Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Типы процессов и реакторов

    Сложность и многообразие химических процессов обусловили создание весьма большого количества, различных типов химических реакторов. Это затрудняет разработку единой классификации. Обычно в качестве признаков классификации выбираются принцип действия (периодический, непрерывный, полунепрерывный), характер и свойства фаз реагирующих веществ (гетерогенные, гомогенные), характер теплового режима и распределение температур в реакционной зоне (изотермические, неизотермические, адиабатические), тип конструкции, схемы соединения реакторов и т. д. [c.14]


    Ряд других схем комбинированных реакторов для процессов с обратимыми и необратимыми реакциями первого и второго порядка рассмотрен в работах [84, 95—971. Их краткое изложение применительно к комбинациям различных типов адиабатических реакторов приведено в работе [4]. В приложении к практическим расчетам может оказаться полезной модель комбинированного проточного реактора в адиабатических условиях, описанная в работе [97]. Каждый реактор предлагается рассматривать как сумму элементарных реакторов идеального смешения (М) и идеального вытеснения (Т). Введение параметра М позволяет определить, какую часть от всего реакционного объема должен занимать реактор идеального смешения. [c.107]

    Хлор барботирует через распределительное устройство (маточник), расположенное на дне реактора и изготовленное из керамических труб с большим числом отверстий. Один из типов промышленных реакторов хлорирования емкостью 1—1,5 ж показан на рис. 106. Катализатор (железная стружка) загружают перед началом процесса. [c.286]

    На этапе макрокинетических исследований решают следующие задачи 1) выбор типа опытного реактора, осуществляемый в соответствии с данными об организации процесса 2) определение модели гидродинамики процесса на основе данных о структуре потоков 3) анализ диффузионных эффектов, процессов массо- и теплопереноса в аппарате и оценка соответствующих тепловых и диффузионных параметров 4) синтез статической математической модели и процесса, установление ее адекватности 5) статическая оптимизация 6) синтез динамической модели процесса и установление ее адекватности анализ параметрической чувствительности 7) анализ устойчивости теплового режима процесса 8) динамическая оптимизация. [c.29]

    Внутреннее устройство реакторов зависит от типа процесса при стационарном слое катализатор размещают, на решетках в виде нескольких слоев конструкция такого реактора аналогична конструкции многосекционных реакторов гидроочистки. [c.69]

    Иа всех типов химических реакторов аппараты без смешения потока, или, как мы будем их называть, трубчатые реакторы, отличаются наибольшим разнооб-разпем. В реакторах идеального смешения содержимое реактора стараются сделать как можно более однородным при проектировании же трубчатых реакторов цель состоит в том, чтобы избежать перемешивания. В идеальном случае каждый элемент потока проводит в реакторе одно и то же время. Таким образом, процесс в трубчатом реакторе напоминает периодическую реакцию в замкнутом объеме, причем координата, отсчитываемая по направлению движения потока, выполняет функцию времени. Конечно, такое утверждение слишком упрощает картину, однако желательно пметь в виду указанное соответствие между двумя процессами. [c.253]


    Выбор реактора зависит от многих технологических, экономических и конструктивных факторов. Только анализ взаимного их влияния позволяет принять окончательное решение. Здесь мы ограничиваемся изучением влияния кинетики процесса на тип используемого реактора. Будет показано, что для некоторых видов превращения такие влияющие на способ проведения процесса факторы, как распределение времени пребывания, величины и распределения концентраций и температур, могут существенно влиять на выход и качество продукта. Рассмотрим только три основных типа реакторов — реактор периодического действия, трубчатый реактор полного вытеснения и проточный реактор полного перемешивания, [c.337]

    Вслед за кратким обзором основных понятий и терминологии кинетики химических реакций рассмотрены реакции в гомогенных средах, неизотермические процессы, проточные реакторы, гетерогенные каталитические процессы, реакции в слое зернистого материала и методы моделирования. В конце дано очень краткое описание типов химических реакторов, применяемых в промышленности. [c.10]

    В промышленности процесс дегидрирования этилбензола проводят в трубчатых и шахтных реакторах. В аппаратах первого типа процесс протекает при 600 °С, трубы обогреваются топочными газами, проходящими в межтрубном пространстве. Дегидрирование осуществляют в присутствии водяного пара (соотношение этилбензол водяной пар = 1 1,2). Несмотря па протекание побочных реакций, выход стирола превышает 90% (в пересчете на прореагировавший этилбензол) за один проход через контактную массу превращению подвергается 40% этилбензола. [c.295]

    Почти во всех отраслях техники применяют сооружения и аппараты, основной технологический процесс в которых связан с перемещением жидкости или газа. Примерами такого оборудования могут служить теплообменные установки и аппараты (градирни, скрубберы, калориферы, радиаторы, экономайзеры и рекуператоры), газоочистные аппараты (электрофильтры, тканевые, волокнистые, сетчатые, слоевые и другие фильтры, батарейные и групповые циклоны), котлы, различные химические аппараты (абсорберы, адсорберы, каталитические реакторы, ректификаторы, выпарные аппараты и др.), промышленные печи (доменные, термические и др.), сушильные установки различных типов, атомные реакторы, вентиляционные и аспирационные устройства, системы форсунок. [c.3]

    По сравнению с одноступенчатым крекингом, проводимым в одном реакторе обычного типа (процесс в кипящем слое), двухступенчатый крекинг на установке рассматриваемой конструкции дает больше бензина при одном и том же выходе кокса. Это объясняется, в частности, тем, что при двухступенчатом процессе пер- [c.273]

    Расчеты каталитических процессов и реакторов основаны на общих уравнениях кинетики. Кинетические уравнения для различных видов химических реакций, а также для разных типов химических реакторов подробно рассмотрены в главах IV и V. Все эти уравнения применимы для расчета каталитических реакторов с учетом особенностей каталитических процессов. [c.110]

    Пр1 Мером процесса с неоднородными стадиями является технологической участок химического производства, на которо м исходное сырье последовательно перерабатывается в аппаратах различных типов (например, реактор — абсорбер—ректификационная колонна). [c.245]

    РЕАКТОРЫ НЕПРЕРЫВНОГО ДЕЙСТВИЯ ОСНОВНЫЕ ТИПЫ ПРОЦЕССОВ. ПРОТЕКАЮЩИХ В ПОТОКЕ [c.113]

    Приведены краткие сведения о биохимических процессах. Описаны типы биохимических реакторов, принципы их устройства и действия, факторы, влияющие па производительность. На конкретных примерах показано аппаратурное оформление процессов биохимической технологии, в том числе с использованием средств автоматического контроля и управления. [c.272]

    ТИПЫ ПРОЦЕССОВ И РЕАКТОРОВ [c.41]

    Процесс проводят в реакторах трубчатого или камерного типа. В реакторах трубчатого типа катализатор располагается в трубках диаметром 50—150 мм, между которыми для снятия тепла реакции циркулирует кипящая вода. В реакторах камерного типа катализатор располагается слоями (по 0,6—2,4 м), и температура в них поддерживается вводом в реактор охлажденного сжиженного пропана. Разность температур продуктов на выходе и сырья на входе в реактор [40] 8—10 °С для реакторов трубчатого типа и 50—60 °С для реакторов камерного типа. [c.192]

    Химические превращения. При решении задач проектирования химических реакторов необходимо рассматривать последние на микро- и макроуровнях. На макроуровне определяются закономерности протекания химических превращений при воздействии на них процессов переноса массы, тепла, импульса, т, е. решается вопрос о выборе наилучшего типа промышленного реактора и определения его конструкционных и рабочих условий. [c.81]


    В некоторых случаях высказывают мнение о том, что применение метода математического моделирования полностью исключает испытания новых процессов в укрупненных установках. На наш взгляд, это неправильное утверждение. Опытная установка может понадобиться для производства небольших партий продукта, проверки стабильности катализатора и прочности материалов аппаратуры, уточнения отдельных коэффициентов модели. Однако все принципиальные решения об оптимальных режиме и типе химического реактора, основных размерах зерен и количестве катализатора можно найти математическим моделированием на основе правильно поставленных и проведенных лабораторных исследований. Если для решения какой-либо специальной задачи необходима укрупненная установка, то и ее нужно создавать на базе метода математического моделирования в соответствии с перечисленными выше этапами, которые тесно связаны между собой. В зависимости от результатов анализа иногда приходится возвращаться к предыдущим этапам и снова уточнять выбранные условия и параметры. Последовательное приближение обеспечивает разработку аппарата, наилучшим образом удовлетворяющего всем требованиям. [c.521]

    В слоях катализатора (в порядке прохождения) протекают адиабатические процессы. Реактор этого типа с загрузкой 14,3 м  [c.295]

    Процесс непрерывного производства суперфосфата сопровождается быстро протекающей реакцией между фосфоритной мукой п 62%-ной серной кислотой в реакторе типа башни (реактор — из кислотоупорной стали). [c.338]

    Основные аппараты процесса — реактор и регенератор — более просты конструктивно по сравнению с другими типами аппаратов. [c.246]

    Типы промышленных реакторов весьма разнообразны. Это вполне естественно, если учесть длительное развитие этой области техники и сложность химических процессов. Иногда выбор типа аппаратуры определялся удобством его применения в данных конкретных условиях и закреплялся традицией. Здесь имели иногда значение личные вкусы изобретателей, не сдерживаемые достаточно большими познаниями в соответствующей области технологии. Кроме того, до разработки жаропрочных и коррозионностойких сплавов выбор конструкции и условий проведения процесса ограничивался свойствами конструкционных материалов. Это иногда случается и в настоящее время. УЙнтересными примерами самого различного аппаратурного оформления одних и тех же процессов являются реакторы окисления сернистого ангидрида, синтеза аммиака и окисления аммиака, применявшиеся в различное время (см. рис. Х1-8, XI-10 и XI-18). Указанные примеры далеко не единственные. [c.353]

    Выбор оптимальной конструкции химического реакт м далеко не простое дело. Знать кинетику реакций, лежаЭ цх Ценове того или иного процесса,— хотя это само по себе важно ще не значит уметь осуществить промышленный вариант процст к , поскольку протекание химической реакции в промышленном реакторе всегда осложняется переносом тепла и массы. Помимо кинетических данных, необходимо располагать расчетным методом, позволяющим выбрать тип химического реактора определенного размера, в котором желаемая реакция могла бы протекать в оптимальных условиях. [c.3]

    Результаты проведенных исследований позволили рекомендовать к промышленному внедрению узел очистки отходящих газов производства ПМДА, включающий смеситель, в котором отходящий газ раскручивается вводимым через тангенциальные щели высокотемпературным дымовым газом, и аппараты термокаталитической очистки двух типов пластинчатый реактор с модулями с катализаторным покрытием на первой стадии процесса и реактор с насыпным слоем катализатора на заключительной стадии [43]. Смеситель должен повысить надежность работы узла очистки за счет эффективного нагревания, оплавления, испарения и частичного сжигания дисперсной фазы (температура плавления ПМДА 286°С, кипения 380°С [31]). Один из вариантов аппаратурного оформления реактора каталитической очистки для действующего производста представлен на рис. 2.21. [c.119]

    Эта группа реакторов, отличающихся прежде всего простотой конструктивного исполнения и, следовательно, высокой эксплуатационной надежностью, получила наиболее широкое распространение в химической, микробиологической и других отраслях промышленности. Используются они как при периодическом, так и при непрерывном процессах обработки жидкостей. Общим признаком для аппаратов этой группы является естественное диспергирование газа при подъеме его пузырей в жидкости. Движение жидкости или газожидкостной смеси в зависимости от конструкции аппарата может быть различным. Этим и обусловлено введение в классификацию различных типов барботажных реакторов. [c.7]

    Расчет всех типов трубчатых реакторов должен базироваться на правильно сформулированных уравнениях материального п энергетического балансов (простейшие из них выведены в разделах 1Х.1—1Х.З) и разумных принципах расчета (раздел IX.4). Далее мы обсудим некоторые задачи оптимального проектирования. Хотя найденные нами оптимальные решения (раздел IX.5), не могут быть практически реализованы, они дают наиболее высокие возможные показатели процесса, к которым надо стремиться при детальном проектировании реактора. Соотношение между теоретическим и практическим оптимальным расчетом мы обсудим, исследуя в разделе IX.6 реакторы с прямоточными и противоточными тенлообменнп-ками. В разделе IX.7 будут затронуты некоторые проблемы устойчивости и регулирования трубчатых реакторов. В конце главы мы рассмотрим некоторые усложнения простой одномерной модели реактора и исследуем влияние продольного перемешивания и поперечного профиля скоростей (разделы IX.8 н IX.9). Структура главы показана на рис. IX.1. [c.256]

    Основную стадию процесса — сульфирование — целесообразно осуществлять в изотермических герметичных реакторах с высоким гидродинамическим режимом. Таким аппаратом является разработанный ВНИИНефтехимом совместно с ЛенНИИХим-машем бессальниковый реактор с перемешивающим устройством пропеллерного типа. Конструкция реактора позволяет довести съем спирта до 380 кг м ч. Такая производительность не достигалась до последнего времени ни на одном аппарате. Полезный объем реактора 1,52м , поверхность теплообмена 37 м , фактически потребляемая мощность 15,5 кет, вес 5 т. Реактор выполняется из малоуглеродистой стали [51]. [c.82]

    Основные типы реакторов вытеснения однотрубные, снабженные рубашкой кожухотрубные теплообменники и трубчатые печи, в которых трубы нагреваются за счет излучения и конвекции от топочных газов. Этот последний тип применяется главным образом для проведения эндотерл-.ичзских процессов, тогда как два других типа реакторов пригодны для осуществления эндотермических и экзотермических процессов. Реакторы в виде одной трубы не требуют специальных описаний. [c.359]

    Для осуществления непрерывных процессов применяют два ооновных типа аппаратов—реактор (вытегнения и реактор смешения [2]. Третий, особый тип аппарата, который в известной мере является гибридом двух первых, (представляет собой реактор с псевдоожиж внным слоем. [c.12]

    Основой для составления математического описания реакторного процесса являются уравнения, описывающие гидродинамику потоков перерабатываемых и получаемых продуктов. В зависимости от этого и классифицируются реакторы по типам. По двум основным моделям потоков различают два типа реакторовг реактор идеального перемешивания и реактор идеального вытеснения. При выборе модели потока учитываются следующие факторы [5] модель должна отражать физическую сущность реального потока при относительной простоте математической формулировки должен существовать метод либо экспериментального определения параметров модели, либо аналитического их расчета структура потоков должна быть удобна для расчета конкретного процесса. [c.21]

    Причем в зависимости от значений кинетических параметров а и 02, существуют области, для которых оптимальным с точки зрения максимума выхода будет один из трех типов аппаратурного оформления процесса реактор с мешалкой, трубчатый реактор, трубчатый реактор с рециклом. Все три типа реакторов логут быть описаны одной принятой ранее моделью идеального штеснения с рециклом, которая при R—>-0 переходит в мо--1ель идеального вытеснения, а при R—>-оо в модель идеального перемешивания. [c.129]

    Г) этой главе дается вывод расчетных уравнений для трех типов идеальных реакторов, схематически показанных на рис. V- . В последующих главах рассмотрено применение данных уравнений для расчета изометрических и неизометрических процессов в реакторах. [c.106]

    XIII-14. Какой тип процесса при режиме идеального вытеснения (с прямотоком или противотоком фаз) эффективнее для проведения медленно протекающей в соответствии с уравнением (XI 11,43) реакции второго порядка между веществами Л и В, первоначально присутствующими в различных фазах Проверить полученный вывод, сопоставляя объемы реактора, в котором достигается степень превращения 99%, при следующих условиях а) реагенты подаются в эквимолярных количествах  [c.408]

    Добавка к AI I3 хлоридов натрия, калия и др. при алкилировании бензола высшими олефинами (Сю—С14) на 8—12% повысила выход соответствующих моноалкилбензолов, используемых в качестве ПАВ. В присутствии же Mg b и NH4 I выход моноалкилбензолов снижается [188, с. 68]. На процесс алкилирования значительное влияние оказывает тип применяемого реактора, скорость перемешивания и т. д. [c.146]

    Процесс газификации угля с агломерацией золы разработан совместно компанией Юнион Карбайд и Бательским научно-исследовательским институтом. Это другой тип процесса газификации в высокотемпературном псевдоожиженном слое без применения кислорода. Для его проведения используют специальные горелки, в которых коксовый остаток и зола окисляются компреосорным воздухом. Процесс испытан на пилотной установке производительностью 25 т/сут, которая эксплуатируется с конца 1974 г. Данный процесс вполне пригоден для переработки большинства битуминозных углей, поскольку в нем предусматривается стадия предварительной парокислородной обработки с целью понижения коксуюш,ейся способности углей. Свое название он получил благодаря способу, применяемому для покрытия дефицита тепла при протекании эндотермических реакций газификации в псевдоожиженном слое. Коксовый остаток выводится с верхней части высокотемпературного (около 980°С) псевдоожиженного слоя, а агломерированная зола, образующаяся в непривычно глубинных слоях реактора-газификатора, выпадает из него через коническое днище. Смесь коксового остатка и золы, получаемая с помощью компрессорного воздуха, вводится в специальную камеру сжигания, и подогретые почти до 1100°С агломерированные частички золы выносятся из горелки в псевдоожиженный рабочий слой реактора-газификатора. [c.167]

    Кроме продолжительности процесса, реакторы перис дического действия следует характеризовать съемом за единицу времени данного -го продукта с единит объема (м ) данного реакционного оборудования <7,-Основной производственной характеристикой реакторо объемного типа является их номинальная или (с уч том коэффициента загрузки для -го продукта) рабе чая емкость, и поэтому следует вначале рассчитать не минальную емкость реактора, а уже затем выбрать ко кретный тип аппарата среди аппаратов данной ном -нальной емкости (50]. [c.10]

    Исходя из кинетики протекающих реакций (33—3I и макрокинетических исследований, определяют требу мые гидродинамические и тепловые режимы синтезг а уже затем в соответствии с упомянутыми условиям выбирают тип стандартного аппарата и мешалш Ниже приведены методы расчета, которые позволяю осуществить выбор необходимого для данного процесс реактора объемного типа с мешалкой, исходя из вли5 ния перемешивания (33—36] при гомогенных и гетере генных химико-технологических процессах. Но прен де рассмотрим различные способы организации глдрс динамических процессов в реакторах объемного типа основные конструктивные характеристики аппарате мешалок, влияющие на гидродинамический режим реакторе. [c.14]

    Элементы расчета абсорбционных и хемосорбциониых процессов и типы применяемых реакторов рассмотрены в ч. I, гл. VI. Основные технологические показатели абсорбционной очистки степень очистки (КПД) г) и коэффициент массопередачи А определяются растворимостью газа, гидродинамическим режимом в реакторе Т, Р,ю) и другими факторами, в частности равновесием и скоростью реакции при хемосорбции. При протекании реакции в жидкой фазе величина к выше, чем при физической абсорбции. При хемосорбции резко меняются равновесные соотношения, в частности влияние равновесия на движущую силу абсорбции. В предельном случае для необратимых реакций в жидкой фазе (нейтрализация) образующееся соединение и еет практически нулевое давление паров над раствором. Однако такие хемосорбционные процессы нецикличны (поглотительный раствор не может быть вновь возвращен на очистку) и целесообразны лишь при возможности использования полученных растворов иным путем. Большинство хемосорбциониых процессов, применяемых в промышленности, обратимы и экзотермичны, поэтому при повышении температуры раствора новое соединение разлагается с выделением исходных компонентов. Этот прием положен в основу регенерации хемосорбентов в циклической схеме, тем более, что их химическая емкость мало зависит от давления. Хемосорбционные процессы особенно целесообразны таким образом для тонкой очистки газов, содержащих сравнительно малые концентрации примесей. [c.234]

    При рассмотрении различных типов нефтехимических реакторов ниже использована классификация, основанная на двух-признаках 1) фазовом составе смеси веществ, находящихся в реакторе, включая активные реагенты, катализаторы й растворители (твердые теплоносители и всевозможные инертные насадки не учитываются) 2) преимущественном характере течения потока реакционной смеси через свободное пространство реактора (т. е. на том, близко ли тече-ченне к режиму полного перемешивания или полного вытеснения). В соответствии с этим приводятся разнообразные типы реакторов с перемешиванием потока и с вытеснением, предназначенные для проведения процессов в следующих реакционных средах газовая фаза жидкая фаза газ — твердый катализатор жидкость — твердый катализатор газ — жидкость жидкость — жидкость газ-жидкость—твердый катализатор. [c.120]

    Внутреннее устройство реакторов зависит от типа процесса при стационарном состоянии катализатора его размещают на решетках в виде нескольких слоев такой реактор сходен по конструкции с многосекционнымн реакторами гидроочистки .  [c.287]


Смотреть страницы где упоминается термин Типы процессов и реакторов: [c.50]    [c.127]    [c.225]    [c.366]    [c.401]    [c.128]    [c.122]    [c.64]   
Смотреть главы в:

Технология катализаторов -> Типы процессов и реакторов




ПОИСК





Смотрите так же термины и статьи:

Процесс реакторов



© 2025 chem21.info Реклама на сайте