI), из цитохрома Р-450 вторая - цитохром Р-450 и третья - это фосфолипиды. Исследователи наиболее глубоко проникли в структуру, функции и механизм действия этой ферментной системы. Однако вопросы механизма активации молекулы О2 этим ферментом не решены. Известно, что при функционировании Р-450 происходит экстракоординация фазу двух лигандов -атома S цистеинового остатка белка и О2. Следует учесть то, что атом серы в тиоспиртах и тиоэфирах является слабым экстралигандом даже для атома железа, имеющего достаточное сродство к S и образующего сульфиды с низким значением произведения растворимости. В отличие от имидазола, атом S, подобно гемоглобину, не обеспечивает прочного связывания О2. Поэтому механизм окислительного воздействия О2 должен быть связан с изменением окислительного состояния железа в цитохроме. На рис. 5.4 приведен каталитический цикл цитохрома Р-450. Координационные взаимодействия на атоме железа (экстракоординация) выступают здесь также четко, как в фотосинтезе и фиксации-переносе О2. [c.290]

    Из цитохромов группы (Ь) наиболее изучен цитохром Р-450. Эта цито-хромоксидаза содержит Fe(III) и катализирует реакции типа гидроксилирования С-Н-связей (рис. 28.9). Чтобы иметь представление о примерном механизме действия цитохрома Р-450, приведем его каталитический цикл (см. рис. 28.9). В биохимии, в отличие от органической химии, из-за сложности и многостадийности биохимических процессов вместо системы взаимосвязанных уравнений ступенчатых химических реакций используются каталитические циклы. 0ш1 более наглядны, реагент вводится в цикл с помощью фигурной стрелки. Аналог№шо удаляются из цикла некоторые продукты реакции. [c.748]

    Ферменты катализируют минимум две последовательные реакции гидроксилирования и реакцию отщепления боковой цепи холестерина (в виде альдегида изокапроновой кислоты). В качестве переносчика электронов участвует цитохром Р-450 в сложной оксигеназной системе, в которой принимают участие также электронтранспортирующие белки, в частности адренодоксин и адренодоксинредуктаза. [c.277]

    Никотинамидные ферменты дегидрируют субстрат, причем НАД" переходит в восстановленную форму — НАД-Н — и одновременно в буферную среду митохондрий переходит протон. Протоны и электроны акцептируются ФАД и передаются на убихинон (кофермент Q) [424] и далее на систему цитохромов. Эгу реакцию осуществляет флавопротеид — дегидрогеназа восстановленного НАД (цитохром-с-редуктаза), выделенная из сердечной мышцы 1425], печени [426]. В состав фермента, помимо ФАД, входит четыре атома негеминового железа на моль флавина молекулярная масса 78 ООО. Из системы ферментов цепи дыхания выделен флавопротеид с простетической группой ФМН и двумя атомами железа на моль флавина [427]. [c.559]

    Если учесть, что гравитационная перегрузка вызывает функциональные изменения гуморальной системы организма [92, 93], а это, в свою очередь, приводит к повышению метаболизма лекарств [85, 86], то можно было предположить, что такое экспериментальное воздействие на организм способно вызвать индукцию ферментов гидроксилирующего комплекса микросом печени мышей. Сравнение активности НАДФН-цитохром о редуктазы, гидроксила зы и содержания цитохрома Р-450 в микросомах печени показало, что различий в группе контрольных и опытных животных нет. [c.177]

    Оксидазы со смешанной функцией катализируют введение одного атома молекулы кислорода в органическую молекулу RH с образованием окисленного продукта ROH. Второй атом кислорода восстанавливается до воды. Второй субстрат [кофер-мент, обычно NAD(P)H] используется при этом в качестве донора электронов. Вся система представляет собой небольшую электронтранспортную цепь, включающую флавопротеин и цитохром Р450, который принимает электроны от восстановленного флавина в две одноэлектронные стадии и передает эти электроны на молекулярный кислород. Субстрат RH в ходе реакции, по-видимому, связывается с цитохромом Р450. Возможный механизм этой реакции приведен на рис. 5.13. Характерно, что такое гидроксилирование протекает с сохранением конфигурации. Примерами реакций, катализируемых оксидазами со смешанной функцией, могут служить гидроксилирование стероидов в мик-росомах печени, а также гидроксилирование лекарственных препаратов (детоксикация). Индукция цитохрома Р450 происходит под влиянием многих чужеродных органических соединений. [c.181]


    Теория Митчелла получила ряд качественных подтверждений. Либерман и его сотрудники изучили транспорт ионов через искусственные фосфолипидные мембраны. В присутствии синтетических ионов, с зарядом, экранированным гидрофобными заместителями, например тетрабутиламмония N [(СПг)зСПз] 4 или тетрафенилбората В (СвП5)4, существенно повышается электропроводность системы. Эти ионы быстро диффундируют сквозь мембраны. Был изучен транспорт этих ионов через митохондриальные мембраны (ММ) и субмитохондриальные частицы (СМЧ), полученные путем обработки митохондрий ультразвуком. ММ и СМЧ оказываются ориентированными противоположным образом. Цитохром с локализован на внешней стороне ММ и на внутренней стороне мембраны СМЧ. Можно думать, что внутри-митохондриальное пространство заряжено отрицательно, а внутреннее пространство СМЧ — положительно. Энергизация СМЧ добавкой АТФ вызывает поглощение синтетических анионов, а деэнергизация ингибитором дыхания (актиномицином) или разобщителем окислительного фосфорилирования (производное фенилгидразона) вызывает выход анионов. Транспорт электронов в мембранах СМЧ сопровождается поглощением синтетических анионов. В свою очередь их транспорт нарушается ингибиторами электронного транспорта и разобщителями окислительного фосфорилирования. [c.436]

    Как индивидуальное развитие организма, так и эволюционное развитие в целом, в конечном счете определяются сложными нелинейными молекулярными процессами. Мы вправе говорить о молекулярных основах эволюции. С одной стороны, эволюционные взаимосвязи между биологическими структурами прослеживаются вплоть до молекулярного уровня — устанавливаюг-ея закономерные гомологии в первичной структуре однотипных белков разных видов (цитохром с, гемоглобин и т. д.). С другой стороны, сделаны первые шаги в построении молекулярной теории эволюции. Эйген предложил теорию эволюции и самоорганизации макромолекул, дающую принципиальное модельцое истолкование естественного отбора в добиологической системе. Исходное понятие этой теории, имеющее, как уже сказано, фун- [c.610]

    Ряд ионов металлов, в основном четвертого периода периодической системы элементов играет важную роль в качестве кофакторов белков при выполнении ими каталитических и некоторых других функций. Среди них приоритетное место занимает железо. В 1.1 уже говорилось о железопорф1 ринах, которые, связываясь с белками, образуют гелопротег1< ы — комплексы, выполняющие ряд жизненно важных функций. Среди них имеются и ферменты, например уже упоминавшаяся каталаза, и переносчики кислорода (гемоглобин), и переносчики электронов. К числу последних относится цгстохром с — гемопротеид, образованный небольшим белком, который двумя остатками цистеина связан ковалентно с гемом по его винильным радикалам. Цитохром с является участником одного из важнейших процессов в биосфере, свойственного всем аэробным организмам, — переноса электронов от NAD-И к О2. [c.65]

    Ключевая роль в процессах микросомального оксигенирования принадлежит цитохрому Р-450, представляющему собой, как и все цитохромы, гемопротеин. Атом железа цитохрома Р-450 (Ре " ) восстанавливает связанный в активном центре фермента кислород, т. е. происходит активация кислорода, который затем переносится на субстрат. Микросомальное окисление играет важную роль в метаболических процессах, протекающих во всех организмах. Во-первых, это основная детоксицирующая система в организме человека и [c.206]

    В этом процессе молекулярный кислород выступает акцептором водорода по отношению к двум донорам водорода — жирной кислоте и НАДФН. Реакция катализируется микросомальной десатуразной системой, состоящей из цитохрома 5, цитохром -редуктазы и оксигеназы, по следующей схеме  [c.344]

    Микросомальные ферментные системы. Реакции микросомального окисления катализируются НАДФН- и НАДН-зависимыми ферментными системами в присутствии кислорода. НАДФН-зависимый флавопротеин переносит электрон от восстановленного НАДФН на терминальный фермент — цитохром Р-450, восстанавливая железо гема последнего. Кроме того, в монооксигеназных реакциях принимает участие НАДН-зависимый ферментный комплекс, состоящий из НАДН-зависимого флавопротеина и цитохрома Ь . В этом случае электрон переносится на кислород и активирует его  [c.511]

    Ключевым ферментом системы микросомального окисления является цитохром Р-450. Этот гемопротеин также является мономером, содержащим одну геминную группировку и имеющим молекулярную массу 45 kDa. [c.511]

    Механизмы монооксигеназных реакций. В реакциях монооксидазной системы цитохром Р-450 является структурой, связывающей как субстрат, так и кислород. [c.513]

    Влияние физиологических факторов. Постнатальное развитие характеризуется резким увеличением активности энзимов, в том числе и отвечающих за метаболизм чужеродных соединений. Это является фактором адаптации новорожденных к новым условиям существования. У новорожденных мышей, крыс, морских свинок и кроликов отсутствуют микросомальные энзимы, в том числе и цитохром Р-450. Их появление наблюдается в течение первых дней после рождения, и содержание достигает максимума примерно через 30 дней у крыс, через 8 недель — у человека. Таким образом, эмбрионы и новорожденные особенно чувствительны к токсическому действию ксенобиотиков и лекарственных препаратов. Способность новорожденных синтезировать конъюгаты также заметно уменьшена, например глюкурониды у них синтезируются достаточно медленно вследствие дефицита энзима глюкуронилтранс-феразы. Микросомальные энзиматические системы плода и новорожденных можно стимулировать введением химических активаторов. Например, введение новорожденным крысам 3,4-бензопирена усиливает биосинтез глюкуронидов в печени. [c.524]

    Точность собираемой таким путем информации зависит прежде всего от качества кристаллов в больщинстве случаев достигается разрешение не выше 1,5 — 2 нм. Тем не менее метод позволяет делать выводы о пространственной организаци 1 молекулы, особенно для больших белков, состоящих из нескольких субъединиц. Так, например, в ходе исследования трехмерной структуры цитохром-- -редуктазы — фермента системы окислительного фосфорилирова-ния в митохондриях — удалось установить общую форму молекулы ивзаимное расположение ее субъединиц (рис.53). Размер молекулы фермента в перпендикулярном к плоскости мембраны направлении составляет около 15 нм. Центральная часть молекулы, толщиной около 5 нм, погружена в липидный бислой и составляет около 30% всего белка. С одной стороны мембраны участок молекулы фермента (— 50% всего белка) выступает над плоскостью бислоя на 7 нм, с противоположной стороны 20% белка) — на 3 нм. Фермент присутствует в кристалле в виде димеров наиболее сильный контакт между мономерами наблюдается в центре мембраны. [c.103]

    Цитохром р45о является ключевым ферментом системы микросомального окисления. Он является гемопротеином, мономером, содержащим одну геминную группировку и молекулярную массу 45 кДа. Цитохром Р450 присоединяясь к соответствующему субстрату, фактически начинает реакции биотрансформации субстрата. [c.400]

    Соответственно с биологических систем, приведенных в табл. 8 (см. прилои еиие), объясните, какими свойствами обладают системы аскорбиновой кислоты и цитохром С по отношению к системе пируват/лактат  [c.70]

    На модельной системе [530] был исследован процесс получения водорода из воды с использованием природных и синтетических катализаторов и солнечной радиации в качестве источника энергии. Солнечный свет поглощается мембраной из хлоропласта в качестве катализатора процесс переноса электронов использовали ферредоксин, флаводоксин, цитохром, красители на основе виологена, синтетические кластеры, содержащие Ре — Мо — 5-центры, а в качестве активатора протонов — гидрогеиазу или РЮг. Основная модельная система состояла из мембраны — буферной суспензии изолированного хлоропласта, энзима гидрогеназы и носителя электронов. При освещении такой системы выделяется водород. Скорость и продолжительность выделения водорода зависит от природы хлоропласта и гидрогеназы, содержания кислорода в системе, природы переносчика электронов [530]. [c.345]

    Восемь отщепляющихся атомов водорода связываются с кодегидразой I и затем передаются последней дыхательной ферментативной системе, состоящей из диафоразы, цитохрома и цитохром-океидазы (см. главу Ферменты ). Перенос, двух атомов водорода на V2 О а при помощи этой ферментативной системы сопровождается освобождением примерно 52 ккал. Эта энергия достаточна для синтеза четырех высокоэргических фосфатных связей (по 11,5 кпал на каждую). Таким образом, в цикле лимонной кислоты в сочетании с окислением водорода образуются [c.257]

    Известно, что биологическая активность 1ЦнанИ Д0в реализуется благодаря угнетению многих ферментов цепи траншорта электронов (но в большей степени — цитохромной системы). На уровне цитохром-оксидазы происходит прерывание транспорта электронов к кислороду. В результате почти полностью прекращается поступление кислорода и нарушается процесс дыхания, что может привести к ослаблению роста яли гибели живого О рганиэмл [4]. [c.33]

    Щелочной раствор а-нафтола и М-диметил-парафенилен-диамина (реактив надй ) окисляется в системе цитохром — цитохромоксидаза молекулярным кислородом с образованием индо-феноловой голубой  [c.57]

    В дыхательной системе имеется несколько цитохромов (по Ленинджеру — четыре Ь, с, а, аз), которые последовательно передают один другому электрон, отнятый первым цитохромом от атома водорода флавинового фермента. В то время когда электрон будет передан последнему цитохрому, находящемуся в дыхательной системе, этот восстановленный цитохром может быть окислен ферментом цитохромоксидазой. В работах ряда исследователей показано, что фермент цитохромоксидаза идентичен цитохрому аз- Цитохромоксидаза передает электрон цитохрома непосредственно на кислород воздуха. Схему действия цитохромокоидазы можно представить следующим образом  [c.60]

    Цитохромы-окислительно-восстановительные системы, переносящие только электроны водород они не транспортируют. К цитохромам электроны поступают от пула хинонов. При переносе электронов эквивалентное им число протонов переходит в раствор. В качестве простети-ческой группы цитохромы содержат гем (рис. 7.9, Г). Центральный атом железа геминового кольца участвует в переносе электронов, изменяя свою валентность. Цитохромы окрашены они отличаются друг от друга спектрами поглощения и окислительно-восстановительными потенциалами. Различают цитохромы а, а , Ь, с, о и ряд других. В цитохроме с группы гема ковалентно связаны с цистеиновыми остатками апопро-теина благодаря такой прочной связи он растворим в воде и его можно экстрагировать из мембраны солевыми растворами. Цитохром с найден почти у всех организмов, обладающих дыхательной цепью. Что касается распространенности других цитохромов, то тут существуют заметные различия. [c.238]

    Две описанные выше пигментные системы связаны между собой электрон-транспортной цепью, важным звеном которой является пластохинон. Подобно убихинону в дыхательной цепи, пластохинон в фотосинтетической электрон-транспортной цепи находится в большом избытке и выполняет функцию накопителя (депо) электронов. Этот накопитель может вмещать не менее 10 электронов (на 1 молекулу Хл йц), поступающих от Х320. Окисление пластохинона осуществляет фотосистема I, т.е. электроны накопителя расходуются на заполнение дырок в Хл а , От пластохинона электроны передаются цитохрому / (мембраносвязанному цитохрому типа с), затем пластоцианину (растворимый медьсодержащий белок) и, наконец, хлорофиллу а . Таким образом, пластохинон выполняет важную функцию накопления и дальнейшей передачи электронов, поступающих из нескольких (как минимум десяти) электрон-транспортных цепей. [c.388]

    Позднее была установлена способность фенольных соединений в присутствии полифенолоксидазы служить переносчиками водорода в разнообразных модельных системах, причем донорами водорода служили аскорбиновая кислота, аминокислоты, каротиноиды, органические кислоты, восстановленный цитохром с, НАД-Нг, НАДФ-Нг, некоторые алкалоиды и ряд других соединений [57— 62]. В случае триптофана происходило образование гормона роста индолилуксусной кислоты [62, 63]. [c.122]

    Индуцирование микросомальной монооксигеназной системы ферментов в гепатоцитах крыс с помощью фенобарбитала увеличивало токсичность Д. Ингибирование метаболизма Д. с помощью хлорида кобальта замедляло образование реактивных метаболитов и соответственно ослабляло токсическое действие Д. (Кокаревцева). Оксид углерода (П), ингибируя цитохром Р-450, уменьшает продукцию токсичных метаболитов Д. ( as iola, Ivaneti h). [c.366]


Смотреть страницы где упоминается термин Цитохромов системы: [c.125]    [c.410]    [c.203]    [c.20]    [c.230]    [c.400]    [c.402]    [c.298]    [c.492]    [c.150]    [c.235]    [c.144]    [c.368]    [c.431]   
Генетика человека Т.3 (1990) -- [ c.68 ]




ПОИСК





Смотрите так же термины и статьи:

Цитохром



© 2025 chem21.info Реклама на сайте