Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрод растворимые

    Процессы, происходящие на анодах под влиянием тока, — анодные процессы, — сильно различаются главным образом в зависимости от того, являются ли электроды растворимыми или нерастворимыми при электролизе. Аноды из некоторых металлов, как, например, из серебра, меди, цинка, кадмия, относятся к первой категории. Платина, иридий, графит, уголь являются нерастворимыми электродами. Наконец, некоторые материалы анодов могут быть растворимыми или нерастворимыми, в зависимости от среды и условий электролиза к таким полурастворимым электродам относятся железо, никель, кобальт, золото, свинец, хром, олово, алюминий. В случае растворимых анодов анодный процесс состоит в растворении металла при прохождении электрического тока, т. е. процесс заключается только в том, что атомы металла, отдавая электроны во внешнюю электрическую цепь, заряжаются положительно и становятся катионами, например  [c.261]


    В табл. 92—97 приведены некоторые справочные сведения о свой ствах электродов, растворимости сульфата свинца в серной кислоте а также о зависимости емкости аккумулятора от режима разряда [c.204]

    Морф с сотр. [84] предложили уравнения, которые обосновывают способы уменьшения влияния на катионную функцию электродов растворимых в липидах анионов из исследуемых растворов. Уже упоминалось, что присутствие в растворе тетрафенилборат-иона ответственно за отклонение -функции электрода с жидкой мембраной от ее теоретического значения. Однако это отрицательное влияние аниона может быть уменьшено или элиминировано внедрением аниона в менее полярную мембрану для смещения экстракционного равновесия в системе к состоянию, в котором улучшается катионная функция электрода, как это предсказывалось теоретически [84 ]. Именно такая ситуация реализована в случае К - и -селективных электродов, в которых лиганды (ва-234 [c.234]

    Осадительное титрование. Титрант и определяемый ион образуют малорастворимые соли. В этом случае для контроля за титрованием, т. е. для определения конечной точки титрования, можно использовать ионоселективный электрод, чувствительный к любому из ионов, участвующих в реакции титрования. При осадительном титровании результаты определения зависят от величины нижнего предела обнаружения соответствующего иона данным электродом, растворимости осадка, скорости реакции, а также от наличия в растворе примесей других ионов, образующих малорастворимые соли с титрантом (рис. Т-7). [c.109]

    Возникновение тока в металле на границе раздела фаз связано с образованием тонкой пленки электролита выше мениска в углеводородной фазе на электроде, частично погруженном в электролит. В связи с тем что растворимость кислорода в нефтепродуктах в 4—5 раз выше, чем в воде, диффузия его к ме- [c.284]

    Часть затруднений удается преодолеть, если исследовать разряд ионов металла на жидком (ртутном) электроде, обладающем однородной поверхностью. Результаты таких исследований показывают, что ионы металлов, образующих амальгамы, восстанавливаются на ртутном электроде со значительной скоростью. Поэтому поляризационные явления, которые при этом наблюдаются, обусловлены в основном концентрационной поляризацией. В то же время ионы металлов группы железа (Ре +, N 2+,...), не образующих амальгамы, восстанавливаются на ртути с большим перенапряжением. Перенапряжение в этом случае связано либо с тем, что эти металлы из-за малой растворимости в ртути выделяются в высокодисперсном состоянии, более богатом энергией, либо с замедленным разрядом этих ионов. Последнее подтверждается тем,- что при помощи современных тонких экспериментальных методик удается установить медленный разряд на ртути также ионов цинка, марганца, хрома и других металлов, которые растворяются в ртути с образованием амальгам. Кроме того, при выделении металлов группы железа на твердых электродах при условиях, исключающих возникновение высокодисперсного состояния, разряд ионов также происходит со значительным перенапряжением. [c.630]


    Интересным свойством щелочных металлов является их растворимость в жидком аммиаке, в котором они образуют растворы интенсивного голубого цвета этот цвет сохраняется у металла после испарения аммиака. Атомы щелочных металлов диссоциируют в аммиаке на положительные ионы и электроны, и электроны ассоциируют с молекулами растворителя NHj. Такие электроны получили название сольватированных электронов. Установлено, что интенсивная окраска обусловлена сольвати-рованными электронами, а не ионами металла такая же окраска возникает при введении электронов в аммиак с платинового электрода. [c.434]

    На положительно заряженном электроде (аноде) проходят реакции окисления, характер которых зависит от того, способен ли растворяться металлический анод в конкретных условиях электролиза или он находится в инертном (пассивном) состоянии. Для растворимого анода типична реакция М + ге , для инертного — разряд [c.514]

    Замена серной кислоты в обычном свинцовом аккумуляторе на хлорную приводит к тому, что оба электрода работают как растворимые. Это позволяет проводить разряд элементов при значительно ббльшей плотности тока (до 50 а/дм-), чем это допустимо для свинцовых аккумуляторов. [c.880]

    Изучение явлений, связанных с сильной поляризацией обратных и прямых эмульсий (капель касторового масла в среде ПМС-100 и капель ПМС-100 в среде касторового масла), позволило обнаружить различие в их поведении. Скорость капель (д<0,5 10" м) обратных эмульсий значительно возрастает в приэлектродных областях. Контакт их с электродом приводит к возникновению колебания в межэлектродном пространстве. Частота колебания имеет затухающий характер. Это можно объяснить электрохимическим разрядом растворимых в капле (касторового масла) катионов и анионов жирных кислот. Движение капель прямых эмульсий при подходе к электроду, наоборот, замедляется и полностью прекращается на некотором расстоянии от электрода. Зазор между электродом и каплей 5 при ее остановке сокращается с повыще-нием Е. Остановку капли у электрода (эффект расклинивания) можно объяснить диэлектрическим перемещением молекул более полярной среды в неоднородную область поля. Экспериментальная зависимость скорости движения капли прямой эмульсии от напряженности поля показывает, что при низких значениях Е зависимость имеет линейный характер, при Е>2 10 В/м характер зависимости меняется. Аналитическая обработка экспериментальных данных по уравнению Духина для скорости частицы показывает, что зависимость 1 наблюдается только в области значений ">3 10 В/м. [c.23]

    Однако применение растворимых электродов также оказывает отрицательное действие на процесс очистки, выражающееся в образовании [c.61]

    Электроды второго рода. Электрод второго рода состоит нз металла, покрытого слоем его малорастворимого соединения и погруженного в раствор растворимой соли, содержащий тот же анион, что и малорастворимое соединение. Электрод второго рода и протекающая на нем электродная реакция записываются в виде схемы [c.278]

    При анодной поляризации растворимого твердого электрода из чистого металла, погруженного в раствор, содержащий его ионы, протекает процесс [c.393]

    Один ИЗ вариантов такого электрода представлен на рис. 3.4. Чистая ртуть покрывает платиновую проволоку, впаянную в дно стеклянной трубки. Ртуть покрывают порошкообразным хлоридом ртути, слаборастворимым в растворе КС1, которым заполняют элемент. Активность зависит от концентрации КС1, так как произведение растворимости 2+-a i- величина постоянная. [c.44]

    Рассчитайте минимальное значение, до которого нужно сместить потенциал цинка по отношению к медносульфатному электроду сравнения, для достижения полной катодной защиты. Принять, что продуктом коррозии является гп(ОН)а (произведение растворимости гп(ОН)а равно 4,5-10 1 ). [c.393]

    ТО есть на поляризацию индикаторного электрода расходуется только часть налагаемого напряжения. Но при условии, что площадь поверхности анода во много раз больше, чем у катода, поляризацией анода можно пренебречь, потому что из-за малой плотности тока его потенциал будет оставаться нрактически постоянным. Если сопротивление раствора уменьшить, то слагаемым Ш можно пренебречь, потому что в полярографической ячейке редко возникают токи, сила которых выше нескольких десятков микроампер. Для снижения сопротивления в анализируемый раствор вводят избыток индифферентного электролита, или просто фона. В качестве фона пригодны различные соли щелочных и щелочноземельньк металлов, растворы кислот, щелочей, а также разнообразные буферные смеси. Нри этих условиях можно полагать, что практически все налагаемое на ячейку внешнее напряжение расходуется на изменение нотенциала индикаторного электрода, то есть в и Е . Перед регистрацией нолярограммы необходимо удалить из раствора растворенный кислород, который восстанавливается на ртутном электроде. Растворимость кислорода в разбавленньк растворах электролитов довольно высокая, около 10 " моль/л, поэтому он мешает полярографическому определению большинства веществ. Из раствора кислород можно удалить, барботируя через него какой-либо электрохимически инертный газ (азот, гелий, аргон). В этом случае ячейка должна быть достаточно герметичной, а избыток газа следует отводить через гидрозатвор. Во время регистрации нолярограммы, для того чтобы кислород воздуха не попадал в ячейку, над поверхностью раствора рекомендуется пропускать ток инертного газа. Для удаления растворенного кислорода необходимо 15-20 минут барботировать инертный газ, а при работе с низкими концентрациями вещества и в случае очень точньк измерений требуется увели- [c.165]


    Подпроблемы, требующие разработки оригинальных творческих и экспериментальных методов, следующие диффузия и миграция через дисперсные и полупроницаемые фазы диффузия и проводимость в пористых средах, имеющих источники и стоки заряда и массы проводимость твердых матриц, состоящих из нескольких твердых фаз при произвольном и упорядоченном распределениях механизм переноса газов к поверхности раздела электролит — твердое вещество и от нее к пористой среде учет влияния поверхностного заряда на ионный перенос за счет диффузии и миграции ламинарная и турбулентная свободная конвекция, в том числе в сочетании с направленной конвекцией в произвольно ориентированных электродных конфигурациях изменепне и корреляция (при отсутствии соответствующей теории) коэффициента ионной диффузионной способности, подвижности, вязкости и плотности концентрированных электродов растворимость и диффузия газов в концентрированных электролитах. [c.15]

    Отклонение от линейности зависимости потенциала ячейки от ]g Ср обычно связывают с растворимостью мембраны с наличием загрязняющих примесей во вспомогательном электролите с адсорбцией определяемых ионов стенками сосуда. Однако детальное изучение [85 ] показало, что в случае фторидного электрода растворимость мембраны не оказывает влияния на его нормальную работу, чего нельзя сказать об Р , присутствующих в качестве примесей в фоновом электролите и растворах хлоридов. Буффл с соавт. [86 ] тщательно исследовали влияние собственно растворимости кристаллической мембраны и адсорбции Р на границе раздела мембрана — раствор, поскольку от них зависит чувствительность ЬаРз-электрода. Найдено, что адсорбция фтора в большей степени, чем растворимость кристалла, определяет нижний предел чувствительности электрода. Аналогично Веселы и Штулик [87 ], изучая влияние кислотности раствора на обратимость электрода, нашли, что поведение его определяется конкурентной адсорбцией ионов ОН", Р и различных фторсодержащих частиц гидрофильной пленкой, образующейся на электроде. Сам кристалл не подвергается действию ионов раствора. [c.126]

    Причина подобного несоответствия между предположением,, основанным на величинах стандартных потенциалов, и опытом объясняется, очевидно, тем, что здесь вследствие малой растворимости ul сильно понижается концентрация Си+, и поэтому значительно изменяется значение потенциала пары Си Си+. Таким образом, в расчете следует пользоваться стандартным потенциалом пары u V uI, равным -)-0,86 в, а не Е° пары uV u+. Согласно сказанному, окислительно-восстановительной реакцией иа электроде является u +-f 1 + е-> СиЦ, для которой уравнение Нернста записывается в следующем виде  [c.354]

    Из соиоставлепия потенциалов соответствующих электродов первого и второго рода можно найти произЕ едение растворимости трудно растворимых солей. [c.163]

    Аналогично можно провести титрование, основанное на реакциях осаждения, комплексообразования и окисления илн восстановления. В случае реакции осаждения и комплексообразования гш икаторный электрод должен быть обратимым по отпои1еиию к одному из иоиов, входящих в состав осадка или комплекса. Величина измепеиия потенциала вС Лизи точки эквивалентности, а следовательно, и чувствительность потенциометрического метода тем выше, чем меньше растворимость образующегося осадка. Так, прн тнтроватш иo кJB серебра ионами иода чувствительность метода вследствие меньшей растворимости иодида [c.210]

    Электролитическая ячейка выполняется из меди или стали сама ячейка служит катодом, анод делается из никеля. Поскольку электролиз проводится таким образом, что фтор не образуется, то не требуется разделения поверхностей анода или катода, это позволяет делать ячейку очеиь компактной при сильно сближенных электродах. Применяется напряжение 5—6 в и плотность тока приблизительно 0,02 а1см - Водород и легко-кипящие фторированные продукты удаляются в виде газов, а вышекипя-щие продукты, не растворимые во фтористом водороде, могут выводиться со дна ячейки. Реакция обычно проводится при 0°, чтобы снизить потери фтористого водорода, но при применении повышенного давления можно проводить реакцию и при более высоких температурах. [c.73]

    Металлические электроды первого рода — это обратимые от носительно катиона металла электрода. Металлические элек троды второго рода состоят из металла, покрытого слоем его труд норастворимой соли и погруженного в раствор какой-нибудь легко растворимой соли с тем же анионом  [c.174]

    Данные об этих реакциях, а также растворимости анионов и гидроокисей были представлены в виде равновесных диаграмм зависимости изменения потенциала электродов и растворимости твердых фаз от pH раствора для железа — Пурбе (1938 г.), а для меди — А. И. Шултиным (1941 г.). Пурбе и его школа собрали, оценили и сопоставили такие данные для многих металлов и составили соответствующие диаграммы — диаграммы Пурбе I. [c.218]

    Стандартный восстановительный потенциал u2++2e= u Е°= +0,337 В, произведение растворимости ферроцианида меди Си2ре(СЫ)б равно 1,2-10- . Вычислите стандартный электродный потенциал электрода [c.117]

    Различают электроды первого и второго рода. Электродами первого рода называют системы, в которых концентрация в растворе ионов, относительно которых обратим электрод, может быть различной, а электродами второго рода — системы, в которых металл электрода (например, А5) покрыт малорастворимой солью этого металла (АдС1) и находится в растворе, содержащем хорошо растворимый электролит с теми жё анионами. Работа такого электрода рассмотрена в 177 на примере каломельного электрода. Существуют также электроды, которые не обменивают с раствором ни катионов, ни анионов, а только обеспе.чивают под- [c.430]

    Если металлический электрод покрыть слоем малорастворимой соли этого металла и опустить в раствор хорошо растворимой соли, содержащей тот же анион (электрод второго рода), то такой электрод работает обратимо относительно этого аниона. К таким электродам принадлежит, в частности, каломельный электрод (рис. 150). В нем паста из ртути и каломели (Hg2 l2) помещена [c.434]

    Вместо электродов второго рода величины [А] или [НА] можно измерять через экстракцию, растворимость, спектрофотометрически ИТ. п., причем можно показать, что для данного объекта такие измерения перспективнее рН-метрических. [c.172]

    Электрод второго рода можно рассматривать как электрод первого рода, обратимый относительно катиона [реакция (1)1, у которого активность М в растворе определяется растворимостью МА. Например, для системы l Ag l, Ag между стандартными потенциалами электродов первого и второго рода существует соотношение [c.482]

    На катоде как при использовании растворимых, так и нерастворимых электродов происходит разряд гидроксониевых ионов (в кислой среде) или молекул воды (в щелочной среде). В результате электрохимических реакций на катоде образуются пузырьки водорода, обеспечивающие флотацию частиц загрязнений в поверхностный слой очищаемой жидкости. [c.61]

    Установлено, что эффективность очистки нефтесодержащих вод при использовании растворимых (алюминиевых) электродов выше, чем при использовании нерастворимых (графитовых) электродов. Это связано с электрохимическим растворением алюминиевых анодов и образованием в очищаемой жидкости активных оксигидратов алюминия, обладающих сорбционной и адгезионной способностью относительно высокодис-пергированных и растворенных нефтепродуктов [16, 30, 37, 38]. [c.61]

    Воздействие на иефтеводяную эмульсию электрическим полем вызывает коагуляцию частиц дисперсной фазы (капли нефтепродуктов) и, как следствие этого, их коалесценщ1ю. При использовании растворимых электродов образуется гидроксид металла анода, способный адсорбировать на своей поверхности эмульгированные нефтепродукты. Таким образом, метод электрообраиотки открывает новые возможности для глубокой очистки судовых нефтесодержащих вод. [c.91]

    Светлицкий А. С. Осветление воды в электрическом поле с использованием растворимых электродов. Автореф. дисс. канд. техн. наук. Л. ЛИСИ. 1981. [c.111]

    Содержание серы. Повышенное содержание серы в коксе создает неблагоприятные условия в помещении цеха прока-лива1шя удаление серы при высокотемпературных процессах прокаливания и графитирования ухудшает структуру и прочностные свойства изделий (электродов, конструкционных материалов). Содержание серы в коксе можно определить методом двойного сожжения. В случае высокой зольности более точные результаты дает метод Эшка . Сущность последнего метода заключается в сплавлении навески кокса, помещенной в фарфоровый тигель, с окисью магния и углекислым натрием. При этом сера в коксе переходит в неорганические соли, растворимые в воде. При помощи насыщенного раствора брома (илп перекиси водорода) сульфиты переводят в сульфаты, затем раствор обрабатывают хлористым барием (при этом выпадает в осадок образовавшийся сернокислый барий). Осадок переводят па фильтр, промывают и высушивают и фарфоровом тигле до достижения постоянной массы. Содержание серы в коксе рассчитывают по формуле  [c.139]

    Каломельный полуэлемент давно используется в лабораториях как стандартный электрод сравнения. Он состоит из металлической ртути, находящейся в равновесии с ионами Hg2 , активность которых определяется растворимостью Hg2 l2 (хлорида ртути, или каломели). Реакция в полуэлементе протекает по следующей схеме  [c.43]


Смотреть страницы где упоминается термин Электрод растворимые: [c.55]    [c.314]    [c.165]    [c.310]    [c.501]    [c.293]    [c.116]    [c.25]    [c.314]    [c.321]    [c.137]    [c.92]    [c.290]    [c.290]    [c.391]    [c.287]   
Общая химия в формулах, определениях, схемах (0) -- [ c.157 ]

Общая химия в формулах, определениях, схемах (1985) -- [ c.157 ]

Общая химия в формулах, определениях, схемах (0) -- [ c.157 ]




ПОИСК







© 2025 chem21.info Реклама на сайте