Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Испускание в процессе а-распада

    При избытке нейтронов. В этом случае процессы распада идут вследствие превращения нейтронов в протоны, что сопровождается испусканием отрицательно заряженных частиц — электронов. [c.24]

    Изотопы могут быть как стабильные, так и нестабильные — радиоактивные, ядра которых подвержены самопроизвольному (спонтанному) превращению в другие ядра с испусканием различных частиц — так называемым процессам распада. К радиоактивным превращениям относятся альфа-распад с испусканием альфа-частицы (ядра Не), все типы бета-распада (с испусканием электрона, позитрона или с захватом орбитального электрона), спонтанное деление ядер и ряд других типов распада. При этом радиоактивный распад часто сопровождается гамма-излучением, испускаемым в результате переходов между различными состояниями одного и того же ядра. Отметим, [c.17]


    При избытке нейтронов процессы распада идут вследствие их превращения в протоны, что сопровождается испусканием отрицательно заряженных частиц — электронов (е- или Р ). [c.26]

    Теория Ферми. Как уже указывалось в гл. II, электрон не может существовать в ядре. По этой причине наблюдаемую эмиссию электронов при -распаде следовало бы объяснить образованием электрона (и нейтрино) в момент их испускания. Процесс испускания ядром -частицы с отрицательным зарядом (единственный вид -распада, известный в то время, когда Ферми первоначально сформулировал свою теорию) может быть, таким образом, представлен уравнением [c.243]

    Источниками излучений большой энергии, используемыми в радиационной химии, могут служить отходы, получаемые при работе ядерного реактора. При делении каждого ядра образуются два новых ядра с приблизительно равными массами. Эти продукты образуют группу изотопов с массовыми числами от 72 до 162. Атомы продуктов деления нестабильны в процессе р-распада идет превращение одного химического элемента в другой. В ряде случаев образующееся после испускания Р-частицы ядро находится в возбужденном состоянии переход такого ядра в нормальное или основное состояние сопровождается излучением одного или нескольких у Квантов.  [c.257]

    Дочерние ядра, образовавшиеся в результате распада радиоактивных ядер, часто обладают некоторым избытком энергии по сравнению с нормальным состоянием. По аналогии с возбужденным состоянием атома такое состояние ядра называют возбужденным. Возбужденные ядра переходят в основное состояние, выделяя энергию в виде квантов электромагнитного излучения, называемых у-квантами. Итак, если в процессе радиоактивного распада образуются возбужденные ядра, то такой распад всегда сопровождается испусканием у-квантов, а соответствующий изотоп является у-излучателем. [c.18]

    Ядра с низкими нейтронно-протонными отношениями, расположенные ниже пояса устойчивости, испускают позитроны или совершают электронный захват. Любой из этих распадов приводит к уменьшению числа протонов и увеличению числа нейтронов в ядре, как это видно из уравнений (20.7) и (20.9). Испускание позитрона для легких ядер представляет собой более распространенный процесс, чем электронный захват, однако по мере повышения заряда ядра электронный захват становится все более распространенным процессом. [c.249]

    Радиоактивные элементы и их распад. Радиоактивностью называется самопроизвольное превращение неустойчивого изотопа одного химического элемента в изотоп другого элемента, сопровождающееся испусканием элементарных частиц или ядер. Радиоактивность, проявляемая природными изотопами элементов, называется естественной радиоактивностью. Процессы радиоактивных превращений протекают у разных изотопов с различной скоростью. Эта скорость характеризуется постоянной радиоактивного распада, показывающей, какая часть общего числа атомов радиоактивного изотопа распадается в 1 с. Чем больше радиоактивная постоянная, тем быстрее распадается изотоп. [c.91]


    Существует несколько типов радиоактивного распада. Для легких радиоактивных элементов типичен -распад, сопровождающийся испусканием из ядра одного электрона ф -распад) или позитрона (р -распад). Первый путь распада типичен для элементов с некоторым избытком нейтронов против оптимального. Так, Р -распаду подвергаются ядра углерода 0 (более тяжелые, чем стабильные изотопы С и 1 С), Н (трития), и (более тяжелые, чем стабильный изотоп фосфора), N3 (более тяжелый, чем стабильный изотоп Ма). Наоборот, р+-распаду подвергаются ядра, у которых имеется дефицит нейтронов против оптимального, например 11С или Ыа. Возникновение позитрона можно представить себе как происходящее в ядре превращение одного протона в нейтрон и позитрон. Вне ядра такой процесс требует значительной затраты энергии, так как сопровождается увеличением массы на 0,0014 а. е. м. [c.23]

    Ядерное у-излучение сопровождает процессы а- и Р-распада. Оно возникает в тех случаях, когда при излучении частицы материнским ядром дочернее ядро образуется в возбужденном состоянии и при испускании одного или нескольких у-квантов через с переходит в невозбужденное состояние. [c.304]

    Кроме того, известны и радиоактивные изотопы с относительной атомной массой 33, 34, 36, 38 и 39. Периоды полураспада их, соответственно, равны 2,8 с, 33 мин, 2-10 лет, 38,5 мин и 60 мин. Два первых изотопа распадаются с испусканием позитрона, а два последних — с испусканием электрона (р-частицы). Изотоп С1 испытывает оба вида распада. При распаде с испусканием позитрона возникают изотопы серы р-распад дает аргон. С1 способен также и к -захвату (в данном случае это А -захват), причем получается изотоп серы-36. Во всех этих процессах выделяются нейтрино (v) и антинейтрино (v). Например  [c.195]

    Ядра ксенона и стронция, а также бария и криптона неустойчивы из-за избытка нейтронов и поэтому сильно радиоактивны. Они претерпевают столько р-распадов (т. е. внутриядерных превращений нейтронов в протон с испусканием электронов), сколько потребуется для образования устойчивого ядра. Уравнения (а) и (б) отражают процесс асимметричного деления, осуществляемый под действием нейтронов. Соотношение масс осколков для этих двух наиболее вероятных реакций составляет 1,46. Использование нейтронов больших энергий приводит к выравниванию состава смеси, растет относительное содержание продуктов симметричного деления. [c.420]

    Если один из двух уровней, скажем 2 принадлежит непрерывной области энергии, соответствующей диссоциации или ионизации, то все уровни из системы Е , расположенные вблизи уровня Ей могут его возмущать. При этом некоторые уровни будут сдвигать его вверх, другие — вниз. В результате вместо уровня Ei будет слегка диффузный уровень, как это показано на рис. 102, б. Смешивание волновых функций этих двух состояний означает, что если система переводится в состояние 1, то она очень скоро приобретает свойства состояния Яг, т. е. произойдет диссоциация или ионизация. Приблизительно ситуацию можно передать словами, что происходит безызлучательный переход из дискретного состояния в непрерывное (с той же энергией), что приводит к распаду молекулы. Такие процессы носят название процессов Оже по имени исследователя, впервые открывшего это явление в рентгеновской области. Он обнаружил, что один квант рентгеновского излучения может вызвать испускание двух фотоэлектронов. При этом один из них испускается в результате обычного фотоэффекта например, с /С-оболочки), а другой — сразу же за первым вследствие такого безызлучательного перехода (поскольку Х-уровень, на который атом переходит после первой стадии, перекрывается непрерывной областью энергии, соответствующей удалению электрона с -оболочки образовавшегося иона). [c.179]

    Нейтрино — частица с массой покоя, равной нулю, и со спином она отличается от фотона главным образом значением спина (фотон имеет спин 1). Предположение о существовании нейтрино высказал в 1927 г. В. Паули для объяснения, казалось бы, совершенно очевидно, го несоблюдения принципа сохранения энергии в процессе испускания бета-частицы (электрона) радиоактивным ядром (разд. 20.13). Данные наблюдений показали, что все радиоактивные ядра одного я того же вида испускают альфа-частицы, подобно На (рис. 20.6), обладающие одной и той же энергией, что и следовало ожидать согласно закону сохранения массы-энергии, но в то же время было известно, что некоторые радиоактивные атомы, например ФЬ, испускают бета-частицы разной энергии. Паули, а позже и Ферми предполагали, что при радиоактивном распаде ядра с испусканием бета-частицы испускается также частица с небольшой или нулевой массой покоя и при этом энергия реакции распределяется между бета-частицей и другой частицей, которую Ферми назвал нейтрино. [c.597]

    В 1934 г. Ферми разработал свою теорию бета-распада для объяснения неожиданных результатов наблюдений, свидетельствующих о том, что некоторый радиоактивные ядра испускают электрон в процессе радиоактивного распада, хотя предполагалось, что они состоят лишь из протонов и нейтронов. Ферми отметил, что атомы испускают фотоны при переходе из одного квантового состояния в другое, хотя в то время и не предполагали, что атомы содержат фотоны считали, что фотон возникает в момент его испускания. Ферми предположил, что электроны, бета-частицы, образуются при радиоактивном распаде ядра и что одновременно один из нейтронов внутри ядра становится протоном и при этом испускается нейтрино (или, что более вероятно, антинейтрино). [c.597]


    Ряд урана — актиния, показанный на рис. 20.7, представляет собой аналогичный ряд радиоактивного распада, начинающегося с содержащегося в природном уране в количестве 0,71%. Этот ряд превращений, включающий процессы испускания семи альфа-частиц и четырех бета-частиц, приводит к образованию устойчивого изотопа ° РЬ. [c.610]

    Большинство процессов бета-распада (как е+, так и е ) сопровождается сразу наступающим вслед за ними испусканием гамма-лучей. Бета-распад может приводить к образованию ядер в каком-либо одном или в различных возбужденных состояниях с переходом в нормальное состояние путем испускания гамма-лучей. Простой пример показан на рис. 20.10. Обширная информация об энергетических уровнях ядер получена в результате измерения длин волн фотонов (гамма-лучей) и определения максимальной кинетической энергии бета-лучей (максимум соответствует нулевой энергии для нейтрино). [c.614]

    Самое низкое энергетическое состояние ядра называют его основным состоянием. В возбужденном состоянии ядро находится на более высоком уровне энергии. Чаще всего ядро, образующееся в результате процессов альфа- или бета-распада, находится в возбужденном состоянии, затем ядро возвращается в основное состояние в один или несколько этапов за счет испускания гамма-излучения. [c.107]

    Самопроизвольное деление ядер (спонтанное деление), как и а-распад, наблюдается у тяжелых нуклидов с массовыми числами М > 230 и 2 > 90 (изотопы урана, плутония, америция и др.). Такие ядра де ится на два осколка, массовые числа которых находятся в области 70-170 а. е. м. Кроме осколков в процессе деления образуются два-три нейтрона. При делении высвобождается суммарная энергия 200 МэВ, в том числе кинетическая энергия осколков, которая составляет -170 МэВ. Эта энергия распределяется между двумя осколками обратно пропорционально их массовым числам (см. формулу (1.19)). Так, если массовые числа М = 98 и Л/2 = 140, то 1 = 99,4 МэВ, Е2 = 69,6 МэВ. По сравнению со стабильными изотопами соответствующих элементов осколки перегружены нейтронами и поэтому распадаются с испусканием подряд нескольких р-частиц, образуя так называемые радиоактивные изобарные цепочки, имеющие одинаковые массовые числа, но отличающиеся зарядом нуклидов Из-за того, что период полураспада по каналу спонтанного деления очень большой (для Ту2 = 8 лет), радиоактивность накопленных продуктов деления в природном уране незначительна. [c.10]

    Причем чем больше 2, тем больше в среднем вероятность этого процесса, в частности, велика вероятность деления у С (на 33 а-распада приходится 1 деление). Каждое деление сопровождается высвобождением почти 200 МэВ энергии (наибольшая часть в виде кинетической энергии осколков деления) и испусканием 2—4 нейтронов. Период полураспада Т п относительно спонтанного деления зависит от параметра [c.226]

    Каждому массовому числу атома может соответствовать несколько значений заряда ядра поэтому, помимо выхода ПО массам, процесс деления характеризуется и выходом по заряду (так называемым независимым выходом) [53]. Таким образом, при делении получается набор ядер, имеющих различные заряды 2 и массовые числа А. Практически все эти ядра нейтроноизбыточны и поэтому стабилизируются путем испускания р -частиц. В результате подавляющая часть осколков деления оказывается родоначальником радиоактивных цепочек (в среднем требуется три последовательных р-распада, чтобы осколок с данным значением А перешел в устойчивое состояние). Приме рами таких цепочек являются  [c.33]

    При бимолекулярном обмене интересными процессами являются главным образом излучение либо дезактивация столкновениями молекул одного или обоих продуктов вплоть до основного состояния (рис. 1, а). Эти процессы изучали, в основном, по спектрам испускания (или поглощения) при импульсном фотолизе [43], или в диффузионных пламенах [3]. В ряде случаев [44 45] наблюдали инициирование распада других частиц одним из продуктов реакции (рис. 1, Ъ или с). [c.71]

    Деление атомного ядра — это процесс распада возбужденного ядра на 2 (реже 3 и 4) сравнимых по массе ядра-осколка деления. Деление ядер сопровождается испусканием вторичных нейтронов, 7-квантов и выделением энергии. Делению подвержены ядра всех тяжелых элементов, если то ько они находятся в достаточно высоких возбужденных 1.0.-Т0ЯНИЯХ. Процесс деления — это один из возможных путей снятия во.збужд. НИЯ ядра дпугие конкурирующие ппоцессы испускание -квантов, испускание нейтронов и т. п. [c.929]

    Источником энергии для активации молекул или же превращения их в атомы и радикалы может служить излучение радиоактивных атомов, являющихся отходами при работе ядерного реактора. В результате деления каждого ядра образуются два новых ядра с приблизительно равными массами. Продукты деления образуют группу изотопов с атомными массами от 72 до 162. Атомы продуктов деления нестабильны в процессе -распада идет превращение одного химического элемента в другой. В ряде случаев образующееся после испускания -частицы ядро находится в возбужденном состоянии переход такого ядра в нормальное , или основное, состояние сопровождается излучением одного или нескольких 7-квантов. Максимальная энергия -частиц, испускаемых продуктами деления, равна 3,5 МэВ, а у-излучення — 3,8 МэВ. Однако такой энергией обладают в основном короткоживущие продукты деления. Облучение продуктами делення можно производить внутри активной зоны атомного реактора. [c.326]

    Если а-распад характерен почти исключительно для области тяжелых элементов и все нуклиды после висмута являются а-нестабильными, то распад с испусканием р-частиц не ограничивается этой областью периодической таблицы и не все тяжелые нуклиды р-неста-бильны. Так, например, изотопы плутония с массовыми числами 236, 238, 239, 240, 242 и 244 р-стабильны. Если бы эти изотопы не были нестабильными по отношению к независимо протекающему процессу распада испусканием а-частиц с периодом полураспада, не превышающим 100 млн. лет, то их можно было бы обнаружить в природе. (По указанным в приложении к книге радиоактивным свойствам можно определить, какие из изотопов трансурановых элементов являются р-стабильпы-ми.) Стабильные изотопы таллия, свинца и висмута — самых тяжелых нерадиоактивных элементов, встречающихся в природе, — р-стабильны так же, как и другие стабильные изотопы во всей периодической таблице. [c.148]

    Распад. --Частица — электрон. р -Распаду предшествует процесс Че + р, протекающий в ядре таким обраяом, при испускании электрона заряд ядра увеличивается на единицу, а массовое число ие изменяется. Дочернее ядро — изобар исходного—принадлежит элементу, смещеино.му на одну клетку к концу периодической системы от места матсрниского элемента Э Че . [c.49]

    Наблюдавшиеся явления Ирен Кюри и Фредерик >Колно-Кю 1И о яснили тем, что под влиянием бомбардировки ядер а-части-цамн сперва образуются новые неустойчивые ядра, которые за ем распадаются с испусканием позитронов. Например, в случае ялю-миния процесс протекает в две стадии [c.110]

    Вы, возможно, считаете, что атомы вообще не меняются атом алюминия всегда остается алюминием, а железа - железом. В основном это так. Однако некоторые атомы, имеющие неустойчивые ядра, все-таки иногда изменяются при этом они превращаются в атомы других элементов (имеющих другие ядра) обычно с испусканием дополнительных частиц и энергии, что и является собственно радиоактивностью, а сам процесс называется радиоактивным распадом. Испускаемые частицы и энергия называются ядерной радиацией или ядерным излучением. Многие преимущества и недостатки ядерных технолопш связаны именно с этими излучениями. [c.303]

    Как и при позитронном распаде, электронный захват не сопровождается изменением массового числа, а у дочернего элемента заряд ядра понижается на единицу. Вновь образующийся элемент расположен в Периодической системе на одну клетку левее по сравнению с исходным. Наиболее распространен захват электрона из ближайшей к ядру /С-оболочки, реже встречается захват из Ь- и более дальних оболочек. Соответственно обозначению электронной оболочки захват называют /С-захватом, --захватом и п. Оставшееся свободное место на соответствующих оболочках ганимает другой электрон, перескакивающий с более высокого энергетического уровня. Перескок сопровождается испусканием кванта рентгеновского излучения. При переходах на /С-слой возникают рентгеновские излучения /С-серии и т. д. Этот процесс часто бывает единственным наблюдаемым эффектом происшедшего захвата электрона. [c.399]

    Структура данной книги не сильно отличается от учебника выпуска 1970 г. Фотохимия — это химия возбужденных частиц, и ее предметом является изучение различных превращений возбужденной частицы ее химические реакции либо излуча-тельный или безызлучательный распад. Эти возможности и рассматриваются в гл. 3—6 в гл. 1 дается общее введение в основные принципы фотохимии, а в гл. 2 кратко объясняются закономерности поглощения и испускания излучения. Совершенно очевидно, что в фотохимии используются определенные экспериментальные методы, и иллюстративный материал лучше усваивается, если читатель понимает суть экспериментальной методики. Описание некоторых наиболее важных экспериментальных методов приводится в гл. 7. Эта глава включает очень общее представление о направлении, называемом Фотохимия с высоким временным разрешением . Оно связано с детализацией динамики фотохимических процессов, включая использование энергии исходных частиц в определенных квантовых состояниях при преобразовании в конечные продукты. Этот материал позволяет понять детали фотохимического взаимодействия, но не очень хорошо согласуется с содержанием гл. 3—8. Так как экспериментальная реализация этого метода технически сложна, то описание его дается в гл. 7 (разд. 7.5 и 7.6). Гл. 8 завершает книгу обсуждением фотохимических процессов, происходящих в природе, и некоторых технологических и лабораторных применений. В ней я не пытался жестко с.педовать систематическим названиям химических соединений, привояя названия, широко используемые в промышленности. [c.9]

    Экспериментальное изучение подвижности ядер при фотодиссоциации представляет трудную, но очень престижную цель потому, что изменения структуры молекул происходят на межъядерных расстояниях порядка десятых долей нанометра на временных интервалах в фемтосекундном диапазоне. Интересный подход к этой проблеме связан с применением спектроскопических эффектов, обусловленных движением ядер, в качестве индикатора зависимости от времени. В сущности требование высокого временного разрешения трансформируется в необходимость измерения амплитуд сигналов в зависимости от частоты. Как конкретный пример рассмотрим молекулу О3. При поглощении фотона эта молекула предиссоциирует в течение примерно одного колебания. Она определенно не может рассматриваться как флуоресцирующая молекула (см. разд. 3.3 и 4.3). Однако очень малая часть молекул испускает излучение (около 1 на 10 ), и при интенсивном лазерном возбуждении и чувствительной системе регистрации спектр испускания может быть записан. Интересное свойство этой флуоресценции заключается в необычно длинных последовательностях колебательных полос. При распаде молекулы она проходит через все возможные молекулярные конфигурации так, что франк-кондонов-ские вероятности переходов на соответствующие этим конфигурациям уровни оказываются большими (см. разд. 2.7). С точки зрения динамики диссоциации более важно то, что интенсивности наблюдаемых линий в опосредованном виде представляют подвижность молекул в возбужденном состоянии и тем самым несут информацию о процессе диссоциации. Диссоциация О3 под действием УФ-излучения — очевидный пример того, как качественное понимание динамики может быть получено простым способом. Полосы деформационных колебаний не видны в спектре испускания, что прямо предполагает, что деформационные колебания не участвуют на ранних стадиях реакции. Более того, наблюдаются только переходы с участием четных уровней антисимметричных валентных колебаний. Этот результат интерпретируется в рамках симметрии процесса диссоциации. [c.207]

    Распад системы после ее перехода в возбуаденное состояние которое участвует в процессе Оже. Этот факт позволил в свое время открыть процесс такого рода испускание второго электрона (электрона Оже) после того, как система перешла в высоковозбуж- [c.180]

    Радиоактивность (от лат. radio — излучаю и a tivus — деятельный) —самопроизвольное превращение неустойчивых (нестабильных) изотопов одного химического элемента в изотопы другого элемента, сопровождающееся испусканием элементарных частиц или ядер (напр., гелия). Существует а-распад, -распад, которые часто сопровождаются испусканием у-лучей, спонтанное деление и др. Скорость радиоактивного распада характеризуется периодо.м,полураспада (Т" / ). Наиболее распространенной единицей измерения Р. является кюри. Р. используется в науке, технике и медицине. См. Радиоактивные изотопы, Радиоактивные элементы. Радиоактивные изотопы — неустойчивые, самопроизвольно распадающиеся изотопы химических элементов. При радиоактивном распаде происходит превращение атомов Р. и. в атомы одного или нескольких других элементов. Известны Р. и. всех химических элементов. В природе существует около 50 естественных Р. и. с помощью ядерных реакций получено около 1500 искусственных Р, и. Активность Р. и. определяется числом радиоактивных распадов в данной порции Р. и. в единицу времени (единица активности — кюри). Р. и. характеризуются периодом полураспада (время, в течение которого активность убывает вдвое), типом и энергией (жесткостью) излучения. Р. и. широко используются в науке и технике как радиоактивные индикаторы и как источники излучений. В технике применяются только некоторые из искусственных Р. и.— наиболее дешевые, достаточно долговечные с легко регистрируемым излучением. Наиболее важные области применения — радиационная химия, изучение механизма различных химических процессов, в том числе в доменных и мартеновских печах, износа деталей машин, режущего инструмента, процессов диффузии и самодиффузии и др. В у-дефектоскопии используются Р. и. с у-излученнем для просвечивания изделий и материалов, для выявления внутренних дефектов. [c.110]

    Некоторые радионуклиды испускают рентгеновское излучение или 7-излучение с достаточно низкой энергией, что может быть использовано в РФС. Гамма-лучи связаны с переходами в ядре, но распад некоторых радиоактивных изотопов, например Ре, приводит к испусканию рентгеновских лучей. Ядро Ре имеет 2 — 26, т. е. 26 протонов и 29 нейтронов. Такая конфигурация неусгойчива, и ядро захватывает электрон с К-орбитали, превращая протон в нейтрон. Полученный в результате атом имеет уже 25 протонов (марганец) и 30 нейтронов и вакансию на К-оболочке. Этот процесс носит название электронного захвата. Вакансии будут исчезать обычным путем за счет испускания рентгеновского излучения Мп К-Ьз,2 и Мп К-Мз,2- [c.71]

    Радиоактивные вещества выделяют частицы различных типов. Для наших целей наибольшее значение имеют электрон (отрицательно заряженная частица), позитрон (или положительно заряженный электрон), а-частица и нейтрон (табл. 14.1). Испускание этих частиц часто, яо не всегда, сопроволедается излучением энергии в виде у--лучей. Иногда встречается другой вид радиоактивного распада, который состоит в том, что ядро самопроизвольно захватывает электрон с уровня К (или гораздо реже с уровня Ь или более высокого уровня). Этот процесс известен под названием К-захвата непосредственное его наблюдение затруднительно. Обычно он обнаруживается по излучению характеристических рентгеновых лучей, вызываемых переходом электронов с более высоких квантовых уровней на свободное место, образующееся в результате захвата. [c.211]

    Надмолекулярная структура ]юлимера влияет па эмиссию. Существует взаимосвязь между явлением испускания электронов и процессом разрушения полимера. Электроны выходят в вакуум после разрушения ловушек, захвативших электроны в процессе автоионизации сильно растянутых связей в макромолекулах. При этом автоионизация макромолекул происходит, ио-видимому, путем туннельного перехода электронов с локальных донориых уровней, возникающих при растяжении химических связей, в глубокие ловушки. И вследствие ослабления в них химических связей ионизированные макромолекулы нагруженных полимеров распадаются па макроионы и свободные макрорадикалы. Отсюда сделан вывод об основной роли ионизационного механизма разрыва напряженных химических связей в полимерных цепях, находящихся в наиболее дефектных участках полимера, обогащенных глубокими ловушками. Такими дефектными участками являются приповерхностные слои полимера, поэтому при растял<ении центры эмиссии возникают вначале на краях образцов. Иначе говоря, механическое разрушение имеет черты электрофизического процесса. [c.140]

    Хемилюминесценцию можно считать одним из типов фосфоресценции. Например, для люцигенина и люминала первую ступень процесса можно рассматривать как образование пероксида. Считают, что триплетное состояние или магнитное поле, связанное с атомом кислорода, Б молекуле реагента облегчает синглетно-триплетное превращение. Когда промежуточный продукт распадается, остающаяся молекула оказывается в возбужденном нестабильном триплетном состоянии возвращение в основное синглетное состояние сопровождается испусканием света. [c.109]

    Излучение характеризует особый тип распада лишь при изомерном переходе. Очень часто другие типы распада также сопровонедаются уизлучепием, В результате любого радиоактивного процесса дочернее ядро может оказаться в возбужденном состоянии. Однако, если энергия возбуждения излучается путем испускания у-квантов практически одновременно с актом распада, который привел к возбужденному состоянию ядра, то не имеет смысла говорить о самостоятельном типе распада (см, рис. 3, 6, 9, И, 13). [c.20]

    Фотовозбуждение изомерных уровней. При облучении у-квантами некоторые стабильные ядра по реакции Л (у, у ) А переходят в метастабильное состояние, имеющее достаточно большой период полураспада. В большинстве случаев метастабильпые или изомерные уровни имеют энергию в области 0,1—1 ТИэв. Однако известно, что прямое возбуждение изомерных уровней электромагнитным излучением невозможно. Метастабильное состояние может быть получено при возбуждении ядра до некоторого уровня активации, превышающего изомерный уровень. При последующем распаде возбужденного ядра возможен частичный или полный переход на изомерный уровень. Распад изомера происходит путем испускания у-излучения соответствующей энергии. Некоторой особенностью распада изомеров является то, что их у-излучение обычно сильно конвертировано, в результате чего возникают монохроматические электроны конверсии. При этом необходимо отметить, что процесс восстановления электронной оболочки атома сопровождается испусканием характеристического рентгеновского излучения. [c.85]


Смотреть страницы где упоминается термин Испускание в процессе а-распада: [c.152]    [c.460]    [c.530]    [c.92]    [c.33]    [c.413]    [c.49]    [c.20]    [c.20]   
Смотреть главы в:

Основные законы химии. Т.2 -> Испускание в процессе а-распада




ПОИСК







© 2025 chem21.info Реклама на сайте