Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метилэтилкетон, очистка

    Ко второй группе относятся полярные растворители с высоким дипольным моментом. Взаимодействие полярных растворителей с растворяемым веществом носит смешанный характер и складывается из дисперсионного эффекта и ориентационного, причем последний часто является преобладающим. Полярными растворителями, широко применяемыми при очистке масел, являются фенол, фурфурол, крезолы, Ы-метилпирролидон, ацетон, метилэтилкетон и некогорые другие. [c.217]


    Если растворитель не образует с водой азеотропных смесей и разница между температурами их кипения достаточна, то их можно разделять фракционной перегонкой (например, смесь ацетона с водой). Растворители, образующие азеотропную смесь с водой, но обладающие относительно невысокой растворимостью в воде и воды в них (дихлорэтан, нитробензол и др.), можно легко регенерировать из водных растворов. Ббльшая часть избирательных растворителей, используемых в практике очистки нефтепродуктов, от-.носится к третьей группе растворителей, образующих с водой смесь с постоянной температурой кипения и имеющих относительно высокую растворимость в воде и воды в них (крезолы, фурфурол, фенол, метилэтилкетон и др.). Для их разделения пользуются значительной разницей в концентрациях растворителя в парах азеотропной смеси и в жидкой фазе охлажденного конденсата, состоя- [c.106]

    Сточные воды, содержащие органические вещества (фенол, крезол, фурфурол, бензол, дихлорэтан, дихлорметан, метанол, метилэтилкетон и др.), обычно не нуждаются в предварительной очистке на локальных очистных сооружениях, так как концентрации этих веществ находятся в пределах, допустимых нормами для подачи на сооружение биохимической очистки. Однако на установках, где органические вещества могут попасть в сточные воды в превышающих нормы количествах (например, на установках фенольной очистки масел), предусматриваются сборники, из которых стоки либо направляются в производство, либо равномерно сбрасываются в канализацию, причем время сброса определяется исходя из ус ювия недопустимости превышения нормативного содержания сбрасываемого соединения в общем стоке. На выпусках стоков с установок предусматриваются задвижки. [c.189]

    Жирные кислоты, пригодные для производства синтетических пищевых жиров, должны подвергаться особой очистке. В настоящее время длительными опытами точно установлено, что присутствующие в этих жирах кислоты с нечетным числом атомов углерода усваиваются человеческим организмом так же, как кислоты с четным числом поэтому нет никаких оснований удалять жирные кислоты с нечетным числом углеродных атомов из смеси синтетических жирных кислот. С технической точки зрения нет смысла осуществлять такое разделение кислот, поскольку оба типа кислот присутствуют почти в одинаковых количествах. Напротив, кислоты изостроения должны быть удалены, насколько это возможно, так как они являются причиной появления в моче кислых соединений, растворимых в эфире. Установлено также, что крысы, которых кормили жирами, синтезированными из жирных кислот, полученных на основе синтетического парафинового гача, испытывали задержку в росте. Известно, что эти кислоты имеют довольно разветвленное строение. Жирные кислоты изостроения можно в достаточной степени отделить экстракцией растворителями, например метанолом, метилэтилкетоном, ацетоном, бензином и низкомолекулярными карбоновыми кислотами, в которых они легче растворимы, чем кислоты с прямой цепью [101]. [c.474]


    Очистка проводилась в двухколонной системе фенолом (кратность его к сырью 3,5 1), а депарафини-зация — в смеси метилэтилкетона с толуолом (60 % -1 -(- 40 %) при кратности растворителя к рафинату, равной 5 1 по объему при этом одна часть отводилась на промывку лепешки. [c.69]

    Разделяющими агентами в двухстадийном процессе выделения аро.матических углеводородов могут быть неароматические углеводороды. Так, очистка бензола от примесей последних может быть произведена путем двухступенчатой азеотропной ректификации, при которой в первой стадии разделяющим агентом является неароматический углеводород [289]. Процесс осуществляется следующим образом. В первой стадии к исходной смеси добавляется избыток неароматического углеводорода с т. кип. 75—85°, образующий с бензолом азеотроп с 40—60% содержанием последнего. Подходящим углеводородом является, например, циклогексан. Отогнанный в первой стадии процесса азеотроп разделяется путем азеотропной ректификации с полярным разделяющим агентом, например, с метанолом, этанолом, ацетоном, метилэтилкетоном, ацетонитрилом и др. В виде дистиллата отгоняется азеотроп разделяющих агентов первой и второй стадий процесса в кубе получается чистый бензол.,  [c.276]

    Из анализа вышеприведенных требований к качеству экстрагентов можно констатировать, что практически невозможно рекомендовать универсальный растворитель для всех видов сырья и для всех экстракционных процессов. В этой связи приходится довольствоваться узким ассортиментом растворителей для отдельных экстракционных процессов. Так, в процессах деасфальтизации гудронов широко применялись и применяются низкомолекулярные алканы, такие, как этан, пропан, бутан, пентан и легкий бензин, являющиеся слабыми растворителями, плохо растворяющими смолисто-асфальтеновые соединения нефтяных остатков. В процессах селективной очистки масляных дистиллятов и деасфальтизатов применялись сернистый ангидрид, анилин, нитробензол, хлорекс, фенол, фурфурол, крезол и Ы-метилпирролидон. В процессах депарафинизации кристаллизацией наибольшее применение нашли ацетон, бензол, толуол, метилэтилкетон, метилизобутилкетон, дихлорэтан, метиленхлорид. [c.258]

    Если нужно получить чистый монооксим диацетила, то реакционную смесь нейтрализуют приблизительно 35 мл концентрированного водного аммиака и разбавляют половинным объемом воды. Затем из раствора отгоняют спирт и избыток метилэтилкетона до тех пор, пока дестиллат не потеряет способности воспламеняться. Тогда приемник меняют, и смесь быстро перегоняют с перегретым водяным паром. Почти весь монооксим диацетила переходит в первых 5 л дестиллата. Для выделения монооксима дестиллат насыщают 1—1,5 кг соли и затем охлаждают его до 0°. Твердый монооксим диацетила выпадает в кристаллическом состоянии и отфильтровывается. Выход 480—520 г. В случае надобности продукт можно подвергнуть дальнейшей очистке перекристаллизацией из воды (примечание 5). [c.206]

    После очистки вторичный бутиловый спирт окисляют до метилэтилкетона кислородом воздуха в присутствии катализатора (серебро на пемзе) при 450...570 °С  [c.60]

    Обезмасливание гача для получения церезина и парафина успешно производится при помощи метилэтилкетона или других растворителей, применяющихся при избирательной очистке масел. Процесс можно вести на обычных депарафинизационных масляных установках или на специально пристроенных к ним секциях. Для обезмасливания парафина и церезина достаточно небольшого количества растворителя. Экстрагирование и фильтрование повторяют дважды в первый раз после отгона растворителя получают высокоплавкий парафин или церезин, во второй, также после отгона растворителя, — низкоплавкий. [c.414]

    После охлаждения содержимое колбы выливают в большой стакан, в котором находится 4 л холодной воды. Смесь подкисляют, медленно прибавляя к ней при перемешивании 500 мл концентрированной соляной кислоты на этой стадии реакция смеси должна быть сильно кислой. Выпавшие в осадок кристаллы, окрашенные в светлобурый цвет, отфильтровывают с отсасыванием и г омы-вают четыре раза холодной водой, порциями но 150 мл. Неочищенную кислоту растворяют в растворе 80 г едкого натра в 3 /г воды. Полученный раствор фильтруют и прибавляют к нему для разбавления дополнительно 1 200 мл воды затем раствор подкисляют, для чего при перемешивании к нему приливают 600 мл соляной кислоты (1 Г). Выпавшие в осадок кристаллы отфильтровывают и промывают три раза холодной водой, порциями по 150 мл. Препарат сушат при 60—70° (примечание 7). Выход составляет 180—205 г (87—98% теоретич.) т. пл. 174—178° (примечание 8). Обычно нет необходимости в дальнейшей очистке вещества, однако в случае надобности эту операцию можно осуществить, для чего 2,3-димет-оксикоричную кислоту перекристаллизовывают из метилэтилкетона, применяя 12 мл растворителя на 1 г кислоты. Раствор быстро фильтруют в горячем состоянии через обогреваемую водяным паром воронку Бюхнера и в течение нескольких часов охлаждают. В результате перекристаллизации можно получить 70% вещества с т.пл. 179—180°. [c.200]


    Применяемый метилэтилкетон должен быть высокого качества. Для очистки технического препарата его следует высушить в течение суток над безводным хлористым кальцием, отделить декантацией через фильтр от образовавшегося сиропообразного слоя и твердого вещества, а затем перегнать, собирая фракцию-с т. кип. 79—80°. [c.268]

    Для очистки метилэтилкетона можно использовать все вышеприведенные методы очистки ацетона особенно эффективна очистка через аддукты с иодистым натрием или с бисульфитом натрия [3]. [c.604]

    Очистка элементов НПВО должна проводиться осторожно и при минимальном контакте с полированными поверхностями. Остатки твердых или порошкообразных образцов удаляют, прижимая липкую ленту к образцу, а затем снимая ее. Обычно достаточно споласкивать элемент в ряде растворителей (ацетон, толуол, метилэтилкетон), держа его вертикально, чтобы лучше высушить. В случае трудных образцов может потребоваться 30-кратная обработка растворителем в ультразвуковой ванне. При сушке элемента НПВО последняя капля растворителя на нижнем конце удаляется промоканием бумажной салфеткой. Элемент можно брать только за нерабочие грани, используя резиновые напальчники. Плазменная очистка применяется только для элементов из кремния или германия, но не из KRS-5. [c.107]

    В промышленности применяют при деасфальтизации пропан, при селективной очистке — жидкий сернистый ангидрид, нитробензол, фенол, фурфурол, крезол, при депарафинизации — смесь кетона (ацетона или метилэтилкетона) с бензолом и толуолом, пропан, дихлорэтан, карбамид, при извлечении аренов — ди-, три-, тетраэтиленгликоли, сульфолан, пропиленкарбонат, М-метилпирролидон и др. [c.150]

    По мере развития отрасли требования к качеству сырья повышались. Так, по условиям фирмы Gibernia концентрация этилена в сырье должна быть 97—99% (об.), а содержание ацетилена не должно превышать 0,002%. Тем не менее, при гидратации этилена образуется целая гамма побочных продуктов ацетальдегид, кротоновый альдегид, диэтиловый эфир, изопропиловый и бутиловый спирты, ацетон, метилэтилкетон и полимеры. Для доведения качества синтетического этанола до уровня пищевого необходима очистка от этих соединений. [c.229]

    В технологическом отношении процесс экстракции состоит из трех последовательных операций 1) перемешивания исходной смеси с экстрагентом 2) механического разделения полученной гетерогенной смеси (жидкость—жидкость или твердое вещество— жидкость) на экстракт и остаток исходной смеси (рафинат) или твердый остаток 3) разделения экстракта на экстрагированный целевой компонент и экстрагент, возвращаемый для повторного использования. Первые две операции чаще всего совмещаются в одном аппарате, а третья операция осуществляется ректификацией, реже — высаливанием. Таким образом, весь процесс разделения смесей методом экстракции технологически сложнее ректификации и может оказаться даже не менее энергоемким. Заметим, кроме того, что использование постороннего вещества (экстрагента) для разделения смеси приводит к неизбежному загрязнению продуктов разделения, очистка которых связана часто с большими затратами. Не будучи универсальным процессом, экстракция применима в тех случаях, когда другие методы разделения смесей либо непригодны, либо сопряжены с значительными затратами. Так, экстракция выгоднее ректификации при разделении смесей, состоящих из компонентов с близкими температурами кипения (например, бутадиен и бутилены), с малой относительной летучестью (вода—уксусная кислота), с очень высокими температурами кипения и малой термической устойчивостью (витамины, высшие жирные кислоты), азеотропных (вода—метилэтилкетон) и сложных [c.561]

    При лабораторном контроле процесса очистки масляного сырья определяют остаточное содержание р продукте того или иного селективного растворителя (фенола, фурфурола, метилэтилкетона и др.), которое строго ограничивается нормами. [c.29]

    При азеотропной перегонке используют свойство алкановых и циклановых углеводородов образовывать в смеси с некоторыми растворителями постояннокипящую смесь, температура которой ниже температуры кипения ароматических углеводородов. Например, метанол или водный метилэтилкетон применяется для получения толуола из фракции, содержащей алкано-вые и циклановые углеводороды, имеющие температуры кипения, близкие к температуре кипения толуола. Последние образуют с растворителем постояннокипящую азеотропную смесь, которая отгоняется с верха колонны. С низа же колонны отводится толуол в смеси с небольшим количеством непредельных углеводородов, удаляемых последующей очисткой серной кислотой. Отгон из колонны промывается водой, которая хорошо растворяет спирт или кетон. [c.197]

    В нефтеперерабатывающей промышленности используются различные селективные растворители. Для очистки масел от низкоиндексных компонентов применяются фенол, фурфурол, смесь фенола, крезола и пропана, нитробензол для деасфальтизации используют в качестве растворителя пропан при депарафинизации применяют кетоны (метилэтилкетон и ацетон). [c.303]

    При азеотропной перегонке для извлечения толуола к фракции добавляют метанол, или водный метилэтилкетон, или иной подходящий агент. Любое из этих вспомогательных веществ образует постоянно кипящую смесь (азеотропную смесь) с алканами и цикланами исходного сырья и вместе с ними уходит через верх колонны. Дальнейшая обработка ректификата водой освобождает углеводороды от спирта или кетона, которые растворяются в воде. Через низ колонны отводится толуол с небольшим количеством непредельных, удаляемых последующей очисткой кислотой. [c.223]

    На рис. 25 показана принципиальная схема очистки толуола путем азеотропной перегонки. Узкокипящая (93—121°) фракция толуольного концентрата непрерывно поступает в колонну К-1 для азеотропной перегонки. Разделяющий агент, содержащий 90% метилэтилкетона (МЭК) и 10% воды (азеотропная смесь), непрерывно подается в количестве, немного превышающем минимум, необходимый для извлечения всех неароматических соединений. Для неароматических соединений, кипящих в интервале 99— 121°, отношение количеств разделяющего агента и неароматических соединений составляет примерно 2 1. Неароматические соединения уносятся в азеотропных смесях с метилэтилкетоном и водой. Очищенный толуол, отобранный в виде остатков, содержит небольшое количество МЭК. Эта смесь поступает в колонну К-2, где МЭК отгоняется вместе с равным [c.130]

    По топливно-масляному варианту переработки нефти наряду с топливами получают смазочные масла. Для производства смазочных масел обычно подбирают нефти с высоким потенциа.яьным содер-жание.м масляных фракций. В этом случае для выработки высококачественных масел требуется минимальное число технологических установок. Масляные фракции (фракции, выкипающие выше 350° С), выделенные из нефти, сначала подвергают очистке избирательными растворителями фенолом или фурфуролом, чтобы удалить часть смолистых веществ и низкоиндексные углеводороды, затем проводят депарафиннзацию при помощи смесей метилэтилкетона или ацетона с толуолом для понижения температуры застывания масла. Заканчивается обработка масляных фракций доочисткой отбеливающими глинами. [c.151]

    Топливно-масляная схема (рис. 2.7). По этой схеме на установках АВТ наряду со светлыми дистиллятами получают несколько вакуумных погонов и гудрон. Вакуумные дистилляты — легкий (300—400 °С), средний (400—450 С) и тяжелый (450—500 "С) — проходят последовательно 1) селективную очистку фенолом или фурфуролом от смолисто-асфальтеновых компонентов 2) депарафи-низацию смесью бензола с метилэтилкетоном или дихлорэтаном 3) доочистку адсорбционным (отбеливающими глинами) или гидрогенизацнонным методами. [c.57]

    Растворитель сложного состава (метилэтилкетон/изопропанол/ бутанол) используется в процессе ВЕЯС (США). Схема включает стадии дегидратации, обработки растворителем для удаления шлама, отпарки, фракционирования, гидро- и адсорбционной очистки. [c.298]

    В качестве растворителей, для неводного титрования чаще всего применяют муравьиную и уксусную кислоты, уксусный ангидрид, метиловый, этиловый, изопропиловый, втор- и грег-бутиловый спирты, ацетон, метилэтилкетон, метилизобутилкетон, пиридин, диметилформамид, ацетонитрид, нитробензол, хлороформ и др. Для очистки и обезвоживания иеводных растворителей применяют методы, описанные в специальных руководствах .  [c.438]

    Промышленность выпускает ряд других кетонов метилэтилкетон и этилалилкетон, ацетофенон и т. д. Они находят применение в качестве селективных растворителей при очистке минеральных масел и для приготовления низковязких лаков с хорошей текучестью. [c.172]

    Д, вязких продуктов осуществляют обычно селективными р-рителями, наир, смесью метилэтилкетона или ацетона с толуолом (иногда с бензолом), высшими кетонами, жидким пропаном, плохо растворяющими парафины и хорошо — остальные компоненты исходного нефт. сырья. Парафин отделяют фильтрованием, р-ритель удаляют отгонкой. Побочные продукты Д.— смеси парафиновых углеводородов — после очистки исиольз. для получения парафина, церезина, а также в кач-ве сырья в нефтехим. синтезе. [c.151]

    Разные типы полимеров требуют спец. р-ритеяей для Э. х. Наиб, универсальный р-ритель - ТГФ (дпя Э. х. полибутадиена, полистирола, полиметакрилэта, полиакрилатов). ТГФ имеет низкую вязкость, однако требует очистки от пероксидов. Толуол, хлороформ и метилэтилкетон также широко используют в Э. X. полимеров. Для Э. х. полиолефинов применяют о-дихлорбензол и 1,2,4-трихлорбензол, а для полиакрилонитрила, полиэфиров и полиамидов - л-крезол, фгори-рованные спирты и к-ты. [c.413]

    Вполне безопасными для укрепления ветхих тканей являются фторлоновые лаки. Получаемые пленки гидрофобны, сохраняют физикомеханические свойства в широком интервале температур (от —50 до +250 °С), биостойки, устойчивы к фото- и термоокислительной деструкции, не изменяют оптических характеристик поверхности обрабатываемого материала, естественной фактуры, не придают материалу жесткости. Фторлоновые лаки (1—5 %-е) рекомендуют для реставрации ветхих тканей и бумаг, в первую очередь, для восстановления их механической прочности. Применяют растворы фторопластов в смеси сложных эфиров и кетонов (например, в смеси ацетон — этилацетат - амилацетат), отдельные марки растворимы в ацетоне, метилэтилкетоне, этилацетате, Фторлоновые лаки, закрепляя нити ткани, гидрофобизируют ее поверхность таким образом, что после этого допустимы очистка, отбеливание, обработка глицерином, удаление высолов и выведение локальных пятен. Особенно эффективно использование фторлоновых лаков для укрепления почти полностью деструктурированных тканей на местах археологических раскопов. [c.232]

    Этиловый эфир циануксусной кислоты н метилэтилкетон применялись продажные без дополггит тьной очистки. Найдено, что продажный абсолютный этиловый спирт дает несколько лучший выход аммонийной солн имида. [c.31]

    Очистка при помощи иодистого натрия кетон при нагревании насыщают иодистым натрием и теплый раствор фильтруют. При охлаждении из него выпадает аддукт в виде белых игл ст. пл. 73—74°. Аддукт разлагают нагреванием, при этом вЪщеляется очень чистый метилэтилкетон. [c.604]

    Дистиллятные фракции подвергаются последовательно очистке селективными растворителями (фенолом или фурфуролом), депара-финизации (раствором метилэтилкетон — бензол — толуол или дихлорэтаном), доочистке (контактной или гидрогенизационной). Остаточные базовые компоненты получают двумя способами деасфаль-тизацией гудрона пропаном с последующей селективной очисткой фенолом или фурфуролом (вариант I) или очисткой гудрона парными растворителями (вариант П). Остаточный рафинат затем подвергается депарафиннзации и доочистке. [c.113]

    По физическим свойствам наиболее эффективными растворителями для низкотемпературной очистки газа являются этилацетат, и-пропилацетат, метилэтилкетон и метанол. С учетом доступности и стоимости иреимущественное промышленное применение в качестве абсорбента получил метанол. [c.279]

    В качестве селективных растворителей используют различные органические соединения спирты, альдегиды, кетоны, амины, иитросоединения, простые и сложные эфиры. В промышленности применяют при деасфальтизации пропан, при селективной очистке — жидкий сернистый ангидрид, нитробензол, фенол, фурфурол, крезол, при депарафинизации — смесь кетона (ацетона или метилэтилкетона) с бензолом и толуолом, пропан, дихлорэтан, карбамид, при изнлсмснии аренов — ди-, три-, тетраэтилсигликоли, сульфолаи, пропиленкарбонат, Ы-ме-тилпирролидои и др. [c.404]

    За этим следует очистка ацетоном. Последний долже быть чистым, по крайней мере такого качества, какое требуется для производства пороха. Л не должен содержать вовсе ацетоновых масел, иа присутсттвие которых его нужно испытать Перед употреблением. Вместо ацетона можно брать также метилэтилкетон, который чище, несколько дешевле и имеет более прйят-. ный запах, чем ацетон  [c.360]

    Выделение и очистка наркотина в производстве. Отгоняют ацетон или метилэтилкетон из ацетоновых растворов I и II в эмалированном перегонном аппарате с паровым обогревом смолы выделяются в эмалированном сосуде. Для перекристаллизации из ацетона служит алюми-ийевый аппарат, изображенный на рис. 81. Однако здесь можно применять вместо мешочного фильтра с обогревом (рис. 96) закрытый фильтр (рис. 93). [c.385]

    Изолирование д и н и т р о ф е н о л ь н ы х произвол-н ы X при химико-токсикологическом анализе внутренних органов трупа, крови, мочи возможно как подщелоченной (лучше карбонатом натрия), так и подкисленной водой (исследоваиия К. Г. Янкова). При этом подщелоченной водой удается изолировать 93,87 /о 2,4-динитроортокрезола и 96,28% 2,4-динитро-6-вто-р ичного бутилфенола. Подкисленной водой изолируется соответственно 88,347о и 89,41 /о ди нитрофенолов, а подкисленным спиртом 59,6% и б2,18 /о. Использование метилэтилкетона позволяет изолировать 68,8% динитроортокрезола. Для изолирования динитропроизводных фенолов из кров и, мочи, каловых масс, внутренних органов трупа предложены экстракционные методы извлечения метилэтилкетоном. Для очистки выделенных динитропроизводных фенола рекомендована экстракция эфиром из растворов, подкисленных НС1 до pH 2,0 (по универсальному индикатору), с последующей реэкстракцией в l /o раствор едкого натра и хроматография в тонком слое силикагеля (для очистки и для разделения). Адсорбент — силикагель Вулказил (ФРГ), система петролейный эфир — этиловый эфир —ледяная уксусная кислота в соотношении 90 10 1. Время пробега 15—20 минут, Rf динитроортокрезола 0,74 Rf дииитро-2-вторичного бутилфенола 0,89. Проявление в камере, насыщенной парами аммиака. Метчик — 0,001% раствор соответствующего динитрофенола в эфире. [c.261]

    В процессах первичной переработки нефти вначале, йолучают полуфабрикаты—дистилляты. Для превраще- ния их в товарные продукты проводят очистку с применением различных веществ серной кислоты, щелочей (каустической соды, кальцинированной соды, извести, аммиака), отбеливаюш,их земель, растворителей (фенола, фурфурола, метилэтилкетона и других).  [c.4]


Смотреть страницы где упоминается термин Метилэтилкетон, очистка: [c.52]    [c.126]    [c.691]    [c.313]    [c.71]    [c.198]    [c.212]    [c.117]   
Лабораторная техника органической химии (1966) -- [ c.604 ]




ПОИСК





Смотрите так же термины и статьи:

Метилэтилкетон



© 2025 chem21.info Реклама на сайте