Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кулоновские теории

    Теоретические расчеты коэффициентов активности основаны на представлениях, которые раскрывают природу сил, вызывающих отклонение свойств реальных растворов от свойств идеальных. Для расчета коэффициентов активности ионов используется теория Дебая —Хюккеля. По этой теории ион в растворе рассматривается как заряженная частица, окруженная ионной атмосферой преимущественно из противоположно заряженных ионов, а взаимодействие иона с ионной атмосферой имеет электростатический (кулоновский) характер. Коэффициенты активности зависят от заряда иона и параметров ионной атмосферы ее размеров и плотности. Параметры ионной атмосферы определяются ионной силой раствора /, вычисляемой как полусумма произведений концентрации всех ионов в растворе на квадрат их заряда 2  [c.24]


    Современная теория межмолекулярных взаимодействий представляет собой синтез и развитие химической и физической теорий. Главная роль в межмолекулярных взаимодействиях отводится химическим связям, возникающим между атомами, молекулами и ионами. Кроме того, рассматривается кулоновское взаимодействие заряженных частиц, коллективное взаимодействие электронов и ионов металла, полярных молекул с окружающей средой, межмолекулярное отталкивание, обусловленное повышением кинетической энергии электронов при малых межъядерных расстояниях. Считается, что межмолекулярные взаимодействия обусловлены электрическими полями атомных ядер и электронов, из которых состоят атомы и молекулы. Используется условное подразделение взаимодействий на слабые и сильные, близкодействующие и дальнодействующие, специфические и, неспецифические и т. д. [c.25]

    Согласно теории Дебая—Гюккеля, которую мы потом рассмотрим подробнее, каждый ион в растворе можно считать окруженным атмосферой , в которой преобладают ионы противоположного знака. Как же возникает эта атмосфера Поскольку расстояния между ионами невелики, между ними действуют кулоновские силы притяжения (в случае противоположно заряженных ионов) и отталкивания (для одноименно заряженных ионов). [c.193]

    Основой современных теорий растворов электролитов является теория П. Дебая и Э. Гюккеля (1923 г.). Авторы исходили из того, что электролиты в растворе полностью диссоциированы, растворитель представляет собой непрерывную среду с диэлектрической проницаемостью е, и все отклонения активности от концентрации обусловлены только кулоновскими взаимодействиями между ионами. Они ввели представление об ионной атмосфере. Причем вследствие теплового движения ионов и связанного с ним некоторого размазывания зарядов они рассматривали ионную атмосферу как систему с непрерывно уменьшающейся по мере удаления от центрального иона плотностью заряда. [c.170]

    Теория Дебая и Гюккеля учитывает только кулоновское ион — ионное взаимодействие и игнорирует другие виды взаимодействий (например, ион — дипольное взаимодействие, образование ассоциа-тов, комплексов и т. д.). Во втором приближении П. Дебай и Э. Гюк-кель учли собственные размеры ионов. Для этого константа интегрирования Ау в уравнении (111.36) была взята в соответствии с формулой (П1.40), а потенциал ионной атмосферы определялся как предел 1ф—фЛг- а- Окончательный результат для среднего коэффициента активности имеет вид [c.40]


    Согласно теории Дебая — Гюккеля, отличие активности от концентрации обусловлено только кулоновским взаимодействием. По- [c.43]

    Второй недостаток теории Аррениуса связан с игнорированием ион-ионного взаимодействия. Ионы рассматривались как частицы идеального газа, а следовательно, не учитывалось обусловленное кулоновскими силами притяжение катионов и анионов и отталкивание одноименно заряженных ионов. Пренебрежение ион-ионным взаимодействием, совершенно непонятное с физической точки зрения, приводило к нарушению количественных соотношений теории Аррениуса. Так, например, строгая проверка уравнения (1.7) показывала, что константа диссоциации К не остается постоянной, а изменяется с концентрацией электролита. Наиболее отчетливо этот эффект проявляется в растворах сильных электролитов, истинная степень диссоциации которых о. близка к единице (так называемая аномалия сильных электролитов ). Но даже в ра-2 19 [c.19]

    Теория Дебая — Гюккеля учитывает только кулоновское ион-ионное взаимодействие и игнорирует другие виды взаимодействий (например, ион-дипольное взаимодействие, образование ассоциатов, комплексов и т. д.). [c.46]

    Согласно теории Дебая — Гюккеля, отличие активности от концентрации обусловлено только кулоновским взаимодействием. Поэтому для незаряженных частиц СА /са= 1 и, следовательно, [c.50]

    Возможность образования ионной атмосферы вытекает из статистической теории электролитов. Распределение ионов в растворе следует рассматривать как промежуточное между беспорядочным распределением молекул в жидкости и упорядоченным распределением частиц в кристаллической решетке. Ионы в растворе в каждый данный момент времени распределены не хаотически, а в некоторой степени упорядоченно благодаря кулоновскому притяжению зарядов противоположного знака. В каждый момент времени вокруг любого из ионов формируется оболочка из ионов противоположного заряда — ионная атмосфера (рис. 6.1,а). [c.286]

    Теория Дебая — Хюккеля была развита с учетом химизма взаимодействия ионов с молекулами растворителя. В 1959 г. Дебай отмечал Мне кажется, что существенный прогресс в теории концентрированных растворов электролитов может быть достигнут только в том случае, если будет обращено достаточное внимание на существование молекулярных сил, быстро убывающих с увеличением расстояния, помимо дальнодействующих кулоновских сил . [c.211]

    Чисто физическая теория Фуосса и Крауса, объясняющая аномальную проводимость образованием ионных двойников и тройников за счет куло-новского взаимодействия, была шагом вперед, но она не явилась общей теорией, так как в ней не было учтено то обстоятельство, что ассоциация ионов связана не только с кулоновским, но и с химическим взаимодействием между ионами и молекулами растворителя. [c.9]

    Довольно удачную теорию ионной ассоциации предложил Бьеррум в 1926 г.. Его модель — простейшая из возможных для такой системы. В теории Бьеррума предполагается, что ионы — твердые, неполяризованные сферы, а взаимодействие между ними — кулоновского типа. В качестве дополнительного приближения использована диэлектрическая проницаемость растворителя, хотя необоснованно считать ее величину вблизи иона такой же, как в объеме раствора. Согласно теории Бьеррума, все ионы противоположного знака, находящиеся на определенном расстоянии один от другого, ассоциируются в ионные пары. Это определенное расстояние к можно найти по уравнению [c.365]

    Впервые, еще до появления современной квантовой механики, дискретность орбит электрона была постулирована в теории Бора. Согласно этой теории разрешенными являются орбиты, при движении по которым момент импульса кратен величине й. При этом центробежная сила, действующая на электрон, должна быть равна силе кулоновского притяжения его к ядру. Из этих двух [c.31]

    Теория поля лигандов частично учитывает тенденцию лигандов к образованию ковалентных связей. В этой теории, кроме величин которые со,храняют такой же смысл, как в теории кристаллического поля, используются параметры Рака (В, С), характеризующие межэлектронное отталкивание. Теоретически эти параметры являются числовыми значениями кулоновского отталкивания и обменных интегралов. Показателем способности к образованию ковалентных связей может служить — отношение параметров Рака для комплекса и свободного иона. По значению лиганды располагаются в ряд  [c.246]

    Рассмотрим, как изменится величина полной энергии с изменением кулоновского интеграла а . В первом порядке теории возмущений [c.291]

    В соответствии с основной идеей теории возмущений волновая функция реагирующей системы строится из волновых функций исходных (невозмущенных) реагентов. Полная энергия этой системы складывается из энергий отдельных реагентов и членов возмущения, составляющих так называемую энергию взаимодействия. Знак и величина последней определяются конкретным видом параметра возмущения в выражении типа (1.77) для полной энергии. В общем случае этот член должен включать все виды энергетических взаимодействий между двумя сближающимися молекулами (ионами, радикалами) кулоновские, индукционные, обменное отталкивание, перенос заряда, дисперсионные. Конкретный вид получаемых [c.330]


    Существуют два венозных подхода к теории образования комплексных соединений, С позиций электростатического подхода, ведущего свое начало от Косселя, образование комплексного соединения происходит за счет кулоновского притяжения [c.409]

    В этих приближенных расчетах не учтена энергия нулевых колебаний и потенциал отталкивания представлен в довольно грубом приближении. Тем не менее выводы о роли кулоновской энергии справедливы. Кулоновскую энергию решетки можно найти экспериментальным путем и оценить таким образом значение показателя п опыт показывает, что м Ю, что хорошо совпадает с теорией. [c.277]

    В дальнейшем выяснилось, что ассоциации могут подвергаться также одноименно заряженные Hotibi, обладающие большими р ззмерами и малыми зарядами, как, папример, ионы органических красителей, пикраты, перхлораты и др. Очевидно, что в этом случае за ассоциацию ответственны не кулоновские, а близкодействующие, в частности дисперсионные, силы. Эти силы не учитываются теорией Дебая — Гюккеля, и ее приложимость к таким — переходным к коллоидным—системам должна быть весьма ограниченной, что подтверждается опытными данными. [c.98]

    Для статистической теории электролитов исходным является следующее положение ионы распределены в объеме раствора (в каждый данный момент) не хаотически, а в соответствии сзаконом кулоновского взаимодействия их. Из этого положения методом статистической физики найдено распределение ионов различных знаков вокруг каждого отдельного иона. Таким образом, открыто существование ионной атмосферы ионного облака), имеющейся вокруг каждого иона и состоящей из ионов противоположного центральному иону знака. Это статистически неравномерное распределение в пространстве электрических зарядов разных [c.403]

    Энергия ионной кристаллической решетки. Теория ионных кристаллов исходит из того, что в решетке существуют дальнодействую-щие электростатические силы притяжения между разноименными ионами и отталкивания между одноименными. Любой рассматриваемый ион в решетке непосредственно окружен противоионами, а одноименные ионы расположены за ними, и такое чередование сохраняется во всей решетке. Поэтому энергия кулоновского притяжения разноименных ионов преобладает над кулоновским отталкиванием. Надо учитывать такн<е квантовомеханическое отталкивание ионов (см. 28). Однако вклад такого отталкивания невелик, как и вклады поляризации и ван-дер-ваальсового притяжения ионов. Максимально устойчивой, равновесной структуре кристаллической решетки отвечает минимум энергии. Им же определяется и равновесное расстояние между ионами. [c.130]

    Резонансный или обменный интеграл, впервые введенный в квантовой механике, не имеет аналогов в классической физике. Однако он играет важную роль в теории химической связи. Он характеризует взаимодействие электронных орбиталей соседних атомов в молекуле. Расчеты показывают, что резонансный интеграл меньше нуля, т. е. отрицательная величина. В действительности между частицами имеется только электрическое взаимодействие. И только из-за принятого метода квантовомеханического расчета — МО в виде чПКАО — это единое взаимодействие разбивается на части кулоновский и обменный интегралы. [c.27]

    Р — число замкнутых линий, то / - кулоновская диаграмма второго при этом будут правильно учте- приближения теории возмущений для ны знаки слагаемых ai bi] обменная диаграмма ВТО- [c.261]

    Химические свойства молекул определяются валентными электронами, число которых, особенно в случае молекул, содержащих атомы тяжелых элементов, составляют лишь небольшую долю общего числа электронов системы. Поэтому желательно задачу расчета молекулы сформулировать так, чтобы в ней рассматривалась только система валентных электронов. Трудность состоит в том, чго надо учитывать не только поле (кулоновское и обменное), создаваемое электронами внутренних оболочек, но и требование ортогональности (в общем случае линейной независимости) орбиталей валентных и внутренних оболочек. Свести задачу расчета всей молекулы к задаче расчета системы валентных электронов можно с помощыо метода псевдопотенциала, который появился в 50-е годы в теории твердого тела и с тех пор бурно развивается . [c.272]

    Не следует забывать, что химия исследует вещество только в одном из аспектов. Изучая состав, химические свойства, способы получения твердых веществ, мы не можем обходиться без представления об их электронной конфигурации, кристаллической структуре, без знания закономерностей, которым подчиняются изменения физических свойств с изменением энергетического состояния вещества, словом без физической теории и без физических экспериментов. Химия, физика твердого тела и молекулярная биология — по определению физика-теоретика айскопфа — являются непосредственным следствием квантовой теории движения электронов в кулоновском поле атомного ядра. Все многообразие химических соединений, минералов, изобилие видов в мире организмов обусловливается возможностью расположения в достаточно стабильном положении сравнительно небольшого количества первичных структурных единиц — атомов — огромным количеством способов, диктуемых пространственной конфигурацией электронных волновых функций. Длина связи, т. е. межатомное расстояние,— это диаметр электронного облака, определяемый амплитудой колебания электрона в основном состоянии. Поскольку масса ядра во много раз больше массы электрона, соответствующая амплитуда колебания ядра во много раз (корень квадратный из отношения масс) меньше. Поэтому, как отмечает Вайскопф, ядра способны образовывать в молекулах и кристаллах довольно хорошо локализованный остов, устойчивость которого измеряется энергией порядка нескольких электронвольт, т. е. долями постоянной Ридберга. Местоположения ядер атомов, образующих остов кристалла, с большой точностью определяются методом рентгеноструктурного анализа. Таким образом, бутлеровская теория строения, структурные формулы в наше время получили ясное физическое обоснование. [c.4]

    Отметим, что в теории Дебая—Хюккеля и Бьеррума фигурировала диэлектрическая постоянная ер чистого растворителя, что имеет смысл для разбавленных растворов. Однако Дебай и Полинг в дальнейшем показали, что при повышении концентрации изменением ер пренебрегать нельзя. Качественная картина влияния зарядов ионов на диэлектрическую постоянную, данная Хюккелем, сводится к рассмотрению влияния деформации полей, связанных с молекулами растворителя, за счет влияния на них соответствующих ионных сил. При сближении ионов друг к другу связанные с ними поля деформируются и деформируют поля окружающих их молекул растворителя. Взаимная деформация ионов в вакууме вела бы к дополнительному их притяжению вследствие возникновения электрических сил поляризации, действующих в одном направлении с кулоновскими межионньши силами. [c.400]

    Зторой недостаток теории Аррениуса был связан с игнорированием ион — ионного взаимодействия. Ионы рассматривались как частицы идеального газа, а следовательно, не учитывалось обусловленное кулоновскими силами притягательное взаимодействие катионов и анионов и отталкивательное взаимодействие одноименно заряженных ионов. Пренебрежение ион— ионным взаимодействием, совершенно непонятное с физической точки зрения, приводило к нарушению количественных соотношений теории Аррениуса. Так, например, строгая проверка уравнения (1.7) показывала, что константа диссоциации К не остается постоянной, а изменяется с концентрацией электролита. Наиболее отчетливо этот эффект проявляется в растворах сильных электролитов, истинная степень диссоциации которых а близка к единице (так называемая аномалия сильных электролитов ). Но даже в растворах слабой уксусной кислоты зависимость К от концентрации СНзСООН значительно превосходит возможные ошибки измерений. Ниже приведены константы диссоциации К для водных растворов КС1 и СНзСООН при 25 С  [c.16]

    Расхождение современных статистических теорий наблюдается в основном в ходе функций распределения на малых расстояниях. Теоретический расчет потенциала взаимодействия частиц на малых расстояниях чрезвычайно сложен и не может быть пока проведен однозначно, так как на таких расстояниях наряду с чисто отталкива-тельными и кулоновскими силами существенную роль играют квантово-механические дисперсионные и другие силы. Кроме того, при уточнении поведения бинарной функции распределения на малых расстояниях между ионами (концентрированные растворы) необходим учет микроскопической структуры растворителя. [c.48]

    После торжества теории атома Бора стало ясно, что молекулу связывают в единое целое электрические силы притяжения электронов и ядер. Однако до возникновения квантовой механики нельзя было построить удовлетворительной теории даже для такой простой молекулы, Как Н,. Нильс Бор предложил для нее простую модель два электрона вращаются по круговой орбите, осью которой служит линия, соединяю-щая ядра.. Притяжение электронов удерживает ядра, а центробежная сила не дает электронам сойти с круговой траектории. Однако эта модель не смогла объяснить спектр мо.лекулы и ряд ее свойств, например диамагнетизм. Неясно было также, почему в то время как кулоновская электрическая сила — дальнодействующая, химическое взаимодействие проявляет себя главным образом ни очень коротких pa тoянияxi как возникает свойство насыщаемостю) химических сил. [c.79]

    Ионная связь в кристаллах. Энергия ионной кристаллической решетки. Для объяснения и предсказания свойств ионных кристаллов широко используется электростатическая теория ионной связи. Теория ионных кристаллов исходит из того, что в решетке действуют электростатические силы притяжения между разноименными ионами и отталкивания — между одноименными. Любой рассматриваемый ион в решетке непосредственно окружен противоионами, а одноименные ионы расположены за ними, и тз1Кое чередование сохраняется во всей решетке. Поэтому кулоновское притяжение разноименных ионов преобладает над кулоновским отталкиванием. Надо учесть также квантовомеханическое отталкивание заполненных электронных оболочек ионов. Однако вклад такого отталкивания невелик и практически компенсируется эффектом поляризации ионов и ван-дер-ваальсовым притяжением . В целом энергия притяжения преобладает над энергией отталкивания и кристаллическая структура оказывается устойчивой. Расстояния между ионами в решетке определяются равновесием сил притяжения и отталкивания. Максимально устойчивой, равновесной структуре кристаллической решетки отвечает минимум энергии. , [c.168]

    Модель свободных, электронов. Она основывается на представлении о том, что валентные электроны в металлических кристаллах обобщаются (делокализируются). При этом, образуется ионный остов из катионов, помещенный в так.,называемую электронную жидкость . Энергия сцепления частиц в рамках этой модели определяется преобладанием энергии кулоновского взаимодействия между катионами и электронами над энергией отталкивания электронов за счет их кинетической энергии и катионов за счет ионного взаимод.ействия, причем последний вклад невелик. Эта теория достаточно хорошо описывает свойства щелочных металлов, качественно объясняет проводимость металлов и другие свойства. [c.129]

    В растворах электролитов большое значение имеют как силы дальнодействия (кулоновские силы), силы близкодействия (межмолекулярные силы), так и характер связ иона с окружающими его молекулами растворителя. Однако развитие теории растворов долгое время базировалось на основе учета только дальнодейст-вующих сил. За последнее время широкое развитие получили представления, основанные на учете близкодействующих сил и характера связи ион — растворитель. [c.226]

    В соответствии с основной идеей теории возмущений волновая функция реагирующей системы строится из волновых функщ1Й исходных (невозмущенных) реагентов. Полная энергия этой системы склады вается из энергий отдельных реагентов и членов возмущения, составляющих так называемую энергию взаимодействия. Знак и величина последней определяются конкретным видом параметра возмущения в выражении типа (1.85) для полной энергии. В общем случае этот член должен включать все виды энергетических взаимодействий между двумя сближающимися молекулами (ионами, радикалами) кулоновские, индукционные, обменное отталкивание, перенос заряда, дисперсионные. Конкретный вид получаемых при этом уравнений зависит также и от особенностей принятого расчетного приближения (МОХ, ППП, NDO и пр.). Рассмотрим наиболее простой вариант, основанный на применении МО Хюккеля, — метод межмолекулярных орбиталей (ММО). [c.512]


Смотреть страницы где упоминается термин Кулоновские теории: [c.34]    [c.83]    [c.194]    [c.165]    [c.52]    [c.59]    [c.128]    [c.234]    [c.132]    [c.122]   
Смотреть главы в:

Методы измерения в электрохимии Том2 -> Кулоновские теории




ПОИСК







© 2025 chem21.info Реклама на сайте