Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Глюкоза ФОТ, чувствительный

    В последние годы благодаря использованию ферментов функции ионселективных электродов удалось существенно расширить и сделать их применимыми для быстрого клинического анализа на глюкозу, мочевину, аминокислоты и другие метаболиты. Такие электроды называются ферментными электродами или электрохимическими сенсорами. Создание электродов с указанными свойствами оказывается возможным благодаря тому, что ряд ферментов обладает высокой специфичностью, т. е. способностью катализировать превращения одного единственного вещества из многих сотен и даже тысяч веществ близкой химической природы. Если, например, фермент катализирует реакцию, в ходе которой изменяется pH среды, то рН-чувствительный электрод, покрытый пленкой геля или полимера, содержащей этот фермент, позволит провести количественное определение только того вещества, которое превращается под действием данного фермента. Из мочевины в присутствии фермента уреазы образуются ионы МН+. Если ионселективный электрод, чувствительный к ионам ЫН , покрыть пленкой, содержащей уреазу, то при помощи его можно количественно определять мочевину. Ферментные электроды — один из примеров возрастающего практического использования ферментов в науке и технике. [c.138]


    Эта чувствительная реакция на восстанавливающие сахара позволяет различать а-кетолы и простые альдегиды. Порядок активности участия в этой реакции следующий фруктоза>глюкоза>лактоза> >мальтоза>н-масляный альдегид. Реактив используется также для определения дегидрогеназы в тканях, клетках и бактериях, при изучении прорастания семян и для определения кортизона. [c.541]

    Адсорбционный механизм регуляции активности гексокиназы скелетной мышцы (И изозим гексокиназы) реализуется в повышении каталитической эффективности фермента вследствие нековалентной иммобилизации на митохондриальных мембранах. Связанная форма фермента по сравнению со свободной обладает большим числом оборотов, повышенным сродством к субстрату глюкозе и менее чувствительна к ингибирующему действию продукта реакции глюкозо-6-фосфата. Связь фермента с наружной митохондриальной мембраной осуществляется преимущественно с участием фосфолипидного компонента мембран и регулируется внутриклеточными метаболитами. Так, Mg + и глюкоза являются адсорбирующими фермент реагентами, АТФ и глюкозо-6-фос-фат (Г-6-Ф) солюбилизируют фермент, контролируя тем самым соотношение разных по каталитической эффективности форм фермента [c.374]

    В одной из конструкций ферментного электрода для определения глюкозы в качестве чувствительного элемента применяют стеклянный рН-электрод, регистрирующий изменение концентрации глюконовой кислоты, образующейся в результате ферментативной реакции [c.216]

    При длительном голодании запасы гликогена во всем организме истощаются и главным топливом становятся жиры. Глюкозы и пирувата хватает лишь на короткое время. Хотя гидролиз липидов и приводит к образованию некоторого количества глицерина (который окисляется до диоксиацетона и фосфорилируется), количество предшественников глюкозы, образованных этим путем, ограничено. (Следует при этом иметь в виду, что организм животного не может превращать аце-тил-СоА обратно в пируват.) Таким образом, потребность в глюкозе и в пирувате сохраняется. Первое из этих соединений необходимо для процессов биосинтеза, а второе играет важную роль в качестве предшественника оксалоацетата — субстрата, регенерирующегося в цикле трикарбоновых кислот. В результате всего этого в процессе голодания организм вынужден перестроить свой метаболизм. Надпочечники выделяют глюкокортикоиды (например, кортизол гл. 12, разд. И, 3,6). Через механизмы индукции ферментов эти гормоны повышают количество различных ферментов в клетках органов-мишеней, таких, как, например, печень. Глюкокортикоиды повышают, кроме того, чувствительность клеточных рецепторов к циклической АМР, а следовательно, и к таким гормонам, как глюкагон [57]. Было высказано предположение, согласно которому этот эффект обусловлен тем, что кортикоиды обеспечивают сохранение нормального ионного окружения, и в частности нормальных концентраций ионов Са +, К и Na+. [c.515]


    При значительном содержании глюкозы в растворе можно, конечно, добавить и больше медного купороса, так как образующийся гидрат окиси меди будет растворяться в присутствии глюкозы. Однако и при этих условиях не следует добавлять медного купороса столько, чтобы получился темно-синий раствор. Проба Троммера чувствительнее всего при слабо-синей окраске раствора. [c.97]

    Опуская дальнейщие детали этого очень сложного процесса [148], можно видеть, как система такого рода может обеспечить весьма чувствительный механизм контроля процесса потребления глюкозы из ее хранилища — гликогена. Одна молекула фосфорилазы (а) катализирует высвобождение тысяч молекул глюкозы, а одна молекула киназы фосфорилазы может активировать тысячи молекул фосфорилазы . Если добавить к этому, что киназа фосфорилазы также существует в активной и неактивной формах и активируется посредством фосфорилирования еще одним ферментом, киназой киназы фосфорилазы, который к тому же регулируется по соверщенно другому механизму, то только тогда становится ясным, какими сложными и чувствительными могут быть механизмы контроля этого типа. [c.537]

    Более чувствительна для фруктозы, чем для глюкозы [c.64]

    Окончательное упаривание раствора глюкозы осуществляется под давлением в несколько ступеней. Пары с последней ступени, находящиеся под давлением 760 мм рт. ст., используются для нагрева ваг<уум-выпарки соляной кислоты. На последней ступени предложено установить пленочные выпарные аппараты с целью сокращения продолжительности упаривания сиропа, чувствительного к повышенной температуре. [c.34]

    Молибдат аммония. Реагент 20 мл 10%-ного раствора молибдата аммония смешивают с 3 мл НС1, затем добавляют 5 г NH4 I. Бумагу опрыскивают этим реагентом. Любой неорганический фосфат или легко гидролизуемый органический фосфат сразу же дает желтые пятна. Прогревают при 75 °С в течение 15 мин. Восстанавливающие вещества дают синие пятна на белом фоне в результате восстановления молибдата до молибденового синего. Для глюкозы чувствительность 2 мкг. Кетозы гораздо легче определяются, чем альдозы. Сахароза также дает положительную реакцию. [c.399]

    Гаффрон [14], наоборот, считает, что бесчисленные эксперименты не дают убедительных данных, доказывающих такую стимуляцию. В связи с этим следует отметить, что, по данным Эмерсон (6), добавочное дыхание hlorella, вызываемое питанием глюкозой, чувствительнее к цианиду, чем обычное. Может быть, это указывает на то, что механизм глюкозного дыхания у hlorella несколько от.жичен от нормального либо в связи с локализацией, например во внешних слоях цитоплазмы, либо по своему каталитическому механизму. В том и другом случаях отношение добавочного дыхания к фотосинтезу может отличаться от отношения нормального дыхания к фотосинтезу. [c.571]

    Демограф. Значиг, если ЯА-параметр уменьшится на 1 %, то уровень глюкозы в крови ОН должен повыситься на 0,5%, а смертность от рака и сердечно-сосудистых заболеваний СС увеличится на целых 15% Вообще я вижу, что демографические параметры обладают примерно на порядок более высокой чувствительностью к изменению Живой Температуры Населения, чем физиологические. Но почему же это так  [c.147]

    Синяя модификация. К 100 мл раствора, содержащего 2,91 г нитрата или 2,38 г хлорида кобальта и 1 г глюкозы, прибавляют небольшими порциями разбавлеи-пый раствор гидроксида натрия. Осадок в отсутствие воздуха промывают сначала смесью спирта и воды, затем смесью ацетона и воды, а затем чистым ацетоном и сушат в вакуум-эксикаторе. Полученная модификация гидроксида представляет собой порошок синего цвета, весьма чувствительный во влажном состоянии к действию кислорода воздуха. [c.269]

    Кювету регистрирующего рН-метра заполняют средой, содержащей 2 мМ трис-НС1, 0,1 М КС1, 50 мкМ ЭДТА, 5 мМ Mg lg, 20 мМ глюкозу и 2 мМ АДФ (pH 8,0). Показания прибора калибруют, внося в кювету титрованный раствор НС1. Устанавливают чувствительность прибора так, чтобы внесение 100 мкМ НС1 (конечная концентрация) вызывало —90%-ный ответ пера потенциометра. Подбирают требуемое количество гексокиназы. Для этого в кювету вносят известное количество АТФ (50 мкМ) и добавляют такое количество гексокиназы, которое обеспечивает закисление среды с Ti/2 5 с. [c.413]

    Оптнч. сенсоры основаны на измерении поглощения или отражения первичного светового потока, люминесценции или теплового эффекта при поглощении света. Такие С. х. имеют чувствительный слой, роль к-рого может вьшолнять пов-сть волокна световода или иммобилизованная на световоде фаза, содержащая подходящий реагент. Волоконно-оптич. световоды на основе кварца, гсрманатных, фторид-ньгх, халькогенидных стекол, кристаллов галогенидов таллия, серебра или цезия и полимерных материалов позволяют работать в ИК. видимой и УФ диапазонах спектра. Созданы оптическис С. х. для определения рП р-ров, ионов К и Na, СО,, О,, глюкозы н д . в-в. [c.318]

    Первый ферментный электрод, чувствительный к глюкозе, был разработан Кларком в 1962 г, который поместил между мембранами электрода глюкозоксидазу. Образующийся в результате реакции пероксид водорода определяли амперометрически. Этот тип электрода более подробно будет рассмотрен ниже. Позднее Гилболт предложил электрод потенциометрического типа для определения мочевины, реакция разложения которой до иона аммония катализируется уреазой, иммобилизованной в объеме полимера на поверхности стеклянного электрода, чувствительного к однозарядным ионам. [c.214]


    Моноалкил- и моноарилфосфаты обычно чрезвычайно устойчивы в щелочной среде. Однако при наличии р-карбонильной группы наблюдается резко выраженная неустойчивость эфира [64, 103]. В случае 3-фосфата глицеринового альдегида УП и глюкозо-З-фос-фата полу.чены убедительные данные в пользу механизма р-элими-нирования возможно, что это доказательство является общим 169, 227]. Фосфаты с р-карбонильной группой настолько неустойчивы, что при синтезе соединения VII необходимо принимать особые меры предосторожности, чтобы при получении солей pH было не выше 7 в противном случае происходит быстрое разложение [45]. Другие активирующие заместители (помимо карбонильной группы) придают моноэфирам неустойчивость [102]. Было найдено, что Р-циан-этильная группа является чувствительной к щелочам защитной группой, исключительно полезной в синтезе эфиров фосфорных кислот [151в, 2836]. [c.83]

    Аскорбиновая кислота содержит два асимметричных атома углерода в 4-м и 5-м положениях, что позволяет образовать четыре оптических изомера. Природные изомеры, обладающие витаминной активностью, относятся к Ь-ряду. Аскорбиновая кислота хорошо растворима в воде, хуже—в этаноле и почти нерастворима в других органических растворителях. Из представленных структурных формул видно, что наиболее важным химическим свойством аскорбиновой кислоты является ее способность обратимо окисляться в дегидроаскорбиновую кислоту, образуя окислительно-восстановительную систему, связанную с отщеплением и присоединением электронов и протонов. Окисление может быть вызвано различными факторами, в частности кислородом воздуха, метиленовым синим, перекисью водорода и др. Этот процесс, как правило, не сопровождается снижением витаминной активности. Дегидроаскорбиновая кислота легко восстанавливается цистеином, глутатионом, сероводородом. В слабощелочной (и даже в нейтральной) среде происходит гидролиз лактонового кольца, и эта кислота превращается в дикетогулоновую кислоту, лишенную биологической активности. Поэтому при кулинарной обработке пищи в присутствии окислителей часть витамина С разрушается. Аскорбиновая кислота оказалась необходимым пищевым фактором для человека, обезьян, морских свинок и некоторых птиц и рыб. Все другие животные не нуждаются в пищевом витамине С, поскольку он легко синтезируется в печени из глюкозы. Как оказалось, ткани витамин-С-чувствительных животных и человека лишены одного-единственного фер- [c.238]

    Конечные продукты обмена глутамина (гистидин, глюкозо-6-фосфат, АМФ, пАМФ и др.), как и Гли, и Ала, оказались аллостерическими ингибиторами глутаминсинтетазы. Фермент подвергается также ковалентной модификации путем аденилирования-деаденили-рования (остаток Тир), и тогда он оказывается более чувствительным к аллостерическим ингибиторам. Суммарный тормозящий эффект превышает действие одного какого-либо ингибитора. Этот тии регуляции известен как согласованное ингибирование. [c.447]

    К кислому испытуемому раствору прибавляют глюкозу, 1 мл 10%-ного водного раствора КОН, и смесь нагревают 30 мин. на кипящей водяной бане. В присутствии висмута появляется черный осадок. Чувствительность 25 у Bi. При восстановления в капиллярной трубке чувствительность 3,5 Bi. Сегнетова соль уменьшает чувствительность метода. Метод дает положительные ре.эультаты при открытии висмута в различных фармацевтических препаратах (иногда после их озоления), в золе мочи, крови и других органических материалах. Открытию висмута мешает медь и не мешают олово, мышьяк и сурьма [395]. [c.280]

    При восстановлении описанным выше способом самих моноз получаются многозначные спирты, содержащие вместо альдегидной группы спиртовую. Так получается например /-арабит из /-арабинозы , ксилит из ксилозы р а м н и т из рамнозы м а н н и т из маннозы дульцит из галактозы i и т. д. Как пример подобного восстановления здесь описано образование сорбита из глюкозы. Характерными для этих спиртов являются их соединения с бензальдегидом получающиеся под влиянием сильных кислот, как например соляной или серной, и называемые бензальсоединениями. Несмотря на один и тот же способ получения, они содержат однако различное количество бензальных групп, например соединение маннита — три, сорбита— две, а родственный им а-глюкогептит — только одну. Их чувствительность к разбавленным кислотам также различна [c.293]

    Так же легко гидролизуется хебулиновая кислота. Открытая Гильсоном в китайском ревене и синтетически полученная Э. Фишером и Бергманом 1-галло ил-/9-глюкоза гидролизуется при 10серной кислоты. Как видно из строения этого соединения (стр. 199), и здесь соединение идет через карбонильную группу глюкозы. Таким образом можно ставить 1-галлоилглюкозу в отношении чувствительности к действию кислот в один ряд с глюкозидами. [c.232]

    Бензидин . Хроматограмму опрыскивают раствором 0,5 г бензидина в 20 мл ледяной СН3СООН + 80 мл EtOH. Прогревают при 100- 105°С в течение 15 мин. Пентозы дают шоколадно-коричневые пятна через 5 мин лактоза, мальтоза, галактоза, глюкоза, фруктоза темно-коричневые через 10 мин. Чувствительность 5 мкг. Аскорбиновая кислота дает светло-коричневое пятно через 10 мин. Чувствительность 10 мкг. Инозит и другие полиолы, сахароза и раффиноза не реагируют. Чувствительность и специфичность повысятся, если хроматограмму далее опрыскать либо H I (0,3 М), либо фосфорной кислотой (0,3 М) в 95%-ном этаноле с последующим нагреванием в течение 15 мин при 70°С. [c.398]

    Согласно другой методике, реагент для опрыскивания включает 0,5 г бензидина в 10 мл СН3СООН + 10 мл 40%-ной водной трихлороуксусиой кислоты +- 80 мл EtOH. Глюкоза (1 мкг), свободная или входящая в состав соединения, дает коричневые пятна. Свободная или связанная фруктоза дает желтое окрашивание, но реакция гораздо менее чувствительная, чем в случае глюкозы. Дисахариды, в состав которых входит восстанавливающий аминосахар, дают различное окрашивание в зависимости от положения гликозидной связи. [c.398]

    Весьма ценный метод определения конфигурации гликозидных связей заключается в исследовании отношения гликозидов к гликозидазам — ферментам, расщепляющим гликозидные связи (см. гл. 13). Поскольку действие всех известных гликозидаз стереоспецифично, способность определенного фермента катализировать гидролиз исследуемого гликозида позволяет установить конфигурацию гликозидной связи последнего. Так, например, способность р-глюкозидазы вызывать гидролиз арбутина — p-D-глюкопиранозида гидрохинона — доказывает [5-конфигурацию гликозидной связи в этом соединении Однако гликозидазы специфичны не только к конфигурации гликозидной связи, но и к стереохимии гликозильного остатка, и, кроме того, чувствительны к природе агликона. Поэтому неспособность данного соединения к гидролизу под влиянием того или иного фермента не может служить окончательным доказательством конфигурации его гликозидной связи. С другой стороны, при работе с гликозидазами необходимо постоянно считаться с возможным присутствием примесей других ферментов (например, примесь [3-глюкоз ид азы в а-глюкозидазе), способных исказить результаты гидролиза (см. также стр. 449). [c.208]

    Описан метод определения фосфатов в присутствии лабильных фосфатов (натрий- -глицерофосфат, глюкоза-1-фосфат, динатрий-фенилфосфат и др.), заключаюш ийся в экстракции PO4 в виде фосфоромолибдата аммония к-бутанолом и последующем восстановлении его гидрохиноном и смесью NaaSOa и NaHSOg. Чувствительность метода 0,5 мкг Р/л [718]. [c.162]

    На первой стадии глюкоза окисляется растворенным кислородом до -глюконолактона с образованием стехиометрического количества перекиси водорода, которая на второй стадии количественно окисляет о-дианизидин Существует большое количество модификаций метода с фотометрическим определением начальной скорости реакции на второй стадии или по конечной точке реакции, с использованием других субстратов пероксидазы — ферроцианида и других. В ряде модификаций вторая стадия проводится неферментативным способом. Помимо фотометрического широко используется также потенциометрический и амперометрический методы определения глюкозы с помощью глюкозоокси-дазы. Наиболее традиционным является применение кислородного электрода Кларка в сочетании с глюкозооксидазной мембраной. Совместная иммобилизация в мембране глюкозооксидазы и /3-глюкозидазы позволяют определять с помощью ферментного электрода активность целлюлазного комплекса Однако чувствительность ферментных электродов, как правило, ниже, чем у фотометрического метода с использованием глюкозооксидазы. [c.133]

    Широкому распространению ферментного метода определения глюкозы на основе глюкозооксидазной-пероксидазной системы способствовали высокая чувствительность и простота определения. Однако данный метод имеет и свои ограничения, такие, как зависимость концентрации растворенного кислорода от состава анализируемого раствора и температуры, стереоспецифичность действия глюкозооксидазы, заключающаяся в ее способности окислять только /3-глюкозу, наличие в составе технических препаратов и культуральных жидкостях примесей, ингибирующих глюкозооксидазу и (или) пероксидазу. [c.133]

    Наиболее широкое распространение для анализа ферментативных гидролизатов лигноцеллюлозных материалов нашел метод разделения глюкозы и целлоолигосахаридов на силикагеле, модифицированном аминогруппами. Это связано с изократичес-ким режимом элюции сахаров смесью ацетонитрил-вода, доступностью и относительно низкой стоимостью колонок, отсутствием необходимости предколоночной модификации образцов, простотой рефрактометрической регистрации продуктов. Метод позволяет определять концентрацию целлоолигосахаридов на уровне 0,5-10 г/л, а применение в качестве детектора интерференционного или лазерного рефрактометрических детекторов позволяет регистрировать сахара с чувствительностью, сопоставимой с ферментативными и химическими методами — на уровне 0,1 г/л и менее. [c.134]

    Недавно для определения активности фермента был предложен экспресс-метод [74], позволяющий непрерывно регистрировать образование глюкозы непосредственно в спектрофотометрической кювете. При избытке глюкозооксидазы и пероксидазы в системе лимитирующей стадией сопряженной реакции является гидролиз целлобиозы и скорость образования окраски прямо пропорциональна скорости образования целлобиозы. Определение активности проводится в рН-оптимуме целлобиазы (pH 4,5-5,0), занимает 2-10 мин Метод позволяет в 10-20 раз повысить чувствительность определения целлобиазной активности. Недостатком данного способа является, прежде всего, нестабильность реагента при хранении даже в течение дня. [c.140]


Смотреть страницы где упоминается термин Глюкоза ФОТ, чувствительный: [c.397]    [c.168]    [c.168]    [c.78]    [c.80]    [c.217]    [c.356]    [c.341]    [c.110]    [c.115]    [c.166]    [c.144]    [c.327]    [c.399]    [c.399]    [c.400]    [c.115]    [c.358]    [c.132]    [c.141]   
Биосенсоры основы и приложения (1991) -- [ c.408 ]




ПОИСК







© 2025 chem21.info Реклама на сайте