Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нитраты органические определение

    Те, Сз, Ва). С целью выделения неиспользованного топлива и удаления примесей, отравляющих цепную реакцию, облученный уран через определенные промежутки времени подвергается переработке его растворяют в азотной кислоте и экстрагируют образовавшиеся нитраты органическими растворителями. В исходном растворе содержатся также и вспомогательные компоненты топлива 2г, ЫЬ, Сг и А1. Путем подбора соответствующих условий экстракции получается полное отделение урана и плутония от продуктов распада, а затем разделение урана и плутония, которые служат дальше топливом в реакторах различного типа. [c.433]


    Круговорот азота в природе имеет большое значение. В нем в различной степени принимают участие воздух, земля, вода и органическое вещество. Пути этого круговорота можно установить и проследить определением различных форм азота. Азот может находиться в процессе круговорота в форме аммиака, нитрита, нитрата, органически связанного азота и свободного азота. [c.69]

    В результате этой реакции уменьшается оптическая плотность органической фазы и увеличивается интенсивность окраски водной фазы. Одна из двух рекомендованных методик основана на построении градуировочного графика для определения перхлората при измерении оптической плотности только водной фазы. Хлорат, гипохлорит, хлорит, нитрит и нитрат, мешающие определению, можно удалить обработкой НС1. Образующийся хлорид-ион, как и многие другие ионы, не мешает определению. [c.407]

    Метод определения азота, стандартизованный ИСО 1(Ю48, является разновидностью метода Кьельдаля, в котором для минерализации применяется сплав Деварда. Данным методом можно определять азот в пробах воды, содержащих аммоний, нитрит, нитрат, органические азотсодержащие соединения. [c.152]

    Нитратов и нитраминов определение в органических соединениях. Нитраты и нитрамины определяют в органических соединениях с целью идентификации последних или установления степени их чистоты. Содержащие нитраты органические соединения обрабатывают металлической ртутью и методом потенциометрического титрования устанавливают концентрацию образующихся ионов ртути (II). Титрование ведут раствором иодида калия. Для контроля конечной точки титрования используют иодидный электрод 94-53 и электрод сравнения 90-02. [c.83]

    Предложено 3 варианта метода определения микроколичеств нитратов органических оснований (НО), неорганических нитратов (НН) и нитроаминов (НА), основанного на восстановлении желе-зом 11), титаном[П1) и их смесью [471]. [c.65]

    Нитраты мешают определению в концентрациях выше 20 мг л. Мешающее влияние их, а также мутности и большого количества органических веществ в сточных водах можно устранить выпариванием пробы досуха с 2—5 мл концентрированной соляной кислоты, прокаливанием остатка и вторичным выпариванием после смачивания остатка 1—2 мл концентрированной соляной кислоты. После такой обработки остаток растворяют примерно ъЪ мл НС1 при добавлении горячей воды и фильтруют. [c.274]


    Хлор, содержащийся в различных неорганических и органических соединениях, может быть определен данным методом после переведения его в хлорид-ион. Бромид-, иодид-, роданид-ионы также могут быть осаждены количественно нитратом серебра. Ход анализа аналогичен описанному. [c.171]

    Различное влияние, оказываемое органическими растворителями на неорганические соединения, часто используют в анализе. Например, хлорид лития можно отделить от галогенидов других щелочных металлов экстракцией спиртом или эфиром. Метод количественного определения калия в виде перхлората основан на том, что его растворимость уменьшается при добавлении спирта, а перхлорат натрия при этом переходит в раствор. Хлориды и нитраты щелочноземельных металлов можно разделить смесью спирт-1-эфир. [c.197]

    Для этого образец почвы 500—1000 г распределяют тонким слоем на листе бумаги и высушивают на воздухе в чистом и сухом помещении. Крупные кусочки почвы раздавливают руками и удаляют корни, камни и т. д. Органические остатки удобно извлекать наэлектризованной стеклянной палочкой, к которой они. прилипают. Часть образца взвешивают на технических весах для последующего отбора средней пробы. Для некоторых видов анализа нужны образцы почвы, только что взятые в поле без предварительного подсушивания, например прн определении нитратов. Среднюю пробу лучше брать квартованием (см. 13.2). Просеянную почву хранят в байках с притертой пробкой, картонных коробках или бумажных пакетах. [c.368]

    Формамид обладает необычной диэлектрической постоянной (110), существенно превосходящей диэлектрическую постоянную воды. Этот растворитель находится в жидком состоянии в удобной для работы области температур (2,5-193 °С) и имеет низкое давление паров при комнатной температуре. По вязкости он превосходит ДМФ (3,3 сП по сравнению с 0,80 сП для ДМФ). В отличие от ДМФ формамид лишь эпизодически применялся в качестве растворителя электролитов, причем область рабочих потенциалов в формамиде оказалась уже, чем в ДМФ. Более высокая диэлектрическая постоянная вообще не дает особых преимуществ формамиду перед ДМФ, так как диэлектрическая постоянная последнего также достаточно велика, чтобы обеспечить адекватную проводимость растворов. В основном с помощью формамида можно варьировать условия опыта путем изменения определенных свойств растворителя. Формамид - хороший растворитель для различных неорганических соединений, включая хлориды, нитраты и сульфаты ряда переходных и щелочноземельных металлов. Подобно воде, формамид растворяет более полярные органические соединения и смешивается с водой он очень гигроскопичен и легко гидролизуется с образованием уксусной кислоты и аммиака. Формамид использовался и качестве растворителя при полярографии на КРЭ некоторых переходных элементов и ряда органических соединений. [c.21]

    Соответствие коррозионно-электрохимических свойств индивидуальных железа и хрома, с одной стороны, и их сплавов, с другой, проявляется и во влиянии окислительных добавок на кинетику растворения этих металлов. Действительно, в противоположность растворению активного никеля [58], растворение хрома и железа в серной кислоте (при постоянном потенциале) может в определенных условиях тормозиться под действием кислородсодержащих окислителей (перекиси водорода, хромата, нитрата I 48, 59-60]. Аналогичное явление для железа может иметь место и в нейтральных растворах, что было показано, например, для органических хроматов [62] и бихромата калия [63]. [c.13]

    Fe. При фосфатировании мажефом стальное изделие помещается в его раствор, нагретый примерно до 100°С. В растворе происходит растворение с поверхности железа с выделением водорода, а на поверхности образуется плотный, прочный и малорастворимый в воде защитный слой фосфатов марганца и железа серо-черного цвета. При достижении толщины слоя определенной величины дальнейшее растворение железа прекращается. Пленка фосфатов защищает поверхность изделия от атмосферных осадков, но мало эффективна от растворов солей и даже слабых растворов кислот. Таким образом, фосфатная пленка может служить лишь грунтом для последующего нанесения органических защитных и декоративных покрытий — лаков, красок, смол. Процесс фосфатирования длится 40—60 мин. Для ускорения фосфатирования в раствор вводят 50—70 г/л нитрата цинка. В этом случае время фосфатирования сокращается в 10—12 раз. [c.142]

    Соли таллня применяются для обнаружения и количественного определения многих ионов. Гидроокись одновалентного таллия рекомендуется в качестве реактива на озон [552, 614] и перекись водорода [801]. Нитрат одновалентного таллия позволяет обнаруживать едкую щелочь в присутствии растворимых сульфидов [229], иодиды в присутствии бромидов [550]. Растворимые соли одновалентного таллия находят широкое применение в качестве реактивов в микрокристаллоскопии [103]. В последнее время для этой же цели рекомендуются соли трехвалентного таллия [793]. Соли одновалентного таллия предлагаются для идентификации органических [c.8]


    Для определения урана большой интерес представляют реагенты, дающие с ним цветную реакцию в неводной среде. Они полезны, например, для быстрого обнаружения урана непосредственно после экстрагирования нитрата уранила эфиром или другим органическим растворителем. В качестве такого реагента наиболее часто применяют дибензоилметан, дающий с 1)0 оранжево-желтое устойчивое [c.39]

    К 10 мл раствора, содержащего 0,01—0,1 мг/мл урана, прибавляют 5,1 г нитрата натрия азотной кислотой и едким натром устанавливают pH 3, используя рН-метр. Переносят раствор в делительную воронку объемом 60 мл и экстрагируют уран 10 мл 25%-ного раствора трибутилфосфата в изооктане. Оптическую плотность экстракта измеряют в кювете с /=10 мм при 250 ммк относительно раствора, полученного аналогичным образом, но не содержащего урана. При концентрации урана больше чем 0,1 мг мл вводимая в раствор аликвотная часть должна быть такой, чтобы органическая фаза содержала 0,01—0,1 мг/мл. В интервале концентраций 0,002—0,01 лгг/лм измерения производят в кювете с /=50 мм. Обычные отклонения при определении урана составляли меньше 1% (отн.). [c.114]

    Определение урана можно производить при использовании экстракции комплекса урана с роданидом в органические растворители. Коэффициент распределения для урана между метилэтилкетон ом и раствором, содержащим 60% нитрата аммония и 3% роданида аммония, равен 2000. Вместо метилэтилкетона можно применять амилацетат, амиловый спирт и другие кислородсодержащие растворители [184]. Таким же образом был использован дибутиловый эфир тетраэтиленгликоля при определении урана в тории [917]. [c.118]

    Так как дибензоилметан не растворим в воде, его применение удобно прн определении урана в органических растворах, а также в сочетании с экстракцией. При этом определение возможно после экстракции урана в виде комплекса с дибензоилметаном, а также после экстракции в виде нитрата уранила. Так, [c.123]

    Азот. Определение аниона ЫОГ. Дифениламин (СвН5)МН в концентрированной серной кислоте образует с нитратами органический краситель ярко-синего цвета. Для выполнения реакции на часовое стекло помещают три-четыре капли раствора дифениламина, добавляют две-три капли концентрированной Н2504 и столько же водного раствора минерала. [c.139]

    Азот, содержащийся в аминокислотах, пептидах, белках и других естественных и синтетических органических соединениях, определяют суммарно одним определением. В поверхностных водах органически связанный азот появляется как продукт биологических процессов или попадает в них со сбрасываемыми бытовыми и некоторыми промышленными сточными водами. Количественное содержание азота указывает на степень загрязненности водоема. При сопоставлении с результатами определения аммиака, нитритов и нитратов результат определения органического азота указывает на самоочи-щающую способность водоема. При биологической очистке сточных вод и по содержанию азота следят за технологическим процессом и 108 [c.108]

    Свойства бутилфосфорных кислот, образующихся при гидролизе и радиолизе ТБФ, неоднократно привлекали внимание исследователей [1—6]. Весьма важно знать, как эти кислоты рапреде-ляются между водной и органической фазами. Этот вопрос рассматривался в нескольких работах [7—9], однако данные отдельных авторов имеют недостаточно систематический характер, причем результаты измерений расходятся в отдельных случаях примерно на порядок [7, 8. Настоящая работа была поставлена с целью внести ясность в этот вопрос. При этом распределение бутилфосфорных кислот изучено более подробно, чем в работах [7, 8]. Определение содержания дибутилфосфорной кислоты (ДБФ) проводилось осаждением ее нитратом железа, определение содержания монобутилфосфорной кислоты (МБФ) — осаждением нитратом тория. [c.71]

    Качественный анализ. Качественное обнаружение ионов неорганических соединений методом осадочной хроматографии чаще всего выполняют в колонках или на бумаге. В первом случае в качестве носителей используют оксид алюминия, силикагель (являющийся иногда одновременно осадителем), кварцевый песок, стеклянный порошок, насыщенные ионами-осадителями аниониты. Иногда колонки заполняют также чистым органическим реагентом-осади-телем, например о-оксихинолином, Р-нафтохинолином, купфероном, диметилглиоксимом, а-нитрозо-Р-нафтолом и др. Неорганическими осадителями для определения катионов служат гидроксид натрия, иодид калия, сульфид натрия и аммония, гексациано-(П)феррат калия, бромид и фосфат натрия, хромат калия для определения некоторых анионов используют нитрат серебра, нитрат ртути (I). [c.232]

    Для определения никеля в нитрате кобальта берут две навески соли по 2,5 г, переносят их в мерные колбы емкостью 50 мл и добавляют 40 мл соляной кислоты, растворяют соль и доводят объем раствора до метки той же кислотой. Две порции по 20 мл переносят каждую в делительную воронку емкостью 100 мл, прибавляют 10 мл раствора роданида аммония и экстрагируют роданид кобальта 50 мл этилацетата в течение 5 мин на механическом вибраторе. Значение pH водной фазы не должно быть >2 по универсальной индикаторной бумаге, в противном случае добавляют по каплям соляную кислоту. После отделения экстракта добавляют к водному раствору 25 мл этилацетата и вновь проводят экстракцию. Эту операцию повторяют трижды, добавляя по 2 мл раствора роданида аммония перед каждой экстракцией, следя, чтобы значение pH водной фазы не превышало 2. После экстракции к водному раствору добавляют раствор щелочи до pH 8—10 по универсальной индикаторной бумаге, затем добавляют 5 мл раствора ниоксима. Через 10 мин добавляют 10 мл толуола и встряхивают содержимое воронки на механическом вибраторе в течение 5 мин. Водный слой отбрасывают, органическую фазу промывают трижды [c.194]

    Большая часть азота биосферы существует в виде химически очень инертного N2, на долю которого приходится до 80% всех молекул воздуха. Фиксация азота происходит в основном либо под действием молний (приводящих к образованию окислов азота, из которых затем получаются нитрат и нитрит), либо в результате жизнедеятельности бактерий [1]. Определенный вклад в фиксацию азота вносит и человек, производящий химические удобрения. Взаимопревращения между нитратом и нитритом, с одной стороны, и аммиаком и органическими азотистыми соединениями — с другой, относятся к активным биологическим процессам. Некоторые из таких реакций уже обсуждались в Гл. 10 Например, мы рассмотрели окисление бактерия.ми ЫНз в N0 2 и N03 (гл. 10, разд. Е, 1) и восстановление НОз в N02 [уравнение (10-32)]. Для многих бактерий и, высших растений такое восстанов- [c.81]

    Большое значение имеет разумное определение доз внесения минер. У., при к-ром нужно учитывать запасы в почве доступных питат. в-в, сопутствующие кол-ва органических У. и планируемый урожай. Во всех случаях составление системы удобрешя почвы для всего севооборота и неуклонное следование ей оказывается более эффективно и экономично, чем ориентация на удобрение культур одного года. Необходимо избегать также чрезмерных доз внесения У., к-рые могут оказаться не только нерентабельными, но и привести к уменьшению урожая с.-х. культур, накоплению в них нитратов или токсич. элементов, а также к снижению качества, в т. ч. при хранении товарной продукции (картофель, овощи, фрукты и т. п.). [c.32]

    К электродам с анионной функцией относятся мембраны, которые в качестве ионитов содержат комплексы положительно заряженных переходных металлов с нейтральными органическими лигандами, например с о-фенантролином. Комплексные соли типа МЬз(КОз)2, где L - лиганд, функционируют как анионообменники. На их основе разработаны электроды, селективные к ионам IO4 , NO3 , BF4 , СГ. В частности, электрод на основе трис-фенантролиновых комплексов применяется для определения нитрат-ионов. Абсолютная величина градиента ионной функции такого электрода соответствует теоретическому значению, рассчитанному по уравнению Нернста для электродов, обратимых по отношению к однозарядным ионам  [c.204]

    В качестве активных компонентов мембран для определения нитрат-ионов используются также четвертичные аммониевые и фосфониевые соли. Электроды характеризуются крутизной электродной функции, близкой к теоретической, в диапазоне концентраций от 10 до 10 моль/л. Коэффициенты селективности по отношению к ионам СГ, NO2 , 804 не превышают 10 . Ионообмен-ники на основе солей тетраалкиламмония находят применение для изготовления хлоридных электродов. В качестве органического катиона в них используется диметилдистеариламмоний. Электроды можно применять для измерения активности ионов хлора в присутствии сульфид-ионов, которые оказывают значительное влияние на показания твердых хлоридных электродов. Основные [c.204]

    Область двойной связи 1430-1950 см (5,1-7 мкм). Самыми распространенными и характеристичными группами с двойной связью являются карбонильные. Вероятно, они наиболее изученный класс групп, поглощающих в ИК-области. В то время как некоторые структуры можно отличить просто по положению полосы валентного колебания С=0, другие в силу совпадения частот однозначно можно отнести, только прибегая к помощи других областей спектра. Как уже отмечалось, органические кислоты и обычно альдегиды легко идентифицируются по полосе поглощения карбонильной группы и по поглощению групп ОН или СН. Сложные эфиры кроме полосы валентных колебаний С=0 имеют сильное поглощение С—О—Я около 1200 СМ . В кетонах также проявляются полосы средней интенсивности около 1000-1370 см . Сильное поглощение в интервале 1540-1650 см (6,1—6,5 мкм) может указьшать на ионизированную карбонильную группу (например, в металлосодержащих солях органических кислот), на плоскостные деформационные колебания НН в аминах, валентные колебания N=0 в нитратах или валентные колебания С=0 в амидах. Для определения природы поглощения здесь опять необходимо рассмотреть другие спектральные области. Поглощение, обусловленное валентными колебаниями С=С в алифатических соединениях, находится в области 1630—1690 см (5,9 —6,1 мкм), если только к одному или обоим атомам углерода не присоединен атом фтора. В этом случае поглощение смещается в область более высоких частот и число атомов фтора коррелирует с положением полосы. Более тяжелые галогены понижают эту частоту, так как в валентном колебании С = С участвует также некоторая доля деформационного колебания СН. Ценная структурная информация может бьггь получена из положения этой полосы и полосы внеплоскостных деформационных колебаний в области 800-1000 см (10-12,5 мкм) [217]. В ароматических соединениях с малой степенью замещения наблюдаются три (а при лучшем разрешении четыре) резкие полосы в области 1450 — 1650 см (6—7 мкм). Этим полосам сопутствует более слабое поглощение около 1000 — 1200 см (8,3 — 10 мкм) и характеристические внеплоскостные деформационные колебания С—И около 670-900 см (11-15 мкм). Высокозамещенные ароматические соединения имеют [c.188]

    Присутствие в исследуемом растворе хлоридов и перхлоратов допустимо. Большое количество нитрат-ионов мешает определению. Сульфаты, фосфаты и органические оксикисло-ты образуют с торием комплексные соединения и подавляют окраску. Фториды также мешают, однако их влияние устраняется при упаривании исследуемого раствора с хлорной кислотой. [c.205]


Смотреть страницы где упоминается термин Нитраты органические определение: [c.104]    [c.573]    [c.20]    [c.4]    [c.536]    [c.115]    [c.130]    [c.471]    [c.86]    [c.410]    [c.573]    [c.703]    [c.110]    [c.194]    [c.58]    [c.307]    [c.42]   
Методы органического анализа (1986) -- [ c.501 , c.502 ]




ПОИСК





Смотрите так же термины и статьи:

Нитраты органические

Нитраты, определение



© 2024 chem21.info Реклама на сайте