Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Количественный анализ при непосредственном вводе

    Наибольшее распространение имеют петлевые инжекторы (петлевые краны). Пробу вводят в петлю заданной вместимости при давлении, близком к атмосферному, с помощью микрошприца или шприца. Затем поворотом крана петля сообщается с линией подачи растворителя от насоса и входом колонки, проба вымывается из петли и попадает в колонку. Схема работы одного из петлевых инжекторов представлена на рис. 8.9. В положении заполнение петли поток растворителя от насоса идет непосредственно в колонку, а петля соединяется с линиями сброс и ввод пробы и находится при атмосферном давлении. В этом положении петля промывается чистым растворителем с помощью шприца вместимостью 2—5 мл от остатков предыдущей пробы, затем с помощью микрошприца в петлю вводится определенный объем пробы. Проба может вводиться либо с полным заполнением петли, либо с ее частичным заполнением. Первый способ является предпочтительным при количественном анализе и позволяет получить наиболее воспроизводимые результаты анализа. Он требует для полного заполнения петли подачи в нее объема пробы, в 5—6 раз превышающего вместимость петли. Это необходимо для полного вытеснения из петли растворителя пробой. Частичное заполнение петли удобнее, так как позволяет, не меняя петли вместимостью, например, 50 мкл, вводить пробы от 1 до 40 мкл. При этом объем пробы, попадающий в петлю, не должен превышать примерно 4/5 вместимости петли. Так как объем пробы, попадающий в петлю в этом случае, не точно равен тому, который подан микрошприцем (так как часть пробы остается в подводящих каналах от конца микрошприца до начала петли), то точность количественного анализа в этом случае будет ниже, чем при полном заполнении петли. [c.147]


    При правильном проведении непосредственного ввода пробы в колонку получают наиболее точные и воспроизводимые результаты. Полностью устраняется дискриминация компонентов пробы, обусловленная использованием шприца. Как известно, дискриминация компонентов пробы за счет шприца является основным источником погрешностей при проведении количественного анализа проб, содержащих вещества с сильно различающимися молекулярными массами. Более того, поскольку проба вводится в колонку в виде жидкости, устраняется дискриминация компонентов за счет различного испарения в камере испарителя. На рис. 3-31 приведена хроматограмма смеси углеводородов С — С40 в гексапе. Пробы вводили при температуре 60 С, т. е. ниже точки кипения растворителя. За счет эффекта растворителя происходит концентрирование углеводорода, а размывание зоны углеводородов Сп — С40 пренебрежимо мало. В табл. 3-1 приведены данные. Характеризующие воспроизводимость полученных результатов для двух смесей углеводородов различной концентрации. [c.53]

    Существуют, однако, приемы, позволяющие проводить качественный и даже количественный анализ неокрашенных веществ непосредственно в колонке. В этих приемах либо используется способность некоторых веществ люминесцировать при освещении их ультрафиолетовым излучением, либо в адсорбент вводятся специальные индикаторы, флюоресцирующие под действием ультрафиолетовых лучей в присутствии тех или иных соединений. Наконец, возможно применение цветных индикаторов, окрашивающих зоны определенных соединений при действии видимого света. [c.40]

    Ввод пробы. В случае применения абсолютных методов количественного анализа требуется прецизионная инъекция пробы, так как точность результатов анализа непосредственно зависит от точности ввода пробы. [c.283]

    Сравнение между методами измерения высоты и площади пиков для количественных анализов было сделано при использовании проб каменноугольного газа, разделенных на коротких обычных колонках. Высота пика получалась непосредственным измерением на экране трубки и площади пиков определялись на основании высоты ступенек, найденных при использовании интегрального усилителя. Примерно 0,2 каменноугольного газа, содержащего I г бензола на 100 л, вводилось в поток [c.167]


    Недостатками прямого ввода являются сложность осуществления количественного анализа и невозможность исследования органических углеводородов с достаточно высоким давлением паров без их замораживания. Кроме того, в литературе недостаточно широко освещены (по типам соединений и их числу) результаты масс-спектрального исследования органических соединений, вводимых в ионный источник непосредственно и классическими способами. [c.39]

    Для того чтобы более полно оценить особенности хроматографии как аналитического метода, в частности существование различных методов интерпретации аналитических сигналов, следует разграничить метрологические характеристики, относящиеся непосредственно к сигналам и результатам анализа. Аналогично тому, как в качественном хроматографическом анализе повторяемость, сходимость и воспроизводимость, например, индекса удерживания существенно выше соответствующих метрологических характеристик для времен удерживания, в количественном анализе повторяемость (а тем более сходимость и воспроизводимость) первичных аналитических сигналов — высоты пика /г, площади Q и произведения высоты на расстояние удерживания Ы — может быть низкой (в частности, при ручном вводе проб). Однако результаты анализа, базирующиеся на интерпретации отнощений аналитических сигналов двух или большего числа компонентов, оказываются вполне удовлетворительными. Поэтому следует (в какой-то мере условно) разделить хроматографические сигналы на два вида коррелируемые и представительные. [c.202]

    Для внешней градуировки по высотам или площадям пиков применимо большинство методов (см. разд. 3.1). Стандартное вещество или соответствующая смесь градуировочных веществ в точно известных количествах вводится с помощью дозирующего устройства в поток газа-носителя разделительной колонки. Затем высота или площади пиков могут быть непосредственно соотнесены с количеством или концентрацией стандартного вещества. При этом, особенно в случае градуировки по высотам пиков, к постоянству параметров разделения и всех функций регулирования газового хроматографа предъявляются чрезвычайно высокие требования. Условиями получения правильных результатов количественного анализа в методе градуировки по высотам пиков являются следующие а) очень хорошая воспроизводимость дозируемого количества пробы б) по возможности [c.39]

    В одном из вариантов реакционной хромато-масс-спектро-метрии, который обычно применяют при анализе смесей соединений с высокополярными группами (ОН, СООН, МНг), химическую трансформацию групп производят непосредственно в хроматографической колонке. В испаритель хроматографа сначала вводят шприцем анализируемую смесь, а затем, через несколько секунд, - соответствующий реагент, имеющий более высокую хроматографическую подвижность. Его пары достигают в колонке паров исследуемой смеси и вступают в обменную реакцию (обычно количественную). В результате регистрируются хроматограмма и масс-спектры продуктов превращения. [c.193]

    При анализе вод, не содержащих окислителей, восстановителей, аминов, окрашенных веществ, сульфидов и роданидов, определение токсичных цианидов можно проводить без предварительной перегонки. Гексацианоферрат-ионы допустимы в концентрациях, не превышающих 10 мг л. Если присутствуют окрашенные или тонкодисперсные вещества, не экстрагируемые бутиловым или амиловым спиртом, то и тогда можно анализировать пробу непосредственно, без отгонки, но с экстракцией продукта реакции (см. ниже). Наконец, если из мешающих веществ присутствуют только роданиды в концентрациях меньших, чем концентрации цианидов, то и тогда можно определять токсичные цианиды без отгонки, но необходимо вводить поправку на содержание роданидов, так как последние определяются количественно вместе с цианидами. Роданиды определяют отдельно методом, описанным на стр. 228. [c.219]

    Метод определения молибдена, основанный на том, что пропущенный через редуктор Джонса раствор вводят в раствор сульфата железа (III) и образующееся при этом железо (П)- титруют раствором перманганата калия, вполне приемлем как по точности результатов, так и по продолжительности анализа. Прежнее представление о том, -что в редукторе Джонса молибден не полностью восстанавливается до трехвалентного состояния, было-опровергнуто причем показано, что пониженные результаты определения молибдена вызваны частичным окислением его кислородом воздуха. Этого можно легко избежать, если анализируемый раствор непосредственно из редуктора вливать в раствор сульфата железа, (П1). При этом молибден окисляется, но не до шестивалентного состояния, а до устойчивого соединения промежуточной валентности, с образованием эквивалентного количества железа (II). Количественное восстановление молибдена в редукторе проходит быстро как в сернокислом, так и в солянокислом растворе, даже на холоду При исиользовании солянокислых растворов перед титрованием перманганатом необходимо вводить смесь [c.361]


    В публикуемых в последние годы работах есть огромное количество свидетельств тому, что при проведении количественного анализа холодный ввод пробы непосредственно в колонку превосходит все другие варианты. Еще одной важной особенностью этого метода является постоянство состава пробы. Термически лабильные соединения не подвергаются тепловому воздействию хроматографирование этих веществ происходит при сравнительно низких температурах. Практически полностью исключена возможность протекания реакций разложения и перегрзшпировки. Это позволяет проводить анализы, неос тцествимые ранее методом газовой хроматографии, что прекрасно продемонстрировано в работе [30]. Показано, что только с использованием холодного ввода пробы непосредственно в колонку можно провести газохроматографическое количественное определение горчичных масел и их нитрильных производных в редисе. [c.55]

    Большинство количественных масс-спектрометрических анализов выполняется с помощью газохроматографического ввода летучих веществ. Возможности системы газовый хроматограф - масс-спектрометр ограничены исследованием соединений, которые могут быть переведены в паровую фазу без разложения (либо непосредственно анализируемые соединения, либо их производные). Совмещение масс-спектрометрической системы с газовым хроматографом обеспечивает однозначную идентификацию неизвестных соединений и гарантирует точный, воспроизводимый количественный анализ (пример - хромато-масс-спектрометр G Q фирмы Finnigan [9], появившийся в 1995 году). [c.127]

    Многие серусодержащие соединения нетрудно определить методом ГХ непосредственно. Чем более полярно соединение, тем обычно труднее осуществить его количественный анализ методом ГХ. Имея это в виду, по трудности этого анализа соединения (при прочих одинаковых их свойствах) можно расположить в следующей последовательности сульфиды < сульфоны < сульфоокиси. Непосредственно методом ГХ нетрудно анализировать меркаптаны, сульфиды, дисульфиды и трисульфиды [7, 9]. Для прямого определения НгЗ и меркаптанов в водно-щелочном растворе анализируемую пробу вводили в колонку с кислой насадкой (уксусная кислота на носителе хромосорб), которую располагали перед аналитической колонкой. В результате этого происходило нормальное разделение НгЗ и меркаптанов [10]. [c.347]

    До настоящего времени равновесное концентрирование в летучих жидкостях производили барботированием исследуемого газа через слой хорошо перемешиваемой улавливающей жидкости. Поэтому основное отчичле от фронтального варианта состоит в том, что в процессе насыщения концентрация примеси в жидкости возрастает равномерно по всему объему. Кроме того, концентрат в летучей жидкости можно непосредственно вводить в хроматограф, повторяя анализ необходимое число раз и устанавливая содержание примесей обычными в количественном анализе способами. [c.177]

    Соединение жидкостной хроматографии и масс спектрометрии было несбыточной мечтой многих исследователей с самого на чала работ по хромато масс спектрометрии С одной стороны, ЖХ незаменима при анализе многих биологических объектов, термически нестабильных и нелетучих соединений, которые не разделяются с помощью газовой хроматографии, с другой сто роны, обычные детекторы для ЖХ не обладают достаточной гибкостью и универсальностью Однако непосредственное соединение ЖХ с МС долгое время не удавалось, так как эти методы сочетаются гораздо труднее и возникающие проблемы на несколько порядков сложнее чем в ГХ—МС В то же время достаточно хорошие результаты получали при раздельном применении обоих методов с независимым отбором элюируемых фракций из ЖХ колонки, выпариванием растворителя и пере носом вещества в систему напуска масс спектрометра В этом случае жидкостной хроматограф и масс спектрометр работают независимо друг от друга в своем оптимальном режиме Мож но использовать любые ЖХ системы с любыми элюентами и специальные методы масс спектрометрии, разработанные для анализа малолетучих и термически нестабильных веществ такие как ПД, лазерная десорбция, ДХИ плазменная десорбция инициируемая продуктами распада i, масс спектрометрия вторичных ионов и др Отбор фракций и испарение раствори теля могут быть автоматизированы, труднее, правда, осуществить автоматический перенос их и ввод в масс спектрометр [44] Однако практически невозможно создать коллектор фракций для очень сложных смесей неизвестного состава таких, как биологические жидкости, природные масла нефтяные фракции и т п Отбор фракций невозможен и в случае быстро элюирующихся пиков, например, на современных колонках для ВЭЖХ с эффективным числом теоретических тарелок до 50000 Непосредственное соединение ЖХ с МС, аналогичное ГХ— МС, обеспечивает значительное сокращение времени анализа, позволяет осуществлять количественный анализ и селективное детектирование выбранных ионов, использовать математические методы обработки данных для разделения неразрешенных пи ков Поэтому поиск удовлетворительных интерфейсов для непосредственного соединения ЖХ и МС начался еще в 1960 х годах [c.33]

    Большинство масс-спектрометров располагает несколькими системами напуска, выбор которых определяется летучестью исследуемых образцов. В хромато-масс-спектральных установках применяются в основном два способа прямой и непрямой ввод проб. При прямом способе ввода проб образец, помещенный в небольшой капсуле (объемом несколько кубических миллиметров), при помощи снабженной микронагревателем щтанги вносится через щлюзовое отверстие непосредственно в ионный источник, где испаряется. Этот способ предпочтителен при проведении анализа труднолетучих и склонных к термическому разложению соединений. Для исследования газов и легколетучих веществ, а также для количественного анализа смесей применяют непрямой метод ввода образцов, при котором образцы предварительно испаряют в обогреваемой камере (объемом 1 л). Пары вещества поступают в ионный источник через узкое эффузионное отверстие. Поток вещества в течение длительного времени может поддерживаться постоянным. [c.279]

    Важным недостатком методов дозирования проб с делением газового потока или с отбором части пробы из большого объема является заметное снижение предела обнаружения малых примесей в анализируемом материале. Кроме того, применение делителей любого тина вносит известную неопределенность в результат количественного анализа данного материала. Поэтому был предложен ряд способов непосредственного ввода малыт проб в капиллярные колонки. Так, Кёглер [41], измерив с помощью измерительной лупы длину столбика жидкой пробы в капиллярной трубке известного диаметра, соединял этот капилляр с линией подачи газа-носителя и с капиллярной колонкой. Проба поступала в колонку с одновременным испарением. Очевидные неудобства такого способа дозирования обусловили его малое распространение. [c.139]

    И, наконец, еще одним недостатком холодного ввода пробы непосредственно в колонку является ограниченная применимость этого метода к пробам, содержащим брльщие количества инди-видугильных соединений. Количественное определение составляющих смеси, элюирующихся до макрокомпонентов, не представляется возможным. Это объясняется тем, что содержащийся в высокой концентрации макрокомпонент ведет себя подобно растворителю. В результате за счет частичного улавливания растворителем [29] на хроматограмме появляются искаженные пики. Это явление часто называют обратным эффектом растворителя. По этой причине невозможно провести анализ смеси мономеров стирола (рис. 3-9), вводя пробу непосредственно в колонку. Разбавление же пробы не представляется возможным из-за низкого содержания в смеси других соединений. Приведем еще один пример. Имеется смесь, содержащ 1Я широкую гамму летучих соединений. При анализе ее с использованием непосредственного ввода в колонку достигнуты удовлетворительные результаты. Добавим к смеси суще-, ственное количество диоктилфталата (ДОФ). На хроматограмме полученной смеси пики веществ, элюируемых до ДОФ, имеют искаженную форму, причем искажения пиков не воспроизводятся. В зависимости от различий в полярности основы анализируемой пробы получаются ргш(ичные формы пиков. Компоненты пробы, обладающие близкой полярностью, имеют сильно искаженные пики (эффект фиксации). Пики веществ, сильно различающихся по полярности, могут быть вообще не искажены (эффект сгущения). При анализе таких проб можно прибегнуть к вводу пробы с программированием температуры испарителя. [c.114]

    Азот, так же как углерод, водород и сера, может определяться, по данным Рейтсема и Оллфина (1961), путем комбинации аппаратуры для сжигания с хроматографической колонкой и катарометром. Применяемая авторами аппаратура состоит из следующих узлов, соединяемых последовательно дозатор — колонка I — трубка для сжигания — устройство для осушки — колонка II — детектор. Это аппаратурное устройство дает возможность быстрого (в процессе одного анализа) определения азота. Исследуемая проба может вводиться без предварительного взвешивания или непосредственно в трубку для сжигания (минуя колонку I), которая заполнена окисью меди, нанесенной на инертный материал, или в хроматографическую колонку. Дополнительное применение колонки I, включаемой между дозатором и трубкой для сжигания, дает возможность расширить область применения метода. При помощи этой колонки можно отделять присутствующие в смесях соединения азота от сопровождающих их веществ и затем исследовать содержание азота в них. Разделение продуктов сгорания производят на колонке II при помощи силикагеля. Чтобы упростить определение, возникающую при сгорании воду адсорбируют перед колонкой II в устройстве для осушки при помощи перхлората магния. Для количественной интер- [c.253]

    Все чаще приходится проводить предварительную подготовку пробы после ее отбора перед вводом в хроматограф. Это связано с тем, что часто пробы и другие материалы, подлежащие хроматографическому определению, не могут быть непосредственно проанализированы в качественном и количественном отношении, поскольку они могут содержать сильно полярные соединения, вещества, разлагающиеся при повышенной температуре, следовые количества анализируемых компонентов или мешающих примесей. Наиболее приемлемые методы предварительной подготовки проб и типичные методики рассмотрены в монографии Дженнингса и Раппа [23]. Широкое развитие получили методы обогащения и выделения веществ, такие, как адсорбция, абсорбция, дистилляция, экстракция, капельная противоточная жидкостная хроматография [24, 25], фильтрование частиц в газовом потоке (ср., например, [26]). Особенно они важны для анализа биологических объектов, биохимических проб, а также при экологических исследованиях. [c.168]

    В своей первой публикации по газовой хроматографии Джеймс и Мартин использовали ячейки для автоматического титрования в качестве детектора летучих жирных кислот такое же устройст-ство позже применяли для анализа смесей ароматических и алифатических аминов. Элюаты вводили непосредственно в ячейку, содержащую раствор кислотно-основного индикатора. Оптическую плотность раствора контролировали фотометрически выходной сигнал фотоэлемента служил для непрерывного контроля за количеством добавленного титранта объем последнего регистрировали самописцем в виде интегральной кривой в координатах объем — время. Из записанной кривой можно было извлечь качественную и количественную информацию. [c.279]


Смотреть страницы где упоминается термин Количественный анализ при непосредственном вводе: [c.121]    [c.121]    [c.139]    [c.139]    [c.102]    [c.213]    [c.30]    [c.195]    [c.12]    [c.57]    [c.139]    [c.261]    [c.187]    [c.294]    [c.28]    [c.52]    [c.150]    [c.53]    [c.53]   
Высокоэффективная газовая хроматография (1993) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ количественный



© 2025 chem21.info Реклама на сайте