Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействия координационные

    Химическая связь в координационных комплексах. Электростатическая теория. Теория валентных связей. Гибридные и хр внешнеорбитальные комплексы. Теория кристаллического поля. Энергия расщепления кристаллическим полем. Низкоспиновые комплексы и высокоспиновые комплексы. Сильные и слабые лиганды. Теория молекулярных орбиталей. я-Взаимодействие между лигандами и металлом. Дативное л-взаимо-действие между металлом и лигандами. [c.204]


    В большинстве работ по изучению каталитической активности оксида алюминия затрагивается связь ее с поверхностной кислотностью. Обширная дискуссия о природе кислотных центров оксида алюминия в настоящее время решена в пользу утверждения, что кислотность оксида алюминия связана с кислотой типа Льюиса и обусловлена ионами алюминия с координационным числом 4. Некоторые авторы предполагают наличие на поверхности оксида алюминия двух типов кислотных центров до 300 °С имеет место кислотность типа Льюиса, а выше 300 °С - Брен-стеда. В серии рабо т, где высказана эта же точка зрения, одновременно сформулированы требования к химическому составу оксида алюминия, обеспечивающему его максимальную кислотность. Кислотность оксида алюминия зависит также от содержания в нем щелочноземельных и особенно щелочных металлов (натрия). На примере реакций изомеризации олефинов установлена зависимость между содержанием натрия в оксиде алюминия и изомеризующей активностью и кислотностью. Максимальные активность в реакции изомеризации олефинов и кислотность соот-вествуют минимальному содержанию натрия в оксиде алюминия. Каталитическую активность оксида алюминия в реакциях кислотного тлпа можно усилить путем введения в его состав галогенов. Единое мнение о характере взаимодействия оксида алюминия и галогенов заключается в том, что поверхностные гидроксильньге группы оксида алюминия и, возможно часть атомов кислорода замещаются ионами хлора и фтора. Природа ак тивных центров оксида алюминия, возникающих при введении галогена и механизм влияния фтора и хлора на его поверхностную кислотность являются предметом дискуссии. Согласно Ал. А. Петрову [5, с. 72], ок сид алюминия, обработанный хлороводородом, увеличивает кислотность и приобретает каталитическую активность в том случае, когда хлорид-ион замещает одну из парных гидроксильных групп, причем водород другой гидроксильной группы, благодаря соседству электроотрицательного атома хлора, становится подвижным и способным к диссоциации в форме протона. При замещении галогеном одиночной гидроксильной группы активный центр не образуется. Структура активного центра хлорзаме-щенного оксида алюминия может быть представлена формулой [c.44]

    Общий механизм каталитического действия координационных комплексов сводится к облегчению электронных переходов в общей системе электронов и ядер внутри комплекса по сравнению с переходами между отдельными молекулами. С этих позиций естественно считать, что стадия образования координационных комплексов может ускорять как реакции окисления—восстановления, так и реакции перераспределения валентных связей (ин-тра- и интермолекулярные), поскольку между различными молекулами, входящими в координационную сферу комплекса в качестве лигандов, взаимодействие облегчается 5, 61. В случае гетерогенного катализа через координационные комплексы можно рассматривать активный центр как металл (его ион) с незаполненной сферой лигандов и применять к нему уже известные общие и частные принципы связи между строением комплексообразующего иона или ненасыщенного комплекса с его каталитической активностью. Существенную роль в определении активности катализатора в координационном катализе играют стабильность первоначально образующегося комплекса в реакциях, протекающих по механизму замещения лигандов. В этом случае, как следует из общей теории катализа и принципа энергетического соответствия Баландина, должна наблюдаться экстремальная зависимость между активностью катализатора и стабильностью комплекса. [c.59]


    Правило А. В. Думанского (Р/Л й 6050 Дж/моль) применимо лишь для тех веществ, с которыми молекулы воды взаимодействуют с помощью водородных связей (целлюлоза, крахмал, дегидратированный при 110°С палыгорскит). Если основными центрами адсорбции воды являются не гидроксильные группы или атомы кислорода, а обменные катионы (как в случае цеолитов, вермикулита и др.) или координационно ненасыщенные ионы (как в случае палыгорскита, дегидратированного при 180—250°С), то правило А. В. Думанского становится неприменимым [66]. [c.32]

    Для комплексных частиц с сильным электростатическим взаимодействием координационное число увеличивается с повышением заряда иона-комплексообразователя и понижением заряда лиганда. Это связано с тем, что в первом случае увеличивается способ-, ность центрального иона удерживать около себя большее число лигандов, во втором — уменьшается отталкивание лигандов. Для комплексообразователей с окислительным числом, равным единице, координационное число обычно равно двум с окислительным числом два —трем и четырем, с окислительным числом три — [c.266]

    Межмолекулярное сшивание полимеров используют для придания им прочностных характеристик. Так, взаимодействием координационного полимера, полученного на основе бис-[-п-(1,2-диок- [c.155]

    Взаимодействие координационно-ненасыщенных соединений железа с 1,5-ЦОД [c.56]

    К смешанным комплексам относятся и многие из упомянутых выше продуктов взаимодействия координационно ненасыщенных внутрикомплексных соединений с аминами и другими добавками, вводимыми для того, чтобы устранить мешающее влияние гидратной воды. [c.185]

    Существенный интерес представляет зависимость величины инверсионного расщепления от температуры [146, 166, 167]. Этот вопрос тесно связан с взаимодействием координационного комплекса с колебаниями окружения. Из формул (IV. 25), (IV. 26) и (IV. 28) видно, что би зависит от колебательного состояния в минимуме, определяемого индексом %. При наличии в веществе большого числа одинаковых координационных систем следует ожидать некоторого, зависящего от температуры, распределения их по колебательным состояниям, так что среднее значение б окажется зависящим от температуры. Несомненным является увеличение среднего значения 6 с ростом температуры, так как при этом растет заселенность более высоких колебательных уровней, для которых инверсионное расщепление существенно возрастает благодаря уменьшению барьера. Необходимо отметить, что колебательные состояния самого комплекса очень далеко отстоят друг от друга (со 200—600 и более [137]), так что при обычных и низких температурах (при которых возможно наблюдение эффектов инверсионного расщепления, см. разделы VI. 2) обычно заселено только основное колебательное состояние с одним постоянным значением бо- [c.114]

    В кристалле картина меняется. Если взаимодействие между координационным центром и окружением носит достаточно симметричный (кубический) характер (как, например, в случае кристаллов, приведенных в табл. VI. 4 при изучении влияния инверсионного расщепления на спектры ЭПР), то условия возможности определения искаженной конфигурации остаются в принципе такими же, как и для свободного комплекса. Если же оно носит несимметричный (некубический) характер, то эквивалентность трех направлений искажений нарущается и какое-то из этих направлений становится преимущественным — окружение меди оказывается тетрагонально искаженным стационарно. Такое искажение реализуется ив результате непосредственного взаимодействия координационных центров в кристалле между собой. В этом случае [c.194]

    Карбонильные соединения образуются в результате взаимодействия координационно адсорбированного олефина с кислородом по маршруту VI. При этом происходит отрыв одного атома водорода с образованием поверхностного радикала аллильного типа. Однако эта реакция энергетически менее выгодна, чем реакция II, что обусловливает высокую селективность процесса. [c.138]

    Катализатор должен химически взаимодействовать хотя бы с одним из компонентов реагирующих веществ (с образованием координационных, ионных или ковалентных связей). [c.88]

    В уравнениях (3.16) и (3.17) Хт—мольная доля вещества матрицы мембраны 2гт, е т и е тт — координационное число и параметры парного взаимодействия молекул газа и структурных элементов матрицы. Если взаимодействие в мембране, которая рассматривается как раствор, определяется только дисперсионными силами, величину Ф,т можно оценить [11] неравенством [c.75]

    Таким образом, идеальный фактор разделения оказывается функцией параметров парного потенциала молекулярного взаимодействия ац и Ей [см. уравнения (3.12) —(3.15)] и координационных чисел Za и Z,/ в конденсированной фазе чистых компонентов. Постоянные Ь и и, характеризующие свойства матрицы мембраны, могут быть рассчитаны по известным значениям коэффициентов диффузии и растворимости близких го- [c.106]

    По формуле (2.13) можно приближенно оценить взаимодействие между ионами и соответствующей сольватной оболочкой, считая, что для соседних частиц = I. В случае воды при координационном числе 6 имеем U (Г) = 122 ккал/г-ион, что вполне сравнимо с теплотой химических реакций и дает основания рассматривать гидратированные ионы как комплексы. [c.34]

    СНз)зС. Но современные данные по дейтерообмену и катализу гидридами металлов, проявляющими свойства кислот (см. ниже), указывают, что карбониевые ионы образуются при взаимодействии не с протоном, а с координационно ненасыщенными комплексами, которые могут образовывать как бренстедовские, так и льюисовские кислоты. [c.90]


    Так, гексен-1 при т. кип. и добавлении 0,5% (мольн.) Ре(СО)в образует равновесную смесь изомеров за 2—4 ч, а ис-гексен-2 в тех же условиях превращается только на 12%. Вместе с тем в продуктах изомеризации гексена-1 содержится значительное количество гексенов-3. Это означает, что р-олефины, образовавшиеся при взаимодействии. а-олефина с катализатором и находящиеся в его координационной сфере, легко превращаются в 7-олефины. Следовательно, именно скорость образования комплекса с катализатором тормозит общую скорость изомеризации р- и у-олефинов. При увеличении концентрации Ре(СО)б от 0,1 до 1% (мольн.) скорость изомеризации возрастает дальнейший рост концентрации Ре (СО) 5 оказывает неблагоприятное действие. [c.107]

    Если пользоваться приведенной на стр. 124 схемой, влияние второго атома палладия, добавки или растворителя можно связать с увеличением подвижности лиганда и облегчением взаимодействия Рс1—Н (чему, безусловно, способствует уменьшение степени окисления Рс ),. но присутствие второго атома палладия не является обязательным. При растворении катализатора в растворителе К (или в олефине О) меняется координационное число [c.127]

    Комплексы Ме—Ь и Ме—К проявляют каталитические свойства, если донорное число подвижного лиганда меньше донорного числа олефина. Взаимодействие этих комплексов с олефином приводит к внедрению а-олефина (Оа) в координационную сферу металла, его возбуждению (О ) и последующему превращению в р-оле-фин (Ор)  [c.128]

    Г. без разрушения молекул воды приводит к гидратам. Обусловлена электростатич. и ван-дер-ваальсовым взаимодействиями, координационными и нногда водородными связями. Г. в растворе-частный случай сольватации. [c.550]

    Механизм этой реакции состоит из двух стадий образование комплексного соединения и его реакция с двойной связью. Комплексное соединение, согласно Прево [55], образуется путем взаимодействия 2 молей бензоата серебра с одним молем йода. В растворе бензоат серебра оуш ествует в виде комплексной соли с координационным числом одного из атомов серебра равным двум. Существование аниона комплекса, в котором серебро обладает таким координационным числом было установлено Мак-Дуголлом и Алленом [39]. Кроме того, Прево [55f] удалось установить положительную природу йода в комплексе путем изучения его реакции с фенилацетиленом. Эти реакции могут быть выражены следующими уравнениями  [c.376]

    Квантовая механика дала возможность химии выйти далеко за рамки элементарных представлений о валентности. Описание внутри- и межмолекулярных связей (водор одная связь, комплексы, ван-дер-ваальсовы взаимодействия, координацион ные связи и т. п.), во многих случаях определяющих свойства вещества, было бы совершенно невозможно без законов квантовой механики. Только квантовомеханичес -кий расчет молекул позвол яет понять и предсказать различия в физи, [c.10]

    Взаимодействие координационного полимера 4,4 -бмс-(ацетоацетил)дифе-нилоксида и бериллия с ацетилацетонатом меди приводит в результате обменной реакции между реагентами к образованию координационного полимера 4,4 -бис-(ацетоацетил)дифенилоксида и меди [135, 136]  [c.83]

    При взаимодействии координационного соединения фосфинбо-рана (СНз)2НР ВНз с избытком амина получается линейный полимер молекулярного веса до 15 тыс., в основной цепи которого [c.597]

    Большой вклад в развитие представлений о механизме каталитического действия внесли подходы, развитые рядом авторов теория активных ансамблей Кобозева [5], химическая теория активной поверхности Рогинского [6], теория Борескова промежуточного химического взаимодействия в гетерогенном катализе и зависимости удельной каталитической активности от химического состава и строения катализатора [7], теория Писаржев-ского о связи электронных свойств твердого тела с его каталитической способностью [8], электронные теории кристаллического поля и поля лигандов [91, теория поверхностных соединений координационного и кластерного типов [9] и др. [c.11]

    Межмолекулярные взаимодействия. Для растворов ПАВ в малополярной среде, какой является смазочное масло, характерны все виды энергетических межмолекулярных взаимодействий химическое (ковалентная, координационная, ионная связи), ван-дер-ваальсово (ориентационные, индукционные и дисперсионные силы), внутримолекулярное и межмолекулярное (водородная связь), электронодонорно-акцепторное (ЭДА-ком-плексы с переносом заряда, ионное межмолекулярное взаимодействие и взаимодействие стабильных свободных радикалов). Энергия некоторых из перечисленных взаимодействий относительно высока (до 210 кДж/моль), значительно выше обычных ван-дер-ваальсовых сил (л 4 кДж/моль), а в некоторых случаях она приближается к энергии химических связей (350— 600 кДж/моль). [c.203]

    В спектрах Н ЯМР комплексов с такими лигандами наблюдается пять пиков с соотнощением интенсивностей 1 1 1 1 3. Протоны Нь и Не появляются в спектре в виде дублетов, расщепляясь на ядре протона На с константами /дь = 6 — 7Гц и /ос = = 10—14 Гц соответственно. Также дублетом с константой И снз—6 —7 Гц является резонанс метильной группы. Протоны На и Не дают мультиплеты. Наиболее существенной разницей в спектрах Н ЯМР син- и акты-комплексов является положение сигналов протонов Н<г и Не, а также величина констангы спинг спинового взаимодействия последних с протоном На- Существование того или иного изомера зависит от природы лигандов, входЯ щих во внутреннюю координационную среду центрального атома, условий реакции и т. д. В бис (л-кротилникельгалогенидах) л-кро-тильный лиганд находится в сын-конфигурации [40]. [c.109]

    Данные о механизме гидрохлорирования ВА изложены в статьях [33—35]. На основании этих данных присоединение НС1 к ВА в отсутствие u l происходит параллельно в положения 1,2-и 1,4-. Такое же направление присоединения имеет место при взаимодействии ВА с НС1 в растворах концентрированной НС1 (20— 47%) в отсутствие u l. Изомеризация 4-хлор-1,2-бутадиена в хлоропрен происходит путем его взаимодействия с анионом u lj с образованием координационных связей. Механизм и кинетика изомеризации 2-хлор-1,2-бутадиена в хлоропрен описаны в статье [35]. [c.719]

    Эю значение ковалентности и координационного числа характерно для многих устойчивых соединений бериллия. Так, при взаимодействии BeFj с фторидами щелочных металлов образуются комплексные ф т о р о б е р и л л а т ы, содержащие ион ВеГГ, иапример  [c.611]

    Прочно связанная со слоистыми силикатами вода энергетически неоднородна. Это объясняется наличием как минимум пяти типов активных центров на их поверхности, с которыми взаимодействуют молекулы воды [91] обменные катионы гидроксильные группы кислого (510Н) и основного (АЮН, МдОН) характера координационно ненасыщенные катионы А1 +, Ре +, Mg + поверхностные атомы кислорода. Если учесть, что по своему происхождению обменные катионы, в свою очередь, разделяются на три типа (обусловленные нестехиомет-рическим изоморфизмом в тетраэдрических и октаэдрических сетках, разорванными связями на боковых гранях частиц), а поверхностные атомы кислорода различаются по величине отрицательного заряда, то становится понятным многообразие форм связи, а следовательно, и энергетическая неоднородность адсорбированной воды. [c.36]

    В табл. 8.7 суммируются результаты нащих численных экспериментов по моделированию кластеров Na(H20)n и К(Н20) . Энергия выражена в кДж/моль. Для /-структур координационное число равно среднему числу молекул в сфере радиусом 310 пм для Na(H20) и 350 пм для К (НгО),,. Критерий водородных связей геометрический / оо" = 330 пм, / он = 260 пм Еполн, Еъъ, ви — полная потенциальная энергия кластера и вклады в нее взаимодействий между молекулами воды и ионами со всеми молекулами воды. Все /-структуры получены для температуры 300 К. [c.145]

    ВИЯ. Однако в кремнии более высокий заряд ядра понижает энергию пустых З -орбиталей, и они оказываются ближе по энергии к 2р-орби-талям кислорода. Вследствие этого кислород может частично обобществлять свои неподеленные электронные пары с кремнием (рис. 21-8) в результате дативного взаимодействия, подобного Ь -> М-я- и М -> Ь-я-взаи.модействию в координационных комплексах, которое обсуждалось в разд. 20-3. Поскольку .у-орбиталь 51 простирается гораздо дальше в сторону атома О по сравнению с р-орбиталью при я-связи, атомы 51 и О не должны сближаться так сильно, как это требуется условиями образования двойной ря—ря-связи. Результатом этого обобществления неподеленных пар кислорода является то, что хотя энергия связи 51—81 на 171 кДж-мольменьше энергии связи С—С, связь 81—О прочнее, чем связь С—О, на 18 кДж-моль. [c.281]

    Тот факт, что переходы, разрешенные по мультиплетности, обычно дают широкие линии, в то время как переходы, запрещенные по мультиплетности.— узкие, может помочь отнесению полос в спектре. Разрешенные по мультиплетности переходы -> приводят к возбужденному состоянию, в котором равгювесное межъядерное расстояние между ионом металла и лигандом больше, чем в основном состоянии. При электронном переходе межъядерное расстояние меняться не должно (принцип Франка—Кондона), поэтому электронно возбужденные молекулы находятся в колебательно возбужденных состояниях, в которых длины связей соответствуют основному состоянию. Взаимодействие возбужденного состояния с молекулами растворителя, нахоляши-мися не в первой координационной сфере, меняется, так как при образовании возбужденного состояния ближайшие молекулы растворителя удалены от нона металла на различные расстояния. Поскольку растворитель не может реорганизоваться за время перехода, данное возбужденное колебательное состояние различных молекул взаимодей- [c.88]

    Этот факт был использован [32] для изучения образования аддуктов координационно ненасыщенных комплексов кобальта с различными аксиально координирующимися основаниями В. Хорошее перекрывание между неподеленной парой донора, координирующегося через атомы азота или фосфора, и з-орбиталью приводит к легко наблюдаемой сверхтонкой структуре. Вейланд использовал большое гиромагнитное отношение (и, следовательно, большое сверхтонкое взаимодействие) Р, чтобы получить отношения гибридизации для различных доноров РХз, образующих комплексы с Со(тетрафенилпорфирин) [31] и Со(5а-1еп) [43]. При исследовании [44а] 2 1-аддуктов основания Вр2 с бис- т-фенилглиоксим)Со(П) было обнаружено, что значения Р [см. обсуждение уравнений (13.36) и (13.37)] для кислородсодержащих доноров выше, чем для азотсодержащих доноров. Для ряда из десяти азотсодержащих доноров было также найдено, что Р варьирует от 0,0216, если В—хину-клидин, и до 0,0147, если В — Ы-метилимидазол. [c.244]

    Явление гидратации (и общем случае, сольватации) заключается в том, что ионы растворенного вещества окружены растворителем и движутся с некоторой его частью, вступающей с ним во взаимодействие. Различают первичную (ближнюю) и вторичную (дальнюю) гидратации. Первичная гидратация заключается в прочном связывании ионов молекул воды, вплоть до образования донорно-акцепторных связей. Вторичная— представляет собой электростатическое взаимодействие молекул поды с первично гидратированными ионами. Энергетический эффект гидратации довольно значителен и составляет примерно 300— 4000 кДж/моль. Значения теплот ЛЯ и координационных чисел п гидратации отдельных ионов при бесконечном разбавления и 25°С приведены ниже  [c.202]


Смотреть страницы где упоминается термин Взаимодействия координационные: [c.140]    [c.42]    [c.62]    [c.102]    [c.232]    [c.206]    [c.131]    [c.228]    [c.715]    [c.594]    [c.600]    [c.262]    [c.177]    [c.74]    [c.108]   
Молекулярная биология. Структура и биосинтез нуклеиновых кислот (1990) -- [ c.46 ]

Молекулярная биология (1990) -- [ c.46 ]




ПОИСК







© 2025 chem21.info Реклама на сайте