Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы и задачи рентгеноструктурного анализа

    Рентгенографические методы анализа щироко используются для изучения структуры, состава и свойств различных материалов, и в том числе, строительных. Широкому распространению рентгенографического анализа способствовала его объективность, универсальность, быстрота многих его методов, точность и возможность решения разнообразных задач, часто не доступных для других методов исследования. С помощью рентгенографического анализа исследуют качественный и количественный минералогический и фазовый состав материалов (рентгенофазовый анализ) тонкую структуру кристаллических веществ — форму, размер и тип элементарной ячейки, симметрию кристалла. Координаты атомов в пространстве (рентгеноструктурный анализ) степень совершенства кристаллов и наличие в них зональных напряжений размер мозаичных блоков в монокристаллах тип твердых растворов, степень их упорядоченности и границы растворимости размер и ориентировку частиц в дисперсных системах текстуру веществ и состояние поверхностных слоев различных материалов плотность, коэффициент термического расширения, толщину листовых материалов и покрытий внутренние микродефекты в изделиях (дефектоскопия) поведение веществ при низких и высоких температурах и давлениях и т. д. [c.74]


    Основной недостаток полихроматического метода связан с тем, что все дифрагируемые кристаллом лучи рдг имеют разную длину волны, а это означает, что интенсивности дифракционных лучей в этом методе зависят не только от структуры кристалла, но и от распределения интенсивности по X в спектре первичного пучка. Последнее к тому же зависит от режима работы рентгеновской трубки. Эта и ряд других особенностей полихроматического метода резко сужают его возможности Б структурном анализе. Фактически он используется в основном для решения одной из побочных (предварительных) задач рентгеноструктурного анализа —для определения ориентации кристаллографических осей в исследуемом монокристалле. Такая задача возникает, во-первых, в тех случаях, когда исследуется обломок кристалла, не имеющий правильного габитуса, и, во-вторых, в тех случаях, когда для повышения прецизионности исследования кристаллу путем обкатки придается сферическая форма (см. гл. IV, 1 и гл. V, 4). Именно неподвижное положение исследуемого образца в камере Лауэ и делает полихроматический метод незаменимым для решения этой задачи. Ориентация кристаллографических осей находится по определенным правилам на основе расположения дифракционных пятен на пленке .  [c.68]

    Судя по опыту последних лет, постепенно развивается тенденция к комплексному решению структурно-аналитических задач с использованием в каждом случае того физико-химического метода, который дает наиболее эффективные результаты с наименьшей затратой времени и усилий. Для хорошо кристаллизующихся продуктов в качестве основного метода все чаще используется рентгеноструктурный анализ. Дальнейшее развитие этой тенденции в большой степени зависит от возможностей разработки упрощенной аппаратуры для автоматических структурных исследований на основе встроенных в дифрактометр (или сочлененных с ним) специализированных мини-ЭВМ. [c.137]

    Обратная задача — определение ориентации молекул в решетке — представляет ценность, как вспомогательный метод к рентгеноструктурному анализу, который весьма сложен и громоздок. [c.344]

    СРАВНИТЕЛЬНЫЕ ВОЗМОЖНОСТИ И ПЕРСПЕКТИВЫ ДИФРАКЦИОННЫХ МЕТОДОВ ИССЛЕДОВАНИЯ. ЗАДАЧИ РЕНТГЕНОСТРУКТУРНОГО АНАЛИЗА В ХИМИИ [c.169]

    ХХХ.З. МЕТОДЫ и ЗАДАЧИ РЕНТГЕНОСТРУКТУРНОГО АНАЛИЗА [c.355]

    Методы и задачи рентгеноструктурного анализа....... [c.7]

    Определение фазового состава образца является наиболее распространенной и сравнительно легко решаемой задачей рентгеноструктурного анализа. Каждая фаза имеет свою кристаллическую решетку, а значит, характеризуется и определенным набором межплоскостных расстояний. Поэтому для решения вопроса о том, какая фаза присутствует в пробе, нет необходимости в определении ее кристаллической структуры, а достаточно, рассчитав рентгенограмму или дифрактограмму, снятую по методу поликристалла (порошка), сравнить полученный ряд межплоскостных расстояний с табличными значениями. Совпадение (в пределах ошибок эксперимента) опытных и табличных значений d/n и относительной интенсивности линий позволяет однозначно идентифицировать присутствующую в образце фазу. [c.276]


    Установки УРС-70 и УРС-55, а также камеры для рентгеноструктурного анализа рассчитаны на фотографическую регистрацию отражений. Но фотографический метод, получивший широкое распространение, вследствие простоты и надежности получения объективных данных рентгеноструктурного анализа, не может обеспечить решения всех задач рентгеноструктурного анализа, и поэтому желательно применять дополнительно ионизационный метод регистрации. В частности, ионизационный метод необходим в тех случаях, [c.113]

    В общем курсе кристаллохимии рассматриваются методы исследования структуры кристаллов — рентгеноструктурный анализ, нейтронография и, частично, электронография. Однако не дается изложение специального метода рентгеноструктурного анализа, который используется для определения абсолютной конфигурации молекул. Такая задача возникает при изучении оптически активных веществ. В гл. VIH, IX и X представлены оптические методы исследования оптически активных веществ. Особенность этих методов состоит в том, что легко определить с их помощью различие в абсолютной конфигурации молекул, но нет возможности прямого отнесения экспериментальных данных по ДОВ или КД к определенному энантиомеру. Именно эту проблему и решает метод аномального рассеяния рентгеновских лучей. [c.216]

    В рентгеноструктурном анализе метод уточнения по площадям до начала 70-х годов был основным для порошков. В методе площадей задача приобретает вид  [c.207]

    Автор этой книги как-то назвал период 40—50-х годов эпохой романтического рентгеноструктурного анализа. Расшифровка атомной структуры кристалла каждого соединения тогда представляла собой увлекательную задачу, похожую на решение шахматных головоломок. Каждый случай требовал своего индивидуального подхода, использования малейших намеков, содержащихся в рентгеновских данных или в общих физико-химических свойствах вещества. Применялись разнообразные весьма тонкие методы обработки экспериментального материала, призванные извлечь из него именно те детали структуры, которые представлялись ключевыми для дальнейшего продвижения в анализе атомного расположения. Высоко ценилось изящество приемов, позволявшее добиться результата с минимальной затратой времени и средств на получение экспериментальных данных и расчетные процедуры. [c.3]

    По целому ряду принципиальных и технических особенностей рентгеноструктурный анализ наиболее эффективен для практического исследования кристаллической структуры. Подавляющее большинство таких исследований выполняется именно этим методом. Электронография и нейтронография используется главным образом для решения частных, специфических задач. Поэтому далее рассматриваются основы только рентгеноструктурного анализа — основы теории, методики и практики определения кристаллической структуры по дифракционному спектру рентгеновских лучей. [c.47]

    Все три основные компоненты рентгеноструктурного анализа — аппаратура для получения дифракционных данных, математические методы расшифровки и уточнения кристаллической структуры и вычислительная техника— достигли такого уровня, когда полная автоматизация структурного анализа кристаллов становится вполне разрешимой (и решаемой) задачей. В общем виде система такой полной автоматизации должна включать все четыре стадии структурного исследования эксперимент, расшифровку структуры, уточнение и анализ результатов (включая их графическое представление). [c.121]

    За последнее десятилетие дифракционный рентгеноструктурный анализ (РСА) претерпел существенные изменения. Научно-техническая революция коренным образом изменила значение РСА для химии, резко расширила круг химических задач, решаемых с помощью РСА, и Б итоге превратила его в один из основных физических методов любого раздела химии. [c.3]

    Метод вращения. Этот метод является основным инструментом рентгеноструктурного анализа кристаллов. Главное его преимущество заключается в относительной легкости определения параметров решетки и индицирования рентгенограмм (или, альтернативно,— установки кристалла и счетчика в отражающие положения в случае дифрактометрической регистрации лучей). Существенно, конечно, и то обстоятельство, что все дифракционные лучи имеют одну и ту же длину волны, что позволяет воспользоваться наиболее интенсивной Ка-линией линейчатого спектра. Основной недостаток метода— необходимость монокристаллического образца исследуемого вещества. К сожалению, этот недостаток непреодолим, и весь современный структурный анализ — определение атомного расположения в элементарной ячейке и решение других, более тонких задач строения (см. гл. V, 4)—основан на исследовании монокристаллов. Поэтому, в частности, получение достаточно крупных кристаллов в процессе синтеза (кристаллов миллиметрового размера) становится одной из насущных задач химического синтеза. [c.69]

    Изложение основ рентгеноструктурного анализа кристаллов было бы неполным без обсуждения его роли и места в системе современных физико-химических методов изучения вещества и его значения для решения химических задач. Прежде всего необходимо выяснить, в чем заключаются преимущества и недостатки рентгеноструктурного анализа по сравнению с другими родственными дифракционными методами — электронографическим и нейтронографическим. Далее следует сопоставить возможности дифракционных методов изучения строения вещества в разных агрегатных состояниях и прежде всего рентгеноструктурного анализа кристаллов, рентгенографии стекол и жидкостей и электронографии газов. [c.169]


    Усовершенствование техники рентгеноструктурных исследований привело к значительному повышению точности измерения интенсивности дифракционных лучей. Одновременно разработка методов эффективного учета различных побочных факторов, влияющих на интенсивность, позволила существенно понизить потери в точности при переходе от интенсивности к структурным амплитудам, а следовательно, адекватно снизить уровень погрешности в определении электронной"" плотности, координат атомов и констант колебаний атомов. Это дает возможность направить рентгеноструктурный анализ на решение ряда новых физико-химических задач, лежащих за пределами статической атомной структуры кристалла. Это прежде всего следующие задачи а) анализ тепловых колебаний атомов в кристаллах б) анализ деталей распределения электронной плотности по атомам и между атомами в кристаллах в) использование структурных данных для оценки параметров, входящих в волновые функции и орбитальные энергии молекулярных систем. [c.180]

    Такую задачу способен решить рентгеноструктурный анализ, с той разницей, что конечный результат определяет положение в пространстве всех атомов сразу, и с теми ограничениями, что для этого метода требуется индивидуальное (в классическом смысле слова) вещество в кристаллическом состоянии и что даже при соблюдении зтих условий и прп современной высоко компьютеризированной аппаратуре решение такой. задачи для высокомолекулярных веществ требует весьма значительных затрат труда, приборного времени и времени ЭВМ. [c.48]

    На следующем этапе исследования выделенные индивидуальные соединения подлежат идентификации по двум вариантам идентификация известного вещества (если оно неизвестно для данного источника) проводится по его константам (температуры плавления и кипения, п Од, при наличии метчика) в случае выделения нового вещества используется подход классической органической химии, который в настоящее время базируется на комплексе физических методов (ИК-спектроско-пия, спектроскопия ЯМР, масс-спект-рометрия). Если неизвестное вещество удается получить в виде кристаллов заметного размера (0,1 мм и более), то задача его идентификации может быть решена методом рентгеноструктурного анализа (РСА) со стопроцентной достоверностью и с такой степенью информационной полноты по структурным параметрам, какая не достигается никаким другим методом. [c.12]

    Кристаллы с их упорядоченной структурой, простирающейся на большие расстояния, могут служить превосходной дифракционной решеткой для рентгеновского излучения, что приводит к прерывной картине рассеяния, характер которой зависит от относительных межатомных расстояний и способности атомов рассеивать рентгеновское излучение. Сфокусировать рассеянные волны с помощью физических методов невозможно, как невозможно и непосредственно измерить распределение электронной плотности в кристаллической решетке. Эта задача выполняется с помощью рентгеноструктурного анализа с фурье-преобразованием наблюдаемой дифракционной картины от монокристалла. [c.388]

    По прошествии более трех десятилетий со времени расшифровки структур миоглобина и гемоглобина рентгеноструктурный анализ все еще остается единственным прямым методом определения на атомном уровне пространственного строения белковых молекул, их комплексов и доменов. Полученные с его помощью данные по-прежнему служат незаменимой экспериментальной основой изучения структурно-функциональной организации молекул белков. В 1990-е годы этот метод, по-прежнему сохраняя высокий темп экстенсивного развития, позволил приступить к решению принципиально новых задач, представляющих первостепенный интерес для молекулярной биологии. Основная, если не единственная, причина наметившегося качественного роста возможностей кристаллографии белков связана с использованием вместо излучения рентгеновских трубок синхротронной радиации. [c.74]

    Известные на сегодняшний день результаты конформационного анализа сложных олигопептидов и небольших белков получены не путем априорного расчета, т.е. при использовании только аминокислотной последовательности, а с привлечением дополнительной экспериментальной информации, ограничивающей количество рассматриваемых вариантов. Как правило, это данные рентгеноструктурного анализа и ЯМР о межатомных или межостаточных расстояниях [159-163]. Один из используемых подходов к решению конформационной задачи сложных пептидов, не выходящий за рамки рассматриваемого метода наращивания цепи, заключается в замене интуитивной селекции оптимальных форм фрагментов для последующего счета исследователем с помощью статистической процедуры Монте Карло [164-170]. Поскольку исчерпывающее исследование всех минимумов потенциальной поверхности по-прежнему остается недостижимым, подобный способ упрощения задачи вряд ли что-либо меняет по существу Предоставляя выбор случаю, он как бы снимает с исследователя ответственность за результат расчета и создает видимость его объективности. [c.242]

    В зависимости от задач рентгеноструктурного анализа применяют следующие методы исследования метод Лауэ (иа1 ользуется для определения симметрии кристаллов, для его проведения требуется чистый монокристалл вещества) метод вращения монокристалла вокруг оси метод порошка - метод Дебая - основной метод рентгеноструктурного анализа поликристаллических веществ, в том числе и гетерогенных катализаторов. Суищость метода состоит в следующем. Узкий круглый пучок монохроматических лучей, пройдя через коллиматор (рис. 18), попадает на столбш образца катализатора. Так как в образце [c.82]

    Как уже говорилось, метод пригоден для изучения систем, обладающих определенной регулярностью в своей пространственной геометрии. Системы, которые имеют полностью упорядоченную трехмерную организацию, называются кристаллами. Любой кристалл образуется многократным повторением небольшой трехмерной единицы, которая называется элементарной ячейкой и состоит из одной или небольшого целого числа молекул. Так, например, элементарная ячейка миоглобина состоит из двух молекул. Поскольку параллельное повторение элементарной ячейки воспроизводит всю кристаллическую структуру, то для характеристики последней достаточно описать эту повторяющуюся единицу. Задача рентгеноструктурного анализа и состоит в опред-елении геометрии и размера элементарной ячейки и взаимоположения атомов, образующих ее. Вторая часть задачи — определение координат атомов, а значит, и структуры молекул, оказывается несравненно сложнее. [c.118]

    Задача рентгеноструктурного анализа заключается в том, чтобы перейти от системы точек в обратном пространстве к искомой структуре решетки в прямом пространстве. Она решалась методом проб и ошибок. Известны были заранее симметрия и кристаллографические свойства кристалла, а также строение молекул, заполняющих решетку. Это давало возможность избегать многих ошибок и выбирать правильную структуру из немногих гипотетических альтернативных вариантов. При этом, кроме координат дифракционного пятна, имеется еще один важный фактор — интенсивность пятна. Так как рентгеновские лучи одинаково рассеиваются э.лектронами каждого атома, то интенсивность отражения от некоторо системы плоскостей будет определяться так называемьш структурным фактором, равным сумме квадратов атомных номеров, т. е. чисел электронов всех атомов, на единицу площади  [c.92]

    Преимущество фотометода по сравнению с дифрактометрическим методом состоит в возможности получения пространственного распределения дифрагированного излучения это определяет специфику применения указанных методов. Применимость дифрактометров для решения определенных задач рентгеноструктурного анализа показана в табл. 4 работы № 2. [c.50]

    Рассмотрены серийно выпускаемые рентгеновские камеры, предназначенные для съел1ки монокристаллов и поликристаллов различными методами с целью решения ряда задач рентгеноструктурного анализа — определения неизвестных структур, параметров кристаллической решетки, ориентировки кристаллов, фазового состава, размеров блоков, микроискажений, макро-нанрян<ений, дефектов кристаллической решетки и т. д. [1,2]. [c.28]

    Для современной органической химии при решении структурных проблем все большее значение приобретают физические методы исследования. Теплоты сгорания, парахор, дипольные моменты, изучение кинетики, магнитная проницаемость, метод меченых атомов, константы хроматографии и электрофореза, скорость осаждения при центрифугировании, люминесцентный анализ, нефелометрия, по-ляриметрия, масс-спектроскопия, рентгеноструктурный анализ, но особенно, — спектроскопия в видимой, инфракрасной, ультрафиолетовой областях, изучение спектров электронного парамагнитного и ядернОго магнитного резонанса открыли необыкновенно широкие возможности для решения задач установления строения молекул. Физические исследования все чаще оказываются решающими для понимания структуры соединения. [c.19]

    Отражение рентгеновских лучей от атомов происходит в результате взаимодействия излучения с электронами, поэтому определяемые рентгенографически центры атомов являются центрами тяжести электронных оболочек. Лля многоэлектронных атомов эти центры практически совпадают с ядрами, для легких атомов положения ядер могут заметно отличаться. Положение протонов, у которых отсутствуют электронные оболочки, вообще ие может быть установлено рентгеноструктурным анализом. Для решения этой задачи используют метод исследования, основанный на дифракции нейтронов. Пучки нейтронов получают с помощью атомного реактора. В отличие от рентгеновских лучей нейтроны не взаимодействуют со спаренными электронами , но они отражакугся атомными ядрами. [c.154]

    В последние десятилетия наблюдалось бурное развитие рентгеноструктурного анализа (в первую очередь с использованием монокристаллов), а также других дифракционных методов исследования. Это обусловлено рядом причин. Одной из них явилось кардинальное усовершенствование рентгеновской аппаратуры, включая разработку ряда типов дифрактометров, управляемых ЭВМ, для съемки монокристаллов, внедрение новых способов регистрации рентгеновского излучения, использование монохроматоров. В результате точность экспериментальных данных резко возросла и появилась возможность решения принципиально новых задач (локализация легких атомов, определение деталей распределения электронной плотности на базе совместных данных нейтронографического и рентгеновского методов). Не менее важным обстоятельством явилась разработка комплексов программ обработки результатов измерений и определения структуры кристаллов, зачастую с недостаточно охарактеризованным химическим составом. Этой области применения рентгеноструктурного ана 1иза в химии посвящено несколько прекрасных монографий и учебников, и структурные разделы почти обязательно включаются в работы по синтезу новых соединений, так как дают непосредственные данные о пространственном расположении атомов в кристаллах а иногда являются и удобным способом определения химического состава, в особенности если известен качественный состав. [c.3]

    Было бы, конечно, соверщенно неправильным утверждать, что работы в области рентгеноструктурного анализа кристаллов не требуют теперь никакой специальной подготовки. Однако войти в курс дела стало значительно легче достаточно ознакомиться с общими понятиями и номенклатурой симметрийной кристаллографии, основными формулами и положениями теории структурного анализа, наиболее типичными методами расщифровки кристаллической структуры и схемами стыковки отдельных стадий решения структурной задачи. Остальное — детали отдельных методов анализа структуры и практической работы на дифрактометре и у пульта управляющей и решающей ЭВМ — можно освоить в дальнейшем в процессе первой (и вероятно, не только первой) пробы своих сил на поприще структурного анализа. [c.4]

    Дифракционные методы. В дифракционных методах исследования рентгеновское излучение, поток электронов или нейтронов взаимодействуют с атомами в молекулах, жидкостях или кристаллах. При этом исследуемое вешество играет роль дифракционной решетки. А длина волны рентгеновских квантов, электронов и нейтронов должна быть соизмерима с межатомными расстояниями в молекулах или между частицами в жидкостях и твердых телах. Сама же дифракция (закономерное чередование максимумов и минимумов) представляет собой результат интерференции волн. Она зависит от химического и кристаллохимического строения, следовательно, соответствует структуре исследуемого вещества. Поэтому есть принципиальная возможность для решения обратной задачи дифракции, т. е. установление структуры вещества по его дифракционной картине. Обратная задача дифракции для рентгеновского излучения, дифрагирующего в конденсированных средах, называется рентгеноструктурным анализом. Методы применения электронных и нейтронных пучков вместо рентгеновского излучения называются электронографией и нейтронографией соответственно. Общим для этих методов является анализ углового распределения интенсивности рассеянного рентгеновского излучения, нейтронов и электронов в результате взаимодействия с веществом. Но природа рассеяния рентгеновских квантов, нейтронов и электронов не одинакова. Рентгеновское излучение рассеивается электронами атомов, входящими в состав вещества. Нейтроны же рассеиваются атомными ядрами а электроны — электрическим полем ядер и электронных оболочек атомов. Интенсивность рассеяния электронов пропорциональна электростатическому потенциалу атомов. [c.195]

    Определение координационных чисел в силикатах является, действительно, важной задачей, и рефрактометрический метод имеет здесь ряд преимуществ перед рентгенографическими и спектроскопическими методами как в отношении простоты самого эксперимента (сравнительно с рентгеноструктурным анализом), так и в отношении трактовки результатов опыта (сравнительно с ИК- и УФ-сиектроскопией). Эта работа была выполпена автором в 1957 г, [258] и недавно продолжена совместно с Порошиной [259, 260], [c.216]


Библиография для Методы и задачи рентгеноструктурного анализа: [c.368]    [c.251]    [c.145]   
Смотреть страницы где упоминается термин Методы и задачи рентгеноструктурного анализа: [c.723]    [c.136]    [c.40]    [c.288]    [c.390]    [c.544]    [c.511]   
Смотреть главы в:

Практические работы по физической химии -> Методы и задачи рентгеноструктурного анализа

Практические работы по физической химии Изд4 -> Методы и задачи рентгеноструктурного анализа




ПОИСК





Смотрите так же термины и статьи:

Анализ рентгеноструктурный

Метод рентгеноструктурного анализа

Методы задач



© 2025 chem21.info Реклама на сайте