Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Измерение скорости реакции и вывод кинетического уравнения

    В книге освещены наиболее важные аспекты ферментативной кинетики — способы вывода уравнений стационарной скорости, действие ингибиторов и активаторов на ферменты, кинетические механизмы ферментативных реакций, влияние pH и температуры на скорость ферментативных процессов, кинетические свойства аллостерических ферментов, интегральные формы кинетических уравнений, использование методов быстрой кинетики для исследования протекания ферментативных реакций и принципы статистической обработки данных кинетических измерений. [c.4]


    Оба эти метода дают возможность выявить основные различия в активности, связанные со значительными изменениями какого-либо одного параметра (химического состава, структурных свойств и т. д.), если остальные параметры остаются без изменения. Вместе с тем сложной взаимосвязи между процессами сорбции, диффузии и, химической реакцией они не отражают. Более надежным способом, позволяющим избежать неправильных выводов при сравнении катализаторов с нестабильной во времени активностью, является экстраполяция конверсии на нулевое время. Этот метод обычно используют в тех случаях, когда реакция проводится в дифференциальном, а не интегральном реакторе. Однако, как правило, применяется он значительно реже, хотя известно, к какой путанице может привести, например, определение влияния соотношения Si/Al на каталитические свойства деалюминированного морденита, если однозначный способ определения активности отсутствует. Еще меньше можно назвать работ, в которых были проведены кинетические определения зависимости констант скоростей от скорости подачи сырья или парциальных давлений исходных компонентов -й продуктов реакции. Между тем, сравнивая активности, часто дйпускают, что реакции имеют первый порядок, и пересчитывают измеренные степени превращения в константы скорости. Принято также определять температурную зависимость активности и подставлять данные по конверсии при различных температурах в уравнение Аррениуса. Такой расчет будет правильным, если используются только начальные конверсии, потому что в этом случае можно избежать неточностей из-за разной скорости дезактивации катализаторов при различных температурах. Но даже и тогда расчет энергии активации совсем не обязательно приведет к Д,, характерной для данной химической реакции, которая протекает на определенном типе активных центров. Полученная величина Еа может в значительной степени отражать ограничения, связанные с диффузией и массопередачей. [c.56]

    Однако между доступными для определения промежуточными продуктами и нестойкими веществами с весьма коротким сроком жизни существует лишь небольшое количественное различие. Если методика достаточно чувствительна для измерения концентрации промежуточных продуктов, то суммарное превращение можно рассматривать как последовательность реакций с поддающимися определению константами в противном случае для вывода кинетического уравнения приходится, в силу принципа стационарности, допустить, что скорости образования и превращения нестойкого вещества с весьма коротким периодом жизни равны, хотя уравнения этих скоростей составить невозможно последовательность реакций вырождается в таком случае в реакционную схему. [c.274]


    Кинетические данные обычно представляют собой результаты измерения концентраций некоторых реагентов или каких-то других переменных (связанных с концентрациями) в зависимости от времени при определенных условиях, чаще всего изотермических. Задача состои+ в том, чтобы выразить существующие между ними связи соответствующим кинетическим уравнением, позволяющим экстраполировать данные за пределы экспериментально изученных условий. В общем случае такие уравнения находят путем подбора. Стехиометрия реакции обусловливает ту форму уравнения, которую следует проверить в первую очередь. Если эта попытка окажется неудачной, такая реакция требует специального изучения, и успех в выводе уравнения скорости по экспериментальным данным будет зависеть от способностей исследователя. [c.55]

    При детальном анализе оказывается, что большая часть реакций относится к мономолекулярным или бимолекулярным. Однако часто в системе происходит несколько конкурирующих процессов, как будто природа неохотно допускает, чтобы какой-либо один механизм осуществлялся в чистом виде. Это обстоятельство, а также необходимость во многих случаях приводить систему н равновесию заставляют идти по пути сопоставления экспериментальных данных с различными математическими соотношениями, подчас весьма сложными. Явное расхождение между наблюдаемыми скоростями процесса и предсказаниями, которые дают кинетические уравнения, основанные на наиболее вероятных модельных механизмах реакции, могут привести к важным открытиям. Именно так обстояло дело при открытии электролитической диссоциации. Однако во многих случаях выводы о непостоянстве констант скорости оказывались ошибочными (причины — неправильные методы измерения, неточная обработка данных, неправильные механизмы реакции, недостижение истинного равновесия, электростатические эффекты или неточное установление начала отсчета времени). [c.124]

    Обычно применение этих зависимостей несколько ограничено из-за необходимости получения значений всех потенциалов при одинаковых условиях и требованиях идентичности электродных механизмов при всех измерениях (одни и те же коэффициенты перехода а и число электронов и протонов). Если эти условия не выполнены, выводы являются лишь приблизительными. В полярографии азотсодержащих гетероциклов появляется кроме того другое осложнение [276], которое, по-видимому, не всегда учитывается. Фактически все азотсодержащие соединения сильно адсорбируются на поверхности капельного ртутного электрода. В таком состоянии они влияют на скорость электродной реакции, и это приводит либо к значительным сдвигам потенциалов полуволн, либо к изменениям высоты кинетических волн. Вследствие этого гетероциклические азотсодержащие соединения часто действуют одновременно и как поверхностно-активные вещества, и как деполяризаторы. Измененные таким образом потенциалы полуволн соединений не являются точной мерой факторов в уравнениях (27) и (42). Однако, картина, по-видимому, упрощается сходной адсорбционной способностью различных соединений, и таким образом в одной реакционной серии можно наблюдать нормальное влияние заместителей на скорости реакций у занятой поверхности электрода. [c.272]

    Основная цель анализа кривых с - ( состоит в том, чтобы найти мате-матическое уравнение, которое описывает форм кривых, т.е. уравнение скорости. Основой для вывода такого уравнения служит сравнение кривых 0-1, полученных из серии экспериментов при разных начальных концентрациях реагентов, так называемых экспериментальных серий. Число их зависит от числа компонентов реакции. На скорость реакции могут влиять исходные реагенты, продукты реакции (включая интермедиаты), катализатор, растворитель и т.д. Если в реакции участвует несколько реагентов, то условия подбирают таким образом, чтобы все они, кроме одного, находились в большом избытке (ср. с разд. 4.4). Во время реакции концентрации этих избыточных реагентов остаются практически постоянными. Таким образом, уменьшение концентрации реагента, присутствующего в недостатке, изучается как бы изолированно. Этот метод известен как метод изоляции он преследует цель выделить элементарный процесс или какую-то простую реакцию из всего процесса в целом. За таким взятым в недостатке реагентом или за продуктом реакции удобно следить кинетически. В тех случаях, когда в реакции отсутствует интермедиат или присутствующий интермедиат очень реакционноспособен, уменьшение концентрации реагента во времени соответствует увеличению концентрации продукта (при условии равенства стехиометрических коэффициентов). В любом случае очень полезно, хотя бы в нескольких сериях измерений, проверить, соответствуют ли кинетические кривые расходования реагента кинетическим кривым накопления продукта. Однако следует отметить, что согласован- [c.82]


    Природа активации молекул, вызываемой контактом с поверхностью твердого катализатора или присоединением катализирующих агентов в растворах, стоит в центре внимания исследователей, занимающихся этой важной проблемой. О происходящей перегруппировке валентных связей молекулы, о расщеплении молекулы с образованием атомов или радикалов, а также об образовании преходящих соединений с катализатором заключают большей частью только на основании косвенных данных. Основным методическим приемом служит анализ кинетических уравнений, воспроизводящих наблюдаемую на опыте скорость потребления исходных или образования конечных устойчивых соединений как функцию главных переменных концентраций и температуры. В истекшем десятилетии использование изотопов и меченых радиоактивных атомов при кинетических измерениях дало в руки исследователям тонкий способ более однозначного контроля конечного результата превращения и тем самым дало возможность получить более убедительные выводы о фактическом протекании реакции. Однако явно неудовлетворительное состояние теории катализа разительно проявляется в большом разнообразии взаимно исключающих друг друга объяснений фактического протекания процесса, его последовательных этапов, выдвигаемых различными исследователями, изучающими одну и ту же реакцию. Так, например, для объяснения кинетических закономерностей, установленных для каталитической реакции присоединения газообразной молекулы водорода к газообразной молекуле этилена, идущей на никеле в сугубо простых с физической точки зрения вакуумных условиях, в 1950 г. было выдвинуто пять ( ) различных вариантов схемы реакции, одинаково хорошо укладывающихся в наблюденные зависимости от давления реагентов [1]. Поучительно их привести здесь целиком (реагенты в газообразном состоянии не подчеркнуты, в адсорбированном состоянии подчеркнуты чертой, изображающей поверхность металла)  [c.356]

    В дифференциальном реакторе изменения всех величин, влияющих на скорость реакции, пренебрежимо малы (рис. 20). Реализуется псевдонулевой порядок реакции, так что по превращению сразу можно вычислить скорость реакции [г = х Р/Щ]. Эти условия часто выполняются при степени превращения Ал <10%. Однако верхний предел Дх зависит от вида кинетического уравнения. Использование таких измерений предъявляет высокие требования к точности анализа. Дифференциальный циркуляционный реактор свободен от этого недостатка, так как прошедшие через реактор вещества снова возвращаются в него циркуляционным насосом. Небольшое количество исходных веществ непрерывно подается и такое же количество продуктов реакции выводится из контура циркуляции для анализа. По скорости подачи и измеренному в стационарных условиях превращению непосредственно вычисляют скорость реакции даже для высоких степеней превращения. [c.57]

    Роговин, Кнунянц, Хаит и Рымашевская ", исследуя впервые реакцию превращения циклического соединения—капролактама в полиамид с открытой цепью, пришли к выводу, что эта реакция является типичной реакцией полимеризации неустойчивых циклов , причем вода и другие гидроксилсодержащие соединения, а также амины являются катализаторами этой реакции. Но наряду с этой точкой зрения, изложенной в большом числе работ (см. ), имеется также и другая,, по которой превращение лактама в линейный полиамид является обычной реакцией поликонденсации. Вода и другие содержащие гидроксил соединения лишь превращают лактам в аминокапроновую кислоту или ее производные, после чего аминокапроновая кислота реагирует дальше по схеме поликонденсации. Этой точки зрения придерживается Маттес , который, исследуя кинетику реакции превращения лактама в линейные полиамиды, получил данные, подтверждающие поликон-денсационный характер этой реакции, В то же время А, А, Стрепихеев, С, М, Скуратов и сотрудники , также на основании кинетических данных и измерений теплот реакций, пришли к противоположному выводу о механизме реакции и подтвердили полимеризационный характер этой реакции, Вилот , а также Вергоц , Колонь и Гийо и другие исследователи на основании тех же кинетических данных пришли к выводу, что реакция превращения лактама в линейный полиамид протекает в две стадии, а само превращение в линейный полимер происходит по схеме поликонденсации и описывается уравнением бимолекулярной реакции. А. С. Шпитальный и его сотрудники предполагают, что одновременно, но с разной скоростью происходят оба процесса полимеризация и поликонденсация. [c.421]

    Приведены кинетические данные относительно некоторых сильно необратимых процессов анодного окисления, например анодного образования ЗгОв и СЮ с одновременным выделением кислорода. Измерением в весьма стабильных условиях поляризационных кривых и измерением скорости выделения Ог получены кинетические данные отдельно для выделения Ог и для других параллельно протекающих процессов. В предположении различных механизмов выведены теоретические уравнения для этих параллельно протекающих процессов. Сделан вывод, что на платиновом электроде ЗгО и 10 образуются вследствие прямого разряда ионов Н50 и СЮ соответственно. В то же время на РЬОг-электроде СЮ образуется с участием (0Н)а118 вероятнее всего в результате реакции [c.335]

    При выводе уравнений (3) и (4) исходили из предположения, что обратными направлениями реакций второй и третьей стадии можно пренебречь. Это всегда верно, когда проводят измерения начальной скорости. Применение кинетических уравнений трехстадийного процесса к гидролизу и реакциям переноса ацила будет рассмотрено в следующих разделах. Предполагается в дальнейшем пользоваться этим приближенным методом для исследования большого числа ферментативных реакций с применением ультрафиолетовой спектроскопии для обнаруже-ния промежуточных соединений во время фазы престационарного состояния. [c.330]

    Мы измерили скорость циклизации диизобутила и пришли к выводу, что если выше 300°С катализатор (платинированный уголь) постепенно отравляется и результаты опытов становятся все менее и менее повтори-мыми, то при 300°С и ниже катализатор достаточно стоек и повторимость опытов вполне удовлетворительная, как это следует из приводимых далее экспериментальных данных. Проведя измерения при нескольких температурах, можно по уравнению Аррениуса вычислить кажущуюся энергию активации суммарной реакции ароматизации диизобутила она оказывается равной 15,93—16,35 ккал1молъ (для двух образцов платинированного угля). Эти величины довольно близки к величине энергии активации ароматизации циклогексана в присутствии того же катализатора ( = 16,07 ккал молъ), несмотря на то, что скорость реакции в этом случав значительно больше. Разница в скоростях реакций объясняется тем, что предэкспоненциальный член в уравнении Аррениуса в случае диизобутила приблизительно в 100 раз меньше, чем в случае циклогексана. Это в свою очередь может зависеть от того, что диизобутил адсорбируется поверхностью платинированного угля во много раз слабее, чем циклогексан, или же от того, что на поверхности катализатора имеются две системы активных центров, одна из которых вызывает образование гомологов циклогексана из парафиновых углеводородов, а другая — ароматизацию этих гомологов циклогексана. Следует ли остановиться на одном из этих объяснений или предпочесть им какое-либо третье, должно показать более подробное кинетическое изучение описываемой реакции, которым мы предполагаем заняться в будущем. [c.325]

    Ири выводе этого уравнения принималось, что атомы водорода и брома являются короткоживущими промежуточными продуктами, концентрации которых в стационарном состоянии остаются постоянными. Скорость образования НВг на всех стадиях пропорциональна концентрации атомов брома. Следовательно, если система облучается светом, частота которого достаточно высока для фотохимической диссоциации молекул брома, скорость реакции доляша возрасти. В действительности было найдено, что термическая реакция идет с измеримой скоростью только при высокой температуре, а фотохимическая реакция — при обычной. Точное измерение скорости фотохимического синтеза, проведенное Боденштейном и Люткемейером (1924 г.), Мостом и Юнгом (1929 г.), показало несоответствие этого случая кинетическому [c.540]


Смотреть страницы где упоминается термин Измерение скорости реакции и вывод кинетического уравнения: [c.240]    [c.641]    [c.149]   
Смотреть главы в:

Практикум по общей химии с элементами количественного анализа -> Измерение скорости реакции и вывод кинетического уравнения




ПОИСК





Смотрите так же термины и статьи:

Вывод кинетических уравнений

Кинетическое уравнение реакци

Реакции кинетическая

Реакций скорость измерение

Реакция уравнение кинетическое

Скорость реакции кинетическое уравнение

Уравнение кинетическое

Уравнение скорости

Уравнения реакций



© 2025 chem21.info Реклама на сайте