Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Псевдоожиженный слой рабочая

    Если все образующиеся в установках с коксованием в псевдоожиженном слое промежуточные дистилляты в дальнейшем направляются на переработку в ЗПГ, например на гидрогазификацию, то потребуется дополнительно водород, количество которого значительно превышает количество водорода, требуемого для десульфурации продуктов после низкотемпературной конверсии. Этот водород может быть получен из циркулирующего рабочего газа реактора, очищенного газа или посредством частичного окисления тяжелых углеводородов. Таким образом, в данной упрощенной технологической схеме объединяются в одну стадию переработка в ЗПГ сырой нефти совместно с коксом и промежуточными погонами, получаемыми в установках с коксованием в псевдоожиженном слое. Однако в этом случае требуются дополнительные расходы водорода, более сложное и громоздкое газифицирующее оборудование, значительно превышающее по массе оборудование, сэкономленное за счет исключения установки для газификации кокса. [c.147]


    На установках этой группы рабочее давление в регенераторах ниже, чем в реакторах, что также является их характерной особенностью давление над псевдоожиженным слоем в реакторах 0,8 — 1,2 ати, а в регенераторах 0,15—0,30 ати. Общая высота установки равна приблизительно 50 м, а длина стояка для регенерированного катализатора 23—25 м. [c.169]

    В последние годы предложены многочисленные методы усовершенствования технологии этих процессов, в особенности реакторов (псевдоожиженный слой). Намечены пути проведения процесса в широком интервале рабочих условий и, следовательно, получения различных продуктов на одной и той же установке. [c.257]

    Порозность псевдоожиженного слоя е при известном значении рабочей скорости может быть вычислена по формуле [4]  [c.170]

    Несмотря на большое число исследований, в настоящее время невозможно точно предсказать поведение псевдоожиженной системы исходя только из физических свойств твердых частиц, ожижающего агента и рабочих условий процесса. Более того, часто отмечают трудности при определении начала псевдоожижения именно таких материалов, которые способны образовать однородный, хорошо псевдоожиженный слой. [c.42]

    Почти все описанные выше методы могут быть использованы для исследования промышленных аппаратов с псевдоожиженным слоем в реальных рабочих условиях и дать практическую информацию (более пли менее ценную) о реальных системах. Для более детального изучения природы газовых пузырей необходимы, однако, специальная экспериментальная техника и соответствующие приборы. Наиболее ценную информацию дают опыты с двухмерными псевдоожиженными слоями. [c.126]

    Интенсивность обмена газом между пузырем и непрерывной фазой оказывает влияние на скорость превраи ения реагента, содержащегося в пузырях. Суммарная скорость межфазного обмена газом зависит от разностей концентраций, являющихся в свою очередь, очевидно, функцией интенсивности перемешивания в слое. Следовательно, в общем случае интенсивность перемешивания в псевдоожиженном слое определяет его рабочие характеристики. [c.254]

    Покрытие деталей пластмассами вихревым методом может осуществляться в псевдоожиженном или виброкипящем слое пластмассового порошка. Для этого выпускаемые промышленностью гранулированные пластмассы измельчаются до порошкообразного состояния. Псевдоожиженный слой порошка создается продуванием через слой азота или воздуха виброкипящий слой создается колебаниями, сообщаемыми рабочей камере установки от электромагнитного вибратора или эксцентрикового механизма. [c.175]


    В предыдущих разделах было рассмотрено явление образования облака циркуляции вокруг газовых пузырей в псевдоожиженном слое. В этом аспекте следовало бы предполагать, что размер частиц будет одним из важнейших параметров, определяющих рабочие характеристики реакторов с псевдоожиженным слоем. Однако результаты экспериментов не подтверждают этого  [c.369]

    В малых реакторах с псевдоожиженным слоем равномерное распределение газа можно обеспечить путем использования решетки с мелкими порами — пористые или полученные спеканием пластины. Однако в аппаратах промышленного масштаба такие решетки, как правило, неприемлемы, и обычно применяют перфорированные либо колпачковые тарелки или другие газораспределительные устройства. Тип последнего может оказывать существенное влияние на рабочую характеристику реактора Было, в частности, установлено что после замены полученной спеканием решетки на перфорированную тарелку конверсия упала на 30% это соответствует более ранним исследованиям , показавшим, что однородность псевдоожижения меньше при грубом диспергировании газа. В то же время отмечают , что неблагоприятное влияние грубого газораспределения, по всей вероятности, вырождается при высоте слоя более 0,45 м. [c.369]

    В гл. X показано, что коэффициент теплообмена Ь между поверхностью и псевдоожиженным слоем при увеличении скорости ожижающего агента 7 проходит через максимум. Кипение жидкости также характеризуется максимумом А нри некотором температурном напоре АТ. Природа максимумов в обоих случаях представляется одинаковой. При увеличении АТ или 7 (одновременно с повышением интенсивности движения среды) около поверхности возрастает концентрация малотеплопроводного рабочего тела (пузырьков пара при кипении жидкости, газовых пузырей в псевдоожиженном слое). Роль последнего фактора с увеличением АТ или V повышается, поэтому рост к постепенно замедляется, и после достижения максимума к начинает уменьшаться. [c.493]

    Е — скорость уноса твердых частиц, отнесенная к единице площади поперечного сечения /ш, — доля газового пузыря, занятая гидродинамическим следом G — массовая скорость газа g — ускорение силы тяжести Я, Hmf — высоты слоя — рабочая и в момент начала псевдоожижения h, Vax высоты подъема твердых частиц над слоем — текущая и максимальная I — масса твердых частиц, транспортируемых в следе пузыря в единицу времени через единицу площади поперечного сечения слоя К — модифицированная константа скорости уноса М — наклон прямых на рис. XIV-9 или константа скорости уноса [c.565]

    Нагретая деталь помещается в рабочую камеру установки па 5—20 с в зависимости от требуемой толщины покрытия. В псевдоожиженном слое пластмассового порошка можно получить покрытие толщиной 0,1—0,5 мм, в виброкипящем слое —до 1 мм. [c.176]

    Необходимо сравнить требуемые количества катализатора в одноступенчатом и многоступенчатом реакторах с псевдоожиженным слоем и реакторах с неподвижным слоем, которые обеспечивают превращение ЗОа на 98% при максимально допустимой рабочей температуре 600° С. Предположить идеальное вытеснение в неподвижном слое и идеальное смешение в каждом из псевдоожиженных слоев. [c.455]

    Сушилки периодического действия предпочтительны, когда обрабатывают небольшие количества продуктов при значительном ассортименте, а также при сушке материала, требующего изменения режима в процессе сушки. Жидкие и хорошо текучие материалы (растворы и суспензии) сушат в распылительных сушилках. Получаемый при этом продукт можно досушивать в аппаратах с псевдоожижением. Пасты сушат главным образом на вальцеленточных и петлевых сушилках, а при небольших масштабах производства — в аппаратах псевдоожиженного слоя с инертным теплоносителем. Сушка этих материалов вызывает наибольшие трудности налипание пастообразного материала на рабочие поверхности аппаратов резко снижает интенсивность процесса и вызывает перегревание материала. В связи с этим используют, в частности, следующие приемы формование смешивание с мел- [c.147]

    Синтан-процесс рассчитан на рабочее давление 40— 75 кгс/см (4—7,5 ГПа). Он считается высокопроизводительным процессом благодаря организации предварительной подготовки угля и тщательной отработке режимов псевдоожиженного слоя, при которых исключается возможность местных перегревов несмотря на высокую рабочую температуру процесса газификации. [c.166]

    Имеются предложения, предусматривающие метанизацию к инертной жидкости, которая, мгновенно охлаждаясь, поддерживает температуру постоянной. Как правило, для этой цели предлагаются органические жидкости (обычно ароматические углеводороды) их точка кипения зависит от рабочего давления процесса, поэтому необходимо предусматривать меры, обеспечивающие незначительное илп полное отсутствие потерь растворителя при испарении [4]. Другим, противоположным методом поддержания постоянной температуры метанизации газов с повышенной реакционной способностью является применение псевдоожиженного слоя катализатора, который позволяет осуществлять одновременно взаимодействие п охлаждение катализатора, а также реагирование газов [3]. Процесс метанизации, осуществляемый как в жидкой фазе, так и в псевдоожиженном слое, обладает рядом недостатков, одним из которых является неизбежное взаимное перемешивание, препятствующее полной конверсии реагирующих газов. По этой причине обычно практикуется комбинирование процессов, осуществляемых в жидкой фазе или в псевдоожиженном слое, с каталитической конверсией в неподвижном слое. [c.181]


    ТО имеет место выигрыш в селективности. Приведенными выражениями можно пользоваться для оценки эффективности нестационарного процесса, когда он (процесс) осуш ествляется при периодической активирующей обработке. Так, во время работы катализатора в нестационарном режиме величина параметра а изменяется в сторону приближения к 84, и для возвращения к оптимальному состоянию катализатора требуется его периодическая обработка активирующей газовой смесью, отличающейся по составу от рабочей. Это достигается либо периодической продувкой реактора регенерационной смесью, либо непрерывным извлечением части катализатора для регенерации в отдельном аппарате. Последнее удобно при работе с псевдоожиженным слоем катализатора или движущимся крупнозернистым слоем. [c.30]

    Обычно передача теплоты происходит через ограничивающую стенку. Теплообмен между этой стенкой и системой газ — твердые частицы, а также внутри этой системы представляет собой сложный процесс, в котором проявляются различные более простые процессы, соответствующие разным рабочим условиям. Самый простой случай — неподвижные твердая фаза и газ (неподвижный плотноупакованный слой). В этом случае теплота переносится через газ и твердые частицы к внутренней области насадки. Во втором случае газ течет через пространство между частицами насадки параллельно стенкам, в то время как сами частицы неподвижны (плотноупакованный слой с движущимся через него газом). Из-за того что газ течет в зазорах между твердыми частицами, происходит интенсификация теплообмена в слое. В третьем случае как газовая, так и твердая фаза находятся в движении из-за перемешивания или вибрации насадки (перемешиваемый слой) или вследствие обмена импульсом между движущимися газом и частицами (псевдоожиженный слой). При этом наблюдается дополнительное повышение интенсивности теплоотдачи твердой фазы вследствие движения частиц. [c.426]

    Очистка газов отстаиванием с учетом малых скоростей осаждения и больших объемов газов на современных производствах потребовала бы совершенно не приемлемых по размеру площадей отстойных камер. Поэтому отстойники для газовых суспензий в промышленности не применяют. Однако отстаивание пыли имеет практическое значение там, где оно происходит самопроизвольно, например, в газоходах трубчатых печей, рабочих пространствах реакторов и регенераторов с псевдоожиженным слоем катализатора и т.д. [c.373]

    Реакционная или рабочая зона — псевдоожиженный слой катализатора, в котором осуществляется крекинг сырья (в реакторе) или выжиг кокса (в регенераторе). [c.645]

    Общие принципы и правила пуска установки подробно описаны в рабочих инструкциях и технологическом регламенте установки. В них оговорены и возможные неполадки из-за прекращения подачи электроэнергии, воды и пара. Однако существуют некоторые специфические особенности эксплуатации установок типа 1-А/1-М, приведенные ниже. Эти особенности присущи всем установкам крекинга в псевдоожиженном слое катализатора (кроме давления и расхода сырья). [c.87]

    В газогенераторах, работающих в режиме уноса, перерабатывается пылевидный уголь. Он вводится в реактор в спутном потоке с парокислородным дутьем, при этом в реакционной зоне температура достигает 2000°С. В таких газогенераторах можно перерабатывать все типы углей. Реакции в них проходят с высокой скоростью, что обеспечивает большую удельную производительность. Продуктовый газ практически не содержит метана, смол и жидких углеводородов. Но из-за высокой рабочей температуры расход кислорода в таких газогенераторах больше, чем в газогенераторах со сплошным или псевдоожиженным слоем топлива, и для обеспечения высокого термического к. п. д. необходима эффективная система утилизации тепла. При эксплуатации подобных газогенераторов следует строго соблюдать режим подачи сырья, поскольку из-за малого количества одновременно находящегося в реакторе угля любое нарушение режима приводит к остановке процесса. [c.91]

    Зная физико-химические характеристики газа и твердых частиц, рассчитывают по одной из приведенных ранее формул критическую скорость шкр подачи газа, скорость уноса Шщах и высоту Н псевдоожиженного слоя. Рабочую скорость газа принимают равной (5—6)Шкр или больше, если отношение велико. [c.308]

    Сепарацию измельченных кабельных отходов проводят по сухому механическому способу Огу(1о [119]. Разделитель состоит из наклонно стоящей установки с псевдоожиженным слоем. Рабочая поверхность слоя клинообразно сужается. Потоком воздуха во взвешенном состоянии поддерживаются частицы диаметром 3—4 мм. На выходе обычно монтируют две передвижные отделительные пластины, которые дают три фракции. Для лучшего разделения применяют сухую псевдоожиживаемую среду — в основном порошок железа, плотность которого примерно средняя между плотностями пластмассовой и медной фракций. Пластмассы при этом всплывают. Порошок железа отсеивают и снова возвращают в разделитель. Пластмассовая фракция содержит около 0,5 % меди. Средняя фракция состоит из неразделенных частей кабеля, которые еще раз подвергают тонкому измельчению. [c.109]

    Реактор второй ступени — обычного типа, с рабочей зоной (псевдоожиженный слой) и зоной отстоя. Из атого реактора отработанный катализатор подается вначале в отпарную колонну, а затем в регенератор. После регенерацип катализатор возвращается в реактор первой ступеии. Продукты крекинга, полученные в реакторе второй ступени, ректифицируются во второй колонне. [c.273]

    Две интересные работы были проведены сотрудниками лаборатории Шелла. В первой из них изучали перемешивание твердых частиц путем добавления в слой меченых (радиоактивным изотопом) зерен катализатора и отбора проб через определеннее интервалы времени из различных точек слоя. Были исследованы три промышленные установки каталитического крекинга. Распределения времени пребывания, найденные описанным методом, говорят о том, что псевдоожиженные слои в регенераторах и реакторах непрерывного действия приближаются по рабочему режиму к системе полного перемехнивания. Наблюдаемые отклонения от этого режима обусловлены наличием байпасов, малоподвижных -зон катализатора, участков с идеальным вытеснением или сочетанием перечисленных факторов. [c.259]

    В настоящий момент мы не умеем достоверно определять продольное перемешивание в непрерывной фазе и скорости движения пузыря относительно этой фазы. Вместе с тем из наблюдений и логических построений известно, что в рабочих условиях газ в непрерывной фазе частично перемешивается " . Из-за отсутствия более подробной информации Кунии и Левен-шпиль предложили модель, в которой эффективный диаметр пузыря (рассчитанный в соответствии с этой моделью по достигнутой степени химического превращения в псевдоожиженном слое) используется в качестве однопараметрической регулируемой константы, аналогично тому, как это предлагалось ранее [c.359]

    Рассмотренные выше модели коалесценции, наряду с более ранними совершенно игнорируют наличие газового облака вокруг пузырей в псевдоожиженном слое. Общая интенсивность межфазного обмена газом между пузырем и непрерывной фазой, исходя из этих моделей, обусловлена газовым потоком через пузырь и массопередачей внутри его. Однако нигде не учитывается взаимосвязь между этими двумя составляющими, а их количественная оценка экснериментально не подтверждена. В выбранном экспериментальном диапазоне изменения рабочих условий соотношение между скоростями поднимающегося пузыря и газа в просветах между частицами было благоприятным для образования газового облака вокруг пyзыJ)eй. В этих условиях, как будет показано позже, упомянутые обменные характеристики весьма важны, хотя точно и неизвестны. [c.359]

    В реальных системах, вследствие неполного перемешивания частиц (рис. Х-24, б, в), а также некоторого продольного перемешивания газа его частичного байпассирования и т.д., величина На может превысить рассчитанную по формулам (Х,33) и (Х,34). Во всяком случае, поскольку для псевдоожиженного слоя характерны небольшие значения Ке, то Н редко превышает несколько десятков диаметров частиц. На практике величина На обычнв составляет от нескольких миллиметров до нескольких сантиметров, что, как правило, значительно меньше рабочей высотк слоя Н и позволяет считать Т = в. [c.455]

    Ряд перечисляемых ниже достоинств вертикальных стержней делает их полезными для промышленных аппаратов с псевдоожиженным слоем простота конструкции легкость монтажа и демонтажа беспрепятственная выгрузка твердого материала отсутствие застойных (непсевдоожиженных) зон возможность использования дополнительных поверхностей в целях теплообмена незначительная доля рабочего объема слоя, занимаемая стержнями малого диаметра. [c.537]

    Щелевые элементы типа 1, и использовали для псевдоожижения слоев кварцевого неска, а перфорированные решетки — для гороха, пшеницы и риса. В этпх случаях участки распределительного устройства, на которых прекратилось псовдоожижеиио, были в известном смысле подобны элементу, перешедшему от рабочего режима к нерабочему. [c.688]

    Представляется интересным рассмотреть здесь поведение перфорированной решетки типа 1, д при газовых потоках меньше 11 . Такая решетка с отверстиями диаметром 12,7 мм и шагом 30,5 см была установлена в аппарате площадью — 1,5 м. При псевдоожижении слоев песка 5.1 высотою 0,61 м элементы переходили от рабочего режима к нерабочему аналогично тому, как это наблюдалось для элементов типа 2, а и 2, б. При нерабочем режиме элемента не было отмечено провала твердых частиц это обусловлено значительной скоростью газового потока через отверстие. Если постулировать сходство газовых потоков через нёрабо-тающие элементы типов Л, д и 2, б, то, согласно предыдущему, средняя скорость газа через отверстие должна быть порядка 15 м/с, что значительно выше скорости витания частиц слоя .  [c.693]

    Неизотермическая модель идеального вытеснения по раствору [5, 81—85]. Математическая модель процесса кристаллизации в псевдоожиженном слое выводится на основании следующих допущений 1) средний размер кристаллов в слое, средняя порозность слоя и средняя скорость в кри-сталлорастителе являются величинами постоянными 2) в рабочем диапазоне температур равновесная концентрация раствора линейно зависит от температуры, удельные теплоемкости раствора С,т и кристаллов Сат являются постоянными 3) псевдоожиженный слой по циркулирующему раствору представляет систему идеального вытеснения 4) температуры раствора и кристаллов в слое равны между собой на любой высоте слоя в любой момент времени, т. е. раствор и кристаллы находятся в термодинамическом равновесии. [c.231]

    Процесс газификации угля с агломерацией золы разработан совместно компанией Юнион Карбайд и Бательским научно-исследовательским институтом. Это другой тип процесса газификации в высокотемпературном псевдоожиженном слое без применения кислорода. Для его проведения используют специальные горелки, в которых коксовый остаток и зола окисляются компреосорным воздухом. Процесс испытан на пилотной установке производительностью 25 т/сут, которая эксплуатируется с конца 1974 г. Данный процесс вполне пригоден для переработки большинства битуминозных углей, поскольку в нем предусматривается стадия предварительной парокислородной обработки с целью понижения коксуюш,ейся способности углей. Свое название он получил благодаря способу, применяемому для покрытия дефицита тепла при протекании эндотермических реакций газификации в псевдоожиженном слое. Коксовый остаток выводится с верхней части высокотемпературного (около 980°С) псевдоожиженного слоя, а агломерированная зола, образующаяся в непривычно глубинных слоях реактора-газификатора, выпадает из него через коническое днище. Смесь коксового остатка и золы, получаемая с помощью компрессорного воздуха, вводится в специальную камеру сжигания, и подогретые почти до 1100°С агломерированные частички золы выносятся из горелки в псевдоожиженный рабочий слой реактора-газификатора. [c.167]

    Гидран-процесс [24] является новой разработкой Американского Горного Бюро. В этом процессе уголь взаимодействует с водородом во время свободного падения при температуре около 900°С и рабочем давлении 35—70 кгс/см (3,5— 7 ГПа). Образующийся при этом коксовый остаток газифицируется парокислородным дутьем в псевдоожиженном слое с целью получения необходимого для процесса водорода. Сообщается, что в этом случае можно газифицировать все типы углей без их предварительной подготовки. [c.169]

    Однако сущность модификации классической схемы процесса метанизации, принятой в БИ-ГАЗ-процессе , заключается в повышении реакционной температуры и замене катализатора. Реактор-метанизатор БИ-ГАЗ-процеоса работает при контролируемой равномерной температуре (430°С), при этом температура газа, входящего в реактор с псевдоожиженным слоем, фактически является рабочей температурой реакции взаимодействия. В данном Случае вместо используемого в других системах высокоактивного никелевого катализатора можно применять специальный малоактивный, но достаточно прочный катализатор. [c.188]

    Псевдоожиженный слой может существовать лишь в определенном диапазоне скоростей газа или жидкости. Первая критическая скорость т)кр,, называемая скоростью начала псевдоожижения, соответствует переходу слоя из неподвижного в псевдоожиженное состояние. Вторая критическая скорость соответствует разрушению псевдоожиженного слоя и его транспортированию (уносу). Отношение рабочей скорости потока ожижающего агента w к скорости начала псевдоожижения никр, называется числом псев-доожижения и обозначается [c.361]

    Практически рабочие скорости фильтрации через полидисперсный слой превосходят скорость свободного витания мелких частиц, в результате чего происходит унос мелких частиц из аппарата. Уносу способствует также выброс ча-стпц из псевдоожиженного слоя пузырями газа. Пузыри газа при выходе из [c.449]

    Технологическая схема процесса показана на рис. 12.17. Жидкий дихлорэтан и сухой хлор подают в реактор 1 с псевдоожиженным слоем катализатора. Туда же возвращают и поток циркулирующих ароматических продуктов из секции разделения и очистки. Газообразные продукты реакции подвергают закалочному охлаждению в колонне 2 при этом большая часть органических продуктов конденсируется. Небольшое количество водорода, содержащегося в конденсированном сыром продукте, удаляется нейтрализацией разбавленным щелочным раствором в нейтрализаторе 4. Сырой перхлорэтилен направляют в отстойник 5 для отделения от водной фазы, сушат в осушителе 6 и перегоняют в колонне 8. Легкие органические примеси (например, трихлорэтилен и четыреххлористый углерод) конденсируют и возвращают в виде циркулирующего потока в реактор. Остаток (перхлорэтилен и высококипящие примеси) разделяют перегонкой в колонне 10, перхлорэтиленовый дистиллят нейтрализуют, сушат, после чего к нему добавляют ингибитор. Изменяя рабочие условия в реакторе, при наличии дополнительного дистилляционного оборудования, наряду с перхлорэтиленом можно получать и трихлорэтилен. [c.414]

    Принимая в псевдоожиженном слое полное перемешивание твердой фазы, будем иметь одинаковую рабочую концентрацию но псем объеме слоя, равную концентрации выхода а изменение движущей силы выразится разностью ординат между прямыми АВ и СО (штрих-пунктирные прямые). [c.396]

    На всех предприятиях газификацию высокозольного (до 30%) битуминозного угля, содержащего 1% серы и имеющего теплоту сгорания 23 МДж/кг, проводят в газогенераторах Lurgi , работающих под давлением. Принципиальная технологическая схема SASOL-I представлена на рис. 3.6. Здесь используются реакторы двух конструкций со стационарным и псевдоожиженным слоем катализатора (на других заводах — только реакторы с псевдоожиженным слоем). В каждом реакторе со стационарным слоем катализатор размещается в трубах (более 2000 шт. длиной по 12 м и внутренним диаметром 50 мм). Газ проходит по трубам с высокой линейной скоростью, что обеспечивает быстрый отвод тепла реакций и создание почти по всей длине труб условий, близких к изотермическим. При рабочем давлении в реакторе 2,7 МПа и температуре около 230 °С достигается максимальный выход алканов. [c.99]


Смотреть страницы где упоминается термин Псевдоожиженный слой рабочая: [c.77]    [c.148]    [c.353]    [c.189]    [c.228]    [c.448]    [c.258]    [c.217]   
Основы техники псевдоожижения (1967) -- [ c.53 ]




ПОИСК







© 2025 chem21.info Реклама на сайте