Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алкилбензолы анализ

    Сопоставительный анализ огромного экспериментального материала, связанного с проблемой получения алкилбензолов в присутствии протонных кислот, позволил высказать мнение [160] о возможности существования двух механизмов рассматриваемой реакции [c.68]

    Присутствие воздуха в системе, как и увеличение времени контакта с катализатором, приводит к возрастанию степени превращения исходных углеводородов. Анализ продуктов превращения в комплексном н верхнем углеводородных слоях показывает существенные различия в содержании соединений только с наибольшими молекулярными массами, т. е. наиболее основных алкилбензолов, образующих наиболее стабильные комплексы с катализаторами (табл. 5.21). [c.222]


    Анализ данных табл. 1 показывает, что величины Iga° для различных классов углеводородов неодинаковы и уменьшаются в последовательности моноциклические углеводороды (алкилбензолы, алкилциклогексаны) > олефины> н-парафины. [c.50]

    Анализ ароматических углеводородов нефти. Исследование масс-спектров высокомолекулярных алкилбензолов, конденсированных и других типов ароматических соединений показало, что диссоциативная ионизация их молекул проте кает весьма селективно, вместе с тем опи, как правило, характеризуются высокой устойчивостью к электронному удару. Благодаря этому качестве аналитических могут быть использованы как пики молекулярных, так и осколочных ионов. Методом молекулярных ионов получают сведения о количестве насыщенных колец, присоединенных к ароматическому ядру. По масс-спектрам сложных смесей ароматических углеводородов суммированием высот пиков молекулярных ионов гомологических рядов от СпНгп-о до H2 i8 могут быть идентифицированы различные типы соединений и оценены их относительные количества. Однако чтобы сделать метод достаточно специфичным с точки зрения структурной идентификации, исследуемый образец должен быть предварительно подвергнут адсорбционному разделению на узкие фракции, содержащие преимущественно моно-, би-, три- или полицик-лические ароматические углеводороды. [c.168]

    Из газойлевой фракции 230—235 °С выделены моно- и бицик-лическая ареновая часть. Моноциклическая ареновая фракция разделялась на молекулярных ситах типа 10Х. Анализ методами масс-спектрометрии, ЯМР и ИК-спектроскопии показал, что алкилбензолы, адсорбированные на молекулярных ситах, представляют в основном дизамещенные производные, имеющие одну метильную и одну длинную (6—8 атомов углерода) алкильную цепь [83]. Алкильный заместитель в /з молекул в конце цепи имеет метильное ответвление  [c.224]

    Браун и сотрудники [64] опубликовали методику исследования метановых углеводородов, базирующихся на коэффициентах, полученных на основании многократных калибровок прибора. Она позволяет раздельно определять метановые углеводороды и алкилбензолы, а также устанавливать распределение углеводородов по молекулярным весам. Однако необходимые для расчета масс-спектров аналитические коэффициенты нельзя применить без предварительной корректировки с учетом их зависимости от молекулярного веса, которая с хорошим приближением может быть описана интерполяционной формулой. Возможности метода иллюстрируются исследованием жидких нефтяных парафинов результаты анализа приведены на рис. 37. Пунктирная кривая соответствует распределению, вычисленному по данным анализа фракций с учетом их выходов. Полученные величины удовлетворительно совпадают с экспериментальными результатами средняя относительная ошибка составляет 7 отн.%- [c.159]


    Примером комплексного исследования может служить анализ бензино-керосиновых фракций [311], в которых при низкой энергии электронов определялись соотношения различных типов ненасыщенных соединений и группа алкилбензолов (как указывалось выше, на эти соотношения почти не влияет даже значительная невоспроизводимость абсолютных интенсивностей пиков в спектре). Затем концентрация этих групп пересчитывалась по более надежному значению концентрации алкилбензолов, определенному при обычной энергии ионизирующих электронов. Применение метода иллюстрируется данными, приведенными в табл. 33. [c.190]

    Поскольку анализ является самостоятельной работой, можно приближенно рассчитать выход сульфонола, предположив, что продукт после сушки представляет собой 100%- Ный сульфо нол. Если нейтрализацию проводят без отделения серной кислоты, то надо рассчитать и количество образовавшегося сульфата натрия— на образование его идет избыток серной кислоты по сравнению со стехиометрическим количеством для сульфирования алкилбензолов. [c.171]

    Анализ алкилбензолов спектральными методами обсуждается в разд, 13.16—13.18.) [c.390]

    При использовании набивных колонок даже анализ изомеров углеводородов g представлял определенные трудности, а капиллярные колонки с неполярной неподвижной фазой — скваланом — позволяют анализировать все изомеры не только гексана, но и гептана, октана. Применение капиллярных колонок позволило провести почти полную идентификацию компонентов бензиновых фракций нефтей, перегоняющихся до 175°С. Присутствующие в этих фракциях алкилбензолы можно анализировать после предварительного их выделения жидкостной адсорбционной хроматографией, экстракцией или без предва- [c.125]

    Анализ углеводородного слоя ( печного масла ) после дегидрирования алкилбензолов проводят на хроматограф ХЛ-4. Длина колонки 4,2 м, диаметр 5 мм. Она заполнена диатомовым кирпичом, пропитанным полиэтиленгликольадипинатом (10% от массы кирпича). Оптимальные условия анализа следующие давление газа-носителя 14,14 10 — 16,16 10 Па расход газа-носителя [c.112]

    По окончании работы рисуют схему установки, обозначают ее детали, записывают реакции, протекающие при дегидрировании алкилбензола, и отмечают условия проведения опыта. Кратко излагают методику эксперимента. По данным опыта и анализов рассчитывают показатели процесса (среднее время контакта, выход продуктов — газа и олефина — на пропущенный и прореагировавший алкилбензол) и результаты записывают в таблицу  [c.114]

    Судя по данным рис. 3, все алкилбензолы попали бы в разряд компонентов фракции ПН, часть алкилнафталинов и почти все алкилфенантрены оказались бы во фракции БЦА, а другая часть алкилнафталинов была бы отнесена во фракцию МЦА. Эти результаты согласуются с данными, полученными при анализе отдельных фракций хроматографического разделения, приведенным в работе [6], для дистиллятов нефтей, выкипающих в пределах 370—535° С. [c.21]

    Ароматические углеводороды. Для количественного анализа типов ароматических углеводородов или структурных групп колебательные спектры применялись лишь в ограниченном числе случаев. Метод определения общего содержания ароматических соединений был описан Хейглем н др. [21], использовавшими линию комбинационного рассеяния в области 1600 см— , относящуюся к колебаниям сопряженной С=С связи ароматического кольца. Метод измерений аналогичен методу, предложенному этими авторами для определения общей непредельности. Для снижения влияния изменения положения линии в спектре для различных индивидуальных ароматических соединений бралось произведение коэффициента рассеяния на ширину линии у основания. Эта величина линейно связана с площадью под регистрируемым пиком. Среднее отклонение этой величины для 22 алкилбензолов составляло приблизительно 10%. [c.333]

    В ее последнем разделе приведены найденные нами простые уравнения, позволяющие рассчитывать АЯ°об, 5°, С°р, 1 К°роб углеводородов при произвольных температуре и числе С-атомов. Эти уравнения использованы выше для анализа групп реакций типа парафин—юлeфин- H2, парафин— -алкилбензол-1--Ь4Н2 и т. п. [c.359]

    Исследование тех же франций при помощи масс-спектромет-рии показало, что ароматические углеводороды с высоким ИВ (фракция 1) содержат свыше 40% алкилбензолов. Остальные углеводороды (более 50%) являются нафтено-ароматическими, в которых бензольное кольцо сконденсировано с одним или двумя нафтеновыми. С понижением ИВ содержание алкилбензолов уменьшается до 27,9% и возрастает содержание производных бензола с 1—4 нафтеновыми кольцами. Строение парафиновых цепей ароматических углеводородов определяли после гидрирования исследуемых франций определялись ИК-опектры поглощения в области 700—900 см . Результаты исследования П01казали, что высокоиндексные ароматические углеводороды можно отнести к по-лизамещенным производным бензола, содержащим 1—2 длинные и несколько коротких цепей. У углеводородов с низким индексом вязкости (особенно с отрицательным) больше коротких цепей и значительно больше нафтеновых колец. Таким образом, сочетая современные методы разделения и анализа, можно составить достаточно полное представление о химическом составе ароматических углеводородов, входящих в масляные фракции. [c.20]


    В связи с этим были изучены относительные подвижности алкильных групп в смеси этилбензол — алкилбензол — " С-бен-зол, где алкил — Н-С3Н7, Н-С4Н9, м-СбНц, или н-СбН . Относительные подвижности алкильных групп в такой смеси находили по отношению степеней обмена этил- и алкилбензола с С-бен-золом. Результаты радиометрического анализа алкилбензолов, выделенных из смеси, представлены в табл. 5.1. Как видно из данных таблицы, при разной активности катализатора, а следовательно, и разной степени обмена алкилбензолов подвижности [c.174]

    Количественное сопоставление величин межмолекулярной миграции алкильных групп и дейтерообмена между алкильными группами и ароматическими ядрами дает дополнительную информацию о механизме реакции диспропорционирования. С этой целью были проведены опыты по диспропорционированию ароматических углеводородов, содержащих дейтерий в фиксированном положении алкильной группы [160, с. 93 211 ]. Содержание дейтерия в алкилбензолах как исходных, так и выделенных из реакционной смеси, определяли методами капельного анализа, масс-спектрометрии и спектроскопии ЯМР на ядрах Н и Н. Последний метод был использован и для определения количества атомов дейтерия в отдельных фрагментах изучаемых соединений. [c.195]

    Относительно характерной особенностью для нефтей всех типов является рост содержания аренов по мере перехода от низкокипящих нефтяных фракций к высококипящнм с тем отличием, что в низкокипящих фракциях присутствуют индивидуальные арены, а в средне- и высококипящих фракциях ароматические фрагменты являются в основном частью молекул гибридного строения. Так, в бензиновых фракциях обнаружены все теоретически возможные гомологи аренов Са—Сд. По данным масс-сиектрометрии, типичная молекула алкилбензола масляных фракций содержит один длинный алкильный заместитель и метильные группы [51]. При анализе моноциклической арено-вой части из газойлевой фракции 230—235 °С с помощью цеолитов обнаружено, что алкилбензолы, адсорбированные на цеолитах, представляют собой, как правило, дизамещенные производные, имеющие одну метильную и одну длинную (6— 8 атомов углерода) алкильную цепь [52]. Неадсорбированную на цеолите фракцию в основном составляют тризамещенные ал- [c.30]

    Рассмотрев 83 соединения, Мейерсон [136] предложил полную схему идентификации алкилбензолов. В схеме используются пики молекулярных и псевдомолекулярных ионов, максимальные пики спектра и пики характеристических ионов с массами 77, 79, 91, 93, 105, 107, 119, 133. Учитывались также соотношения пиков ионов с массами 91 и 92. Проведение качественного анализа по указанной схеме возможно, если исследуемое индивидуальное вещество является моно- или полиалкилбензолом. [c.119]

    В спектрах углеводородов с двумя и более кратными связями возрастает количество иоиов, образование которых связано с миграцией водорода. Поэтому для углеводородов с общей формулой С Н . --2 (диеновые и цикломоноолефиновые) характеристическими является не один, а два гомологических ряда ионов (67, 68, 81, 82, 95, 96) диссоциативная ионизация алкилбензолов приводит преимущественно к образованию ионов с массами 77, 78, 91, 92, 105, 106, 119, 120 и т. д. Суммарная интенсивность пиков характеристических иоиов прямо пропорциональна концентрации соответствующей углеводородной группы. Аддитивность указанных свойств позволяет производить анализ и расчет состава сложных смесей аналогично смесям, состоящим из небольшого числа компонентов, а учет взаимных наложений осуществляется путем решения системы линейных уравнений. Все эти закономерности использовались для создания методов определения различных классов и типов углеводородов в сложных смесях (бензины, высокомолекулярные нефтяные фракции) [272— 280]. [c.140]

    При исследовании нефтяных парафинов с молекулярным весом выше 200 вновь возникает проблема анализа образцов, в которых углеводороды предстаплены весьма малым числом изомеров парафиновые углеводороды нормального или слабо разветвленного строения, небольшое количество моноциклических нафтенов и алкилбензолов [64]. В этом случае эффект усреднения перестает действовать, что исключает возможность использования коэффициентов, получаемых на различных приборах, без соответствуюн1,ей корректировки. [c.157]

    Определение состава метановых и нафтеновых углеводородов нефтяных дистиллятов. Метод молекулярных ионов , позиоляющий устанавливать содержание метановых, моноциклических нафтеновых углеводородов и алкилбензолов, не может быть использован для анализа сложных смесей, содержащих конденсированные нафтеновые углеводороды. Для этой цели более пригоден метод осколочных иоиов, который [c.160]

    Анализ масс-спектров показал также, что молекулярномассовое распределение (ММР) гомологических рядов ионов всех групп углеводородов имеет несколько максимумов. ММР характеризуется большим вкладом высокомолекулярной части от С,5 до С . В табл. 12 представлены результаты структурно-группового анализа. Из ее данных следует, что типы ароматических углеводородов, содержащиеся во фракции легкой ароматики, по количественному содержанию можно расположить в следующем порядке убывания алкилбензолы, инданы, динафтенбензолы, нафталины. Общий состав фракции по ММР представлен от С,4 до С о- Следует отметить большое содержание третичного бутилбензола и его производных. ММР легкой ароматики имеет два максимума на С,,,-С,, и Су,-С а. В высокомолекулярной части наибольший вклад принадлежит нафталинам, аценафтенам и алкилбензолам. [c.64]

    Первые два процесса приводят к гомологичным ионам с нечетной массой 91, 105, 119 и т.д., которые являются диагностически важными для алкилбензолов и входят в характеристические суммы, используемые при структурно-групповом анализе [25]. Распад типа Н-2 приводит к псевдомолекулярным ионам с четной массой 92 и реже 106, 120, которые по массовому числу отвечают М+ низших гомологов алкилбензолов. [c.39]

    Летучие компоненты ростбифа были выделены с помощью специальной аппаратуры и разделены на кислую, оснбвнукэ и нейтральную фракции Последняя с помощью ГХ на двух неподвижных фазах была разделена на более узкие фракции, под -вергнутые далее ХМС анализу [296] Идентификация 20 ал-килбензолов была осуществлена сопоставлением экспериментально полученных масс спектров и времен удерживания с данными по анализу эталонных образцов В исследуемых фракциях обнаружены бензол, толуол, этнлбензол, стирол, о-, м- и п-ксилолы, 1,2,4 и 1 3,5 триметилбензолы, 1 метил 2 этилбен-зол, 1,2,3,5- и 1,2,4,5 тетраметилбензолы, -алкилбензолы Большинство идентифицированных алкилбенволс прежде не были обнаружены среди летучих компонентов ростбифа Авторы предполагают, что эти алкилбвнзолы образуются из [c.129]

    При пиролизе образовывалось три вида продуктов 1) летучие продукты которые регистрировались пламенно ионизационным хроматографическим детектором, количество их составля ло 5—10 % от исходного образца 2) относительно нелетучие продукты (40—50 %) — конденсат, растворимый в смеси мети ленхлорида и метанола, образующийся на стенках пиролизной трубки (анализ их с помощью масс спектрометрии не удался, но ясно, что это полярные соединения), 3) остаток черного цвета на пиролизной проволоке Наиболее представительными про дуктами в пиролизате являлись алкилбензолы алкены 1, н алканы, алкилфенолы, разветвленные алкены и алканы, в небольших количествах были обнаружены метоксифенолы, алифатические альдегиды и кетоны, инданы, алкилнафталины, ге-тероатомные соединения, такие как тиофены, фураны, пирролы, индолы большие количества газообразных продуктов (СН4 СО2 H2S, SO2) Показано, что керогены, образовавшиеся из морских организмов, дают, главным образом, алифатические структуры с относительно короткими углеродными цепями Разветвленные цепи в продуктах пиролиза таких керогенов встречаются в большем количестве, чем в керогенах других типов Керогены, образовавшиеся из наземных высших растений, образуют алкилфенолы и метоксифенолы в значительно больших количествах, чем другие керогены Воска высших растений проявляются в пиролизатах в виде длинноцепочечных алканов и алкенов, среди которых преобладают цепи с нечетным и четным числом атомов углерода, соответственно [c.171]


Смотреть страницы где упоминается термин Алкилбензолы анализ: [c.133]    [c.353]    [c.353]    [c.359]    [c.75]    [c.199]    [c.95]    [c.203]    [c.140]    [c.91]    [c.155]    [c.173]    [c.645]    [c.390]    [c.111]    [c.111]    [c.162]    [c.170]    [c.172]    [c.111]    [c.473]   
Органическая химия (1974) -- [ c.390 , c.433 , c.436 ]




ПОИСК





Смотрите так же термины и статьи:

Алкилбензолы



© 2025 chem21.info Реклама на сайте