Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Классификация методов экспериментальных исследований

    КЛАССИФИКАЦИЯ МЕТОДОВ ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИИ [c.399]

    МЕТОДЫ ЭКСПЕРИМЕНТАЛЬНОГО ИССЛЕДОВАНИЯ И ИДЕНТИФИКАЦИИ ПРОЦЕССОВ КЛАССИФИКАЦИИ [c.77]

    Эти особенности в первую очередь заключаются в большом числе переменных, влияющих на процессы, в нелинейности основных уравнений гидродинамики, тепло- и массопереноса, в невозможности получения полной информации о течении процесса из-за большой трудоемкости экспериментальных исследований. Как следствие этого, разработанные модели в большинстве случаев представляют собой частные аппроксимации описываемых процессов и не имеют той полноты и достоверности, которая необходима для создания надежного инженерного метода расчета того или иного экстракционного процесса и аппарата (в рамках принятой классификации). [c.95]


    В книге рассмотрены причины возникновения аварий резервуаров, дана подробная классификация дефектов конструктивных элементов резервуаров, влияющих на их эксплуатационную надежность, приведены результаты экспериментальных исследований изменения механических свойств металла днища, и стенки резервуара при его длительной эксплуатации. Изложены разработанные авторами методы прочностных расчетов, допустимых монтажных несовершенств конструкции резервуаров в виде вмятин и выпучин и рекомендации по ограничению их допустимых размеров. [c.2]

    Классификация экспериментальных методов рентгеновских дифракционных исследований [c.111]

    Опыт экспериментальных исследований в химии свидетельствует о том, что для классификации взаимодействий растворенных веществ с самыми разнообразными органическими растворителями. может оказаться необходимым разделить пх не на три группы, как предлагал Паркер [73] (см. разд. 3.4 и рис. 3.3), а на большее число групп. В связи с этим для классификации и подбора органических растворителей недавно применили методы многомерного статистического анализа [102, 138—143] с использованием в качестве базы данных множества физикохимических параметров (например, температур кипения, молярных объемов, теплот испарения, дипольных моментов, диэлектрических проницаемостей, молярной рефракции и т. п.), а в некоторых случаях также эмпирические параметры полярности растворителя (см. гл. 7). Извлечь содержащуюся в таком набо- [c.116]

    В основу классификации экспериментальных методов рентгенографии можно положить либо способ регистрации дифракционного спектра (фотографический или ионизационный), либо агрегатное состояние исследуемого объекта (поли- или монокристалл, аморфное вещество, жидкость или газ). Несмотря на существование единого физического подхода к проблеме дифракции рентгеновских лучей (см. Введение и гл. I), различия в методических особенностях экспериментальных исследований различных объектов весьма существенны и приводят к появлению специальных областей рентгеноструктурного анализа. Например, значительная информация о белках, полимерах и ряде других объектов сосредоточена в области малых углов рассеяния от нескольких угловых минут до 3—5 градусов. С позиций физики рассеяния рентгеновских лучей между этой и всей остальной частью дифракционного спектра нет никакой принципиальной разницы, однако, специфические экспериментальные трудности, в первую очередь — малая интенсивность рассеянного излучения, привели к созданию специального рентгеновского оборудования — малоугловых рентгеновских камер и дифрактометров [1]. [c.111]


    В зависимости от целей и задач классификация научных исследований может вестись по различным признакам методу исследо-пания — теоретические, экспериментальные, теоретико-экспериментальные месту проведения исследования — лабораторные, опытнопромышленные, промышленные структуре исследуемых свойств объекта — комплексные, дифференцированные. [c.50]

    Предложенную В. А. Проскуряковым и Л. И. Шмидтом [2] классификацию основных методов очистки сточных вод на химических предприятиях (рис. 3) можно использовать и на нефтетранспортных. Эта классификация разработана на основе классификации сточных вод по фазово-дисперсным и химическим характеристикам примесей. Имея данные по расходам сточных вод, их подробную характеристику, в том числе и по содержанию примесей, а также требования к очищенной воде, можно по схеме отобрать для проверки нескольких методов. На основании экспериментальных исследований с учетом технико-экономических показателей выбирают оптимальный метод очистки сточных вод. [c.11]

    Экспериментальные исследования углей бассейнов СССР методами международной классификации и опыт кодификации углей по принятым параметрам показали, что эта классификация в ряде случаев не позволяет разграничивать угли по их способности давать кокс того или иного качества (при самостоятельном коксовании и в смесях). [c.49]

    Аудиторные занятия по этой дисциплине предусматривают чтение лекций (22 часа) и проведение практических занятий (12 часов). В лекционном курсе рассматриваются сведения о международной классификации наук (4 класса и 70 номинаций), о структуре науки республики Башкортостан. Большая часть лекционного материала естественно отведена собственно науке основные понятия (цель науки, теория, гипотеза и др.) методы теоретических и экспериментальных исследований планирование экспериментов анализ и оформление результатов научных исследований. Прослушав лекционный курс, студенты узнают о том, как ориентироваться в море научно-технической информации, как осуществлять патентный поиск. Кроме того, студенты получат представление о написании тезисов, статей, докладов и о том, как подать заявку на патент. Во время практических занятий студенты составят план проведения экспериментов, рассмотрят приемы проведения статистической и графической обработки результатов исследований и т.п. [c.111]

    Образование азеотропов оказывает определяющее влияние на условия разделения жидких смесей методами дистилляции и ректификации. В связи с этим явление азеотропии явилось объектом многочисленных экспериментальных и теоретических исследований. Характеристика, номенклатура и классификация различных азеотропных смесей подробно описаны в книге Свентославского [144]. Поэтому в настоящей работе эти вопросы рассматриваются лишь в той степени, в какой это необходимо для понимания дальнейшего изложения. [c.101]

    Важнейшим и определяющим этапом системного анализа является качественный анализ, который заключается в сборе, систематизации, формализации и переработке качественной информации. Типичными ситуациями, когда применяют методы качественного анализа, являются предварительное изучение сложного процесса и формирование цели исследования, выбор наиболее важных физико-химических эффектов, анализ экспериментальных данных и результатов моделирования с точки зрения соответствия реальному процессу, классификация производимой продукции по категориям качества, оценка функционирования сложных систем управления, принятие решений в условиях неопределенности и в нечетко, определенных ситуациях и другие. [c.7]

    Наконец, следует отметить еще одну важную особенность рассматриваемого метода конформационного анализа. Она явилась прямым результатом исследования простейших пептидов и заключается в создании структурной классификации аминокислотных последовательностей, охватывающей все многообразие пространственных форм и обоснованной экспериментально и теоретически. Главная ценность разделения пептидных структур на конформации, формы и шейпы состоит во впервые появившейся возможности перейти от необходимости анализа всех комбинаций низкоэнергетических конформаций свободных аминокислотных остатков, образующих данный пептид (их количество превышает 10", где п - число остатков в цепи), к анализу отдельных представителей, дающих объективную информацию о конформационных вариантах больших таксономических групп. [c.250]

    Физическая теория и результаты расчета моно-, ди- и трипептидов, подтвержденные сопоставлением с экспериментальным материалом, позволили разработать количественный фрагментарный метод конформационного анализа олигопептидов. Метод основывается на предположении о возможности исследования конформационного состояния сложной аминокислотной последовательности путем предварительного анализа пространственного строения ее простых перекрывающихся фрагментов, конформационные возможности которых рассчитываются с использованием в качестве нулевых приближений всех комбинаций низкоэнергетических оптимальных конформаций свободных аминокислотных остатков (молекул метиламидов N-ацетил-а-аминокислот). Наборы лучших по энергии оптимальных состояний простых фрагментов служат исходными для формирования нулевых структурных вариантов более сложных фрагментов и т.д. В основе метода лежит построенная по принципу "дерева" классификация пептидных структур на конформации, формы и шейпы. Предложенная классификация полностью отвечает известным эксперимен- [c.587]


    Подобно внешним формам кристаллов, кристаллические решетки могут быть классифицированы по их симметрии. Еще задолго до разработки экспериментальных методов исследования структуры в 1890 г. такая классификация была выведена математически Е. С. Федоровым, который показал, что для решеток возможно 230 вариантов сочетания элементов симметрии. Эти сочетания получили названия федоровских групп симметрии. Комбинаций элементов симметрии для кристаллических решеток значительно больше (230), чем для внешних форм кристаллов (32), вследствие появления дополнительных элементов, характеризующих внутреннюю симметрию кристаллов. [c.261]

    В книге изложено современное состояние новой области фотохимии — двухквантовой фотохимии. Дано краткое изложение фотофизических процессов, лежащих в ее основе. Описаны химическая классификация, экспериментальные количественные методы исследования, механизмы двухквантовых реакций. [c.2]

    Экспериментальными методами исследования комплексных соединений установлено, что в общем можно различать сильные и слабые комплексы, соответствующие устойчивой и неустойчивой координациям. Так, например, при исследовании равновесия (аналитическим, электрохимическим или спектрофотометрическим методами) найдено, что [Со (ЫНз)в — сильный комплекс, тогда как [Со (ЫНз)в] — слабый. В последнее время удалось также показать, что для оксалатного комплекса Со +, в котором лиганд помечен нельзя обнаружить практически никакого обмена молекул лиганда. Напротив, в оксалатном комплексе Ре + уже за 1 мин происходит практически полный обмен лигандов. Структурные исследования комплексов дополняют классификацию на сильные — слабые еще и противопоставлением проникающих комплексов и аддуктов . Например, можно показать, что молярный объем слабого комплекса [Со(ЫНз)в]С12 аддитивно состоит из молярных объемов иона металла и лигандов. Однако этого нельзя сказать [c.152]

    Во-втор1х, необходимо уметь решать более сложную задача классификации методов математического и имитационного моделирования на основе выявления закономерностей (по нуклеотид-аым последовательностям по экспериментальным данным о числе копий ПП в геноме, о частотах транспозиции, о локализации ПЛ и т.п.), определяющих применимость данных методов к теоретическому исследованию свойств конкретных семейств ПП. Поэтому база данных в перспективе должна включать в себя как опыт моделирования различными исследователями, так и результат моделирования, полученные с помоо1ью комплекса програми, свЯ занного с базой. [c.86]

    Описанный метод не позволяет идентифицировать варианты структуры, различающиеся по своим структурным матрицам, но имеющие одинаковые локальные характеристики всех особых точек (для трехкомпонентных смесей примерами таких структур являются типы 38 а и в по классификации [5]). В этих случаях выяснение структуры требует проведения специального расчетного или экспериментального исследования. Для решения задачи необходимо установить расположение сепаратрис седловых особых точек, что достигается, например, использованием метода, предложенного в работе [13] и заключающегося в расчете линий сопряженных нод, сколь угодно близких к сеператрисе. [c.34]

    Недостаток принятой в этой книге классификации методов по исследуемым свойствам связан с тем, что определенные методы математической обработки экспериментальных данных одни и те же для различных физических свойств. Например, способы обработки экспериментальных данных, приведенные в гл. V при описании потенциометрических методов исследования обратимых ступенчатых равновесий, могут быть применены также в случаях, когда концентрация свободного центрального иона или лиганда определена полярографически или спектрофотометрически. При методе непрерывных изменений, описанном на стр. 266, в качестве физического свойства могут быть использованы как оптическая плотность, так и показатель преломления или понижение температуры замерзания. Всю совокупность ме- [c.22]

    Экспериментальное исследование макромолекул методами колебательной спектроскопии показывает, что в ИК-спектрах нерегулярных полимеров имеется множество полос, в большей или меньшей степени чувствительных к регулярности образца. Проявления такой связи настолко многозначны, что, во-первых, требуется строгая классификация наблюдаемых явлений с целью их рационального использования при решении аналитических задач и, во-вторых, необходим теоретический анализ колебаний макромолекулярных систем, которые невозможно свести к модели бесконечных регулярных цепей. [c.67]

    Естественно, что состояние теории жидкостей и отсутствие необходимых методов их экспериментального исследования в первые два десятилетия нашего века привели к тому, что роль растворителя учитывалась либо с чисто химической точки зрения, либо с помощью привлечения таких его макроскопических характеристик, как диэлектрическая проницаемость и вязкость. В этом смысле интересно отметить, что в опубликованной в оригинале в 1953 г. обширной монографии Одрит и Клейнберга Неводные растворители [58] рассматривается их использование в качестве среды для проведения химических реакций, и весь материал изложен в этом свете. Отмечая специфические особенности воды как растворителя, авторы, подробно останавливаясь на таких ее свойствах, как малая электропроводность, амфотерность, легкость протекания в ней реакций нейтрализации, гидролиза и т. п., ограничивают характеристику причин своеобразия воды цитатой из монографии Яндера [59] Замечательное поведение воды объясняется главным образом строением ее молекулы, ее дипольным характером, ее малым объемом и свойствами, обусловленными этими факторами . Такой подход, оказавшийся весьма продуктивным для практики и приведший к возможности классифицировать растворители на химической основе, естественно, недостаточен для понимания внутреннего механизма сложных явлений, сопровождающих образование раствора и изменения его свойств с концентрацией и температурой. Тем не менее следует отметить успехи в классификации растворителей по их прото-фильности, по характерным группам, содержащимся в их молекулах, по их дифференцирующей и нивелирующей способности. Последняя система классификации достигла особенного совершенства в работах школы Н. А. Измайлова [6]. [c.21]

    Цель книги — познакомить читателя с современным состоянием проблемы методами функционального и критериального описания процессов классификации, математического моделирования, экспериментального исследования и идентификации некоторых типов разделительных аппаратов, а также с углубленным анализом той роли, которую играют классификаторы в технологических системах с рециклом, в первую очередь в системах измельчения замкнутого цикла, широко распространенных в промьпиленности. Опыт авторов показывает, что замена большинства установленных классификаторов на более эффективные при низкой стоимости работ, которые часто мо1ут быгь вьшолнены силами самих предприятий, позволяет повысить единичную производительность измельчителей на 15—30 %, сократив примерно на столько же удельные энергозатраты на размол. [c.8]

    В настоящее время во многих странах исследования направлены на очистку конкретных промышленных стоков, содержащих вредные вещества, и изучение их синэнергехического воздействия, когда присутствие одного химического вещества в соединении с другим может значительно увеличить или изменить его воздействие. Имеют значение для выбора методов очистки число, вид и концентрация химических веществ. В силу их разнообразия затруотена классификация сточных вод по содержащимся в них химическим отходам. Во многих случаях стоки, образующиеся на химическом заводе, имеют неповторимые характеристики, и следует дифференцированно изучать процесс очистки параллельно с поисками наиболее пригодной технологии, по возможности, на испытательных экспериментальных установках. На основании экспериментальных исследований с учетом технике-экономических показателей выбирают оптимальный метод очистки сточных вод. [c.6]

    Мы не ставили перед собой задачу дать исчерпывающий обзор всех известных примеров генерирования карбенов (образование которых часто, кстати, строго не доказано) в данном разделе в основном дана классификация этих методов, позволяющая ориентироваться в большом числе разноплановых экспериментальных исследований. Наиболее важные в практическом отношении методы — генерирование карбенов из диазосоединений, реакция Симмонса — Смита и получение дигалогенциклопропанов в условиях межфазного катализа детально рассмотрены в отдельных разделах гл. 4. [c.83]

    В представленном в этом разделе кратком описании расчетных методов нашли отражение основные тенденции развития конформационного анализа пептидов и белков в последнее время. Несмотря на многочисленность и видимое разнообразие новых теоретических разработок, их сближает ряд общих черт принципиального характера, причем тех же самых, что были присущи предшествующим теоретико-методологическим исследованиям. Отмечу лишь три таких особенности. Во-первых, практически все предложенные методы расчета исходят из предположения, что нативная трехмерная структура белка имеет самую низкую внутреннюю энергию. Поэтому конечная цель каждого метода состоит в установлении глобальной конформации молекулы по известной аминокислотной последовательности. Такое предположение, сформулированное более 40 лет назад, до сих пор не встретило каких-либо противоречий со стороны экспериментальных фактов и, следовательно, может считаться оправданным. Во-вторых, в последние годы, как и ранее, во всех случаях предпринимались попытки подойти к расчету глобальной конформации белка путем усовершенствования предсказательных алгоритмов, процедур минимизации и вычислительной техники. Надежды на решение структурной проблемы по-прежнему связываются не с более глубоким проникновением в молекулярную физику белка и разработкой соответствующих теорий, а главным образом с достижением в области методологии теоретического конформационного анализа и развитием компьютерной аппаратуры. Между тем такой подход в принципе не может привести к априорному расчету глобальной конформации белка. В разделе 2.1 уже указывалось, что перебор со скоростью вращательной флуктуации (10 с) всех мыслимых конформационных состояний даже у низкомолекулярной белковой цепи (< 100 остатков) занял бы не менее 10 лет. Следовательно, при беспорядочно-поисковом механизме сборка белка как в условиях in vivo в процессе рибосомного синтеза, так и в условиях in vitro в процессе ренатурации не может осуществляться через селекцию конформации всех локальных минимумов потенциальной поверхности. Реальные же возможности самых совершенных современных методов расчета ограничены независимым анализом тетра- и пентапептидов, рассчитанных четверть века назад. Ни один из существующих теоретических методов не в состоянии проводить конформационный анализ сложных олигопептидов, а тем более белков, без привлечения дополнительной информации - результатов прямого эксперимента, касающегося исследуемого объекта, или статистической обработки имеющихся структурных данных. В-третьих для всех предложенных методов расчета характерно отсутствие классификации пептидных структур, оправданной с физической точки зрения и [c.246]

    Интенсивные исследования последних десятилетий, громадный объем накопленных экспериментальных данных позволяют сегодня уже говорить о классификации вариантов в рамках метода высокоэффективной жидкостной хроматографии. Конечно, при этом остается в силе классификация по механизму сорбции, приведенная выше. Однако часто в литературе по ВЭЖХ используются и другие классификация и терминология, не всегда до конца логичные. Так, в соответствии с типом сорбента можно различать хроматографию в системах жидкость— твердое тело, распределительную, на химически связанных неподвижных фазах. Часто, в особенности в зарубежной литературе, хроматографию на твердых адсорбентах относят к адсорбционной. Как показали исследования, ставить знак равенства между этими двумя терминами нельзя, так как не всегда именно поверхность твердого адсорбента ответственна за удерживание — зачастую главную роль играет адсорбированный на йей слой компонентов подвижной фазы (хроматография на динамически модифицированных сорбентах). С другой стороны, сорбция на химически связанных неподвижных фазах часто имеет обычный адсорбционный механизм. [c.15]

    Андерсон и Фримен [1] опубликовали термограммы для 33 насыщенных полиэфиров, для которых были указаны торговые названия. Полученные результаты представлены в виде таблиц, в которых указано числов пиков, площади пиков, температуры, при которых проявляются пики, а также положение точек перегиба. Авторы пытались применить полученные данные для классификации исследованных веществ. Однако в разных лабораториях применяются различные экспериментальные методы и приборы, поэтому такая классификация может быть полезной только для тех, кто ее осуществил. Широкий обмен необработанными данными ДТА будет возможен только после разработки соответствующих стандартных приборов и методов эксперимента. [c.150]

    В солевом составе речных и грунтовых вод обычно преобладают хлориды, сульфаты, бикарбонаты натрия, кальция и магния. Поэтому шестикомпонентная взаимная система Ка , Са , Мд //СГ, ЗОГ НСОз + Н2О получила название речной. Ввиду особой важности для народного хозяйства пресных вод их исследованию посвящено очень много работ. При этом предложены различные принципы классификации, которые позволили бы ориентироваться в огромном экспериментальном материале. Среди них видное место занимают геометрические методы, частично основанные на некоторых положениях физико-химического анализа. [c.83]

    В принципе можно выделить четыре наиболее вероятных случая, которые встречаются при спектрофотометрическом исследовании образования комплексов состава 1 1 а) молярные коэффициенты погашения М, Ь и МЬ известны или их можно легко определить б) известны молярные коэффициенты погашения каких-либо двух частиц из трех (М, Ь и МЬ), присутствующих в растворе в) известен молярный коэффициент погашения только одной из трех частиц, присутствующих в растворе г) молярные коэффициенты погашения ни одной из частиц не известны. При такой классификации считается, что молярные коэффициенты частиц, не поглощающих при рабочей длине волны, известны. Для случая (а) имеется простое алгебраическое решение. Для случая (б) предложены два метода обработки данных метод экстраполяции прямой линии, по наклону которой и отрезку, отсекаемому на оси, можно рассчитать константу устойчивости и неизвестный молярный коэффициент погашения [12], и метод последовательного приближения, который обсуждается в разд. 9.2. применительно к данным по химическим сдвигам, полученным при ЯМР-спектральных исследованиях [13]. Два примера по применению экстраполяционного метода приведены в гл. 12 при обсуждении третьего примера исследования. Для случая (в) также применимы итерационные методы обработки данных [14], хотя константу устойчивости можно рассчитать ариф-гметически, подобрав соответствующим образом экспериментальные условия [12]. Для системы, соответствующей случаю (г), [c.136]

    Изучение использования адсорбционных и адгезионных свойств высокодисперсных глинистых минералов и ионообменной способности полимерных материалов для обеззараживания воды си стематически не проводятся. Однако данные классификации очистки воды, как и их экспериментальная проверка [176], указывают на то, что подобные исследования позволят усовершенствовать методы водоочистки, а применение названных выше материалов окажется одним из наиболее реальных путей в разрешении проблемы обеззараживания воды даже от наиболее устойчивых форм возбудителей различных заболеваний, и особенно вирусов. [c.352]

    Обширный экспериментальный материал по газохроматографическому измерению изотерм адсорбции, принадлешап1 их к различным структурным типам по классификации БЭТ, содержится в монографии Киселева и Яшина [1], посвященной теоретическим и экспериментальным основам разработки газоадсорбционных хроматографических методов анализа к этой книге мы и отсылаем читателя за более подробными сведениями. Там же содержится полная сводка не только многочисленных собственных исследований авторов по данному вопросу, но и исчерпывающая библиография советских и зарубежных работ, в основном по первую половину 1966 г. Здесь мы рассмотрим несколько подробнее лишь некоторые работы Киселева с сотрудниками, представляющие, по нашему мнению, особый интерес [24]. [c.120]

    XVIII в. переживала процесс глубоких преобразований, или основной кульминационный период. До химической революции решающую роль в развитии химии играл эксперимент, хотя в XVII — XVIII вв. уже все большее значение начинала приобретать теория. Следует помнить, что классификация всегда является лишь дополнительным средством для ориентации в развитии науки, и абсолютизировать ее не следует. Указанная классификация характеризует главную тенденцию в развитии знаний и вовсе не свидетельствует о том, что в один период истории определяющей является только практика, а в другой — только теория [6]. В период развития теории эксперимент по-прежнему сохранил свое особое значение, и именно только в сочетании с экспериментальными методами исследования теория приобрела решающее значение для развития всех областей химии. [c.10]

    Измерения теплоемкостей дают очень ценный материал для изучения фазовых переходов, а также критических и закритиче-ских явлений. Выше (гл. 12, 4) отмечено, что в области фазовых переходов наблюдается аномальное возрастание теплоемкости. Поскольку измерения теплоемкостей могут быть проведены с весьма высокой точностью, они могут быть использованы как один из наиболее чувствительных методов обнаружения фазовых переходов. Далее, при исследовании фазовых переходов часто бывает важно измерить величину скачка теплоемкости в точке перехода или вблизи критической точки, так как это дает возможность сопоставить экспериментальные результаты с теоретическими выводами. Кроме того, изучение формы кривой теплоемкость — температура в области переходов в твердой фазе может быть использовано для классификации переходов и выяснения их природы, поскольку [c.248]

    Развитие таких методов, как ИК-спектроскоиия или спектроскопия ЯМР, для исследования органических веществ обычно основывается на хорошо определенных линиях спектра. По мере расширения экспериментальных результатов становятся все более понятными теоретические вопросы метода, причем задача извлечения полезной информации становится тем сложнее, чем сложнее экспериментальные данные. Чтобы облегчить сопоставление результатов или выявить новые закономерности, стараются ввести классификацию результатов. Масс-спектрометрия в течение длительного времени находилась в такой стадии, когда несмотря на необходимость такой классификации, не удавалось найти удобные способы объединения огромного количества конкретной информации. Один из главных камней преткновения в попытках классификации состоял в том, что интерпретация спектров на основе имеющейся общей теории затрудняется отсутствием необходимых сведений о структурах и состояниях ионов. В этих условиях следует, скорее, удивляться тому, что было все же предложено несколько типов классификации, отличающихся главным образом степенью их универсальности. Ниже обсуждаются эти методы классификации. [c.53]


Смотреть страницы где упоминается термин Классификация методов экспериментальных исследований: [c.7]    [c.2]    [c.25]    [c.215]    [c.10]    [c.12]    [c.126]   
Смотреть главы в:

Тепло- и массообмен Теплотехнический эксперимент -> Классификация методов экспериментальных исследований




ПОИСК





Смотрите так же термины и статьи:

Классификация экспериментальных методов рентгеновских дифракционных исследований

МЕТОДЫ ЭКСПЕРИМЕНТАЛЬНОГО ИССЛЕДОВАНИЯ И ИДЕНТИФИКАЦИИ ПРОЦЕССОВ КЛАССИФИКАЦИИ

Метод классификация



© 2025 chem21.info Реклама на сайте