Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение в минералах при разложении кислотами

    Ход определения. Минерал измельчают в тонкий порошок и берут навеску с таким расчетом, чтобы содержание бора в ней не превышало 0,1 г. Навеска должна быть не более 0,5 г, а когда содержание бора в анализируемом материале не превышает 10%, то не менее этого количества. Плавень, применяемый для предварительного разложения материала, необходимо взвесить с точностью до 1—2 мг, чтобы можно было вычислить количество кислоты, требуемое для разложения плава, и предотвратить таким образом введение чрезмерного ее избытка. [c.766]


    Обработка кислотами. Кремний подлежит определению. Когда анализируемый силикатный минерал может быть разложен кислотами, то обычно для разложения навески, в которой определяют кремнекислоту, пользуются соляной кислотой. Ее предпочитают азотной кислоте потому, что при выпаривании солянокислого раствора для переведения кремнекислоты в нерастворимое состояние не так часто образуются труднорастворимые Соли, как это бывает при выпаривании азотнокислого раствора. Серная кислота также редко применяется, потому что она образует очень мало растворимые сульфаты свинца и щелочноземельных металлов, загрязняющие выделяемую кремнекислоту. Для разложения силикатов свинца обычно применяют азотную или хлорную кислоту иногда эти кислоты применяют и в других случаях. Для разложения некоторых титано-сили-катов может быть лучше вместо соляной кислоты применять хлорную или серную кислоты, потому что при достаточном избытке этих кислот титан можно удержать в растворе в то время, когда кремнекислота переводится в нерастворимое состояние. [c.858]

    Разложение по Кьельдалю для определения азота в породах и силикатных минералах производилось при помощи концентрированной серной кислоты в запаянных пробирках. В этом случае температура разложения может быть значительно выше, чем при обычном методе. Время полного выделения азота зависит от температуры разложения. При анализе силикатных минералов и изверженных пород минимальная продолжительность разложения составляет 90 мин при температуре 420° для осадочных пород продолжительность разложения может быть уменьшена до 60 мин. Метод является быстрым и точным. Его точность значительно выше, чем при разложении в обычных приборах Кьельдаля, так как в последнем случае ошибки могут возникать в результате толчков при кипении, загрязнения аммиаком из воздуха и минеральных веществ, оседающих на стенках колбы, а также в некоторых случаях, например при анализе слюды, в результате прилипания минерала к стенкам колбы выше поверхности серной кислоты и вследствие этого неполного разложения пробы. [c.161]

    Методы разложения сурьмяных минералов различны в зависимости от того, какие элементы будут затем определяться. Сурьму и другие элементы, образующие летучие хлориды, лучше всего определять,после растворения минерала в серной кислоте или сплавления его с едкими щелочами. Серу определяют из отдельной навески после специальной ее обработки. Для определения остальных элементов пробу можно растворять, в соляной, азотной и серной кислотах, а нерастворимый в этих кислотах остаток сплавлять с карбонатами щелочных металлов или с едкими щелочами.  [c.318]


    При определении, проводимом в отдельной навеске, 5— 10 мг минерала помешают в платиновый тигель емкостью 5—7 мл, смачивают 1—2 каплями воды, прибавляют 1—2 мл фтористоводородной кислоты и накрывают тигель крышкой. Смесь нагревают на водяной бане до разложения минерала. Затем крышку снимают, обмывают ес над. тиглем водой, прибавляют 0,2 мл. серной или хлорной кислоты и упаривают на водяной бане до удаления воды и фтористоводородной кислоты. Тигель помешают в фарфоровый тигель (для более равномерного нагревания и для [c.100]

    Если исследуемый минерал не разлагается кислотами, навеску помещают в платиновый тигель, смачивают несколькими каплями воды и прибавляют 2 мл фтористоводородной кислоты. Тигель закрывают крышкой и нагревают на водяной бане до разложения минерала затем крышку снимают, обмывают над тиглем водой и прибавляют 0,2 мл разбавленной (1 1) серной кислоты. Раствор упаривают на водяной бане до удаления воды, переносят на электрическую плитку и продолжают нагревание до появления паров серного ангидрида. Охлаждают, прибавляют 0,5 мл воды и снова упаривают до удаления фтора. Обработку водей и упаривание повторяют до полного удаления серной кислоты. Остаток растворяют в 3 мл 6 н. соляной кислоты при нагревании, содержимое тигля переносят в стакан емкостью 20 мл и кипятят несколько минут. Если присутствует цирконий, то он будет находиться в виде хлопьевидного осадка фосфата циркония, который отфильтровывают и промывают разбавленной соляной кислотой. Остаток сохраняют для определения фосфора и циркония. Раствор упаривают на водяной бане почти досуха, приливают к остатку 0,2 мл 6 н. соляной кислоты, доводят объем до 10 мл водой, нагревают до растворения солей, охлаждают и пропускают через колонку с катионитом. Катионит 3—4 раза промывают 0,015 н. соляной кислотой и 2 раза водой, применяя каждый раз по 5 мл промывной жидкости. Раствор и промывные воды сохраняют для определения фосфора. [c.109]

    После окончания титрования внимательно осматривают дно фарфорового тигля или колбы для того, чтобы установить полноту разложения минерала. Следует иметь в виду, что нерастворимый остаток может состоять из частиц пирита или фторидов кальция, редкоземельных элементов и тория. Определение в минералах, разлагающихся серной кислотой, Определение железа (II) в минералах, разлагающихся одной серной кислотой (карбонаты, сульфаты, фосфаты, арсенаты и т. п.). выполняют следующим образом. Навеску минерала 3—10 мг помещают в колбу I емкостью 25—30 мл ( ис. 61), снабженную пришлифованной пробкой 2, в которую вплавлена небольшая "Воронка 4 и трубка 3 для вывода газа. Воронка закрыта пришлифованной трубкой 5, которую е помощью резиновой трубки присоединяют к прибору для получения СОа- [c.132]

    Определение в минералах, не разлагающихся серной кислотой. Разложение навески минерала проводят точно так же, как и при объемном определении, с той лишь разницей, что количест- [c.135]

    К этому способу разложения прибегают в тех случаях, когда минерал не разлагается полностью фтористоводородной кислотой, однако вначале навеску обязательно следует обработать этой кислотой для удаления кремния, который мешает колориметрическому определению фосфора, так как кремневая -кислота также образует гетерополикислоту с молибдатом аммония. [c.300]

    Определение общего содержания серы в сульфидных минералах весовыми методами. Определение серы в сульфидах после сплавления навески минерала с карбонатом и нитратом натрия не дает удовлетворительных результатов, поэтому для разложения таких минералов применяют бром в четыреххлористом углероде и азотную кислоту . При таком разложении удается количественно окислить сульфидную серу до сульфатной. В полученном растворе сульфат-ион определяют весовым методом в виде сульфата бария. [c.308]

    Минералы титана значительно устойчивее к разложению по сравнению с силикатной основой, в которой они встречаются, и поэтому в процессе химического анализа необходимо следить за тем, чтобы все частицы минералов полностью разложились. Большинство акцессорных минералов титана разлагают выпариванием до появления паров со смесью серной и плавиковой кислот. Если присутствует минерал перовскит в заметных количествах, некоторые частицы могут остаться неразложенными, хотя повторного выпаривания обычно достаточно для полного разложения. Смеси плавиковой кислоты с азотной или хлорной кислотой для этого разложения менее эффективны. Наиболее оптимальным приемом разложения, по-видимому, является однократное выпаривание досуха с серной и плавиковой кислотами с последующим сплавлением с пиросульфатом калия. Эту операцию можно проводить в одном платиновом тигле и использовать его также для удаления фтора, который в противном случае может оказывать помехи при определении [c.419]

    Молибденит почти не затрагивается соляной кислотой лишь при отсутствии минералов железа, растворимых в соляной кислоте, так как ионы трехвалентного железа в растворе окисляют серу молибденита, и тогда растворимость этого минерала становится заметной. Поэтому солянокислотный метод в некоторых случаях может дать повышенные результаты определения содержания окисленного молибдена. Карбонатный метод дает пониженные результаты при анализе руд, в которых молибдит тесно связан с гидроокисями железа. Для таких руд более правильные результаты получаются при использовании солянокислотного метода, так как молибдит полностью переходит в раствор только одновременно при разложении минералов железа соляной кислотой. [c.159]


    Приведенными в табл. 3 методами руду разделяют на нерастворимый остаток и растворимую фракцию почти так же, как было указано в разд. IV при определении нерастворимого остатка и суммы металлов при помощи соляной кислоты или царской водки. Все, что было сказано об отношении силикатов к кислотам, еще больше применимо к отделению минералов селективным растворением. Степень разложения минерала изменяется не только с изменением температуры, количества и концентрации применяемого растворителя, времени контакта и степени измельчения, но и сами растворенные компоненты могут оказывать некоторое растворяющее действие. Кроме того, кристаллические разности часто менее растворимы, чем аморфные. На степень [c.39]

    Минерал разлагают ио методу Лоуренса Смита. Чистую сумму хлоридов щелочных металлов взвешивают и цезий осаждают платинохлористоводородной кислотой. Полученный осадок состоит почти из чистой соли цезия. Его можно подвергнуть дробной кристаллизации из горячей воды (см. разд. III, В, I) и таким образом отделить от небольших количеств калия. При определении рубидия и цезия методом фотометрии пламени разложение проб обычно ведут смесью плавиковой и серной кислот [12, 17]. В тех случаях, когда минералы не разлагаются кислотами (бериллы, сподумены, турмалины), вскрытие проб производится по методу Лоуренса Смита [17]. Доп. ред.)  [c.58]

    Для определения валентности ванадия в минерале, например в роско-элите, разложение можно осуществить нагреванием свободного от воздуха порошка минерала с разбавленной серной кислотой в запаянной трубке, из которой воздух вытеснен током углекислого газа . [c.465]

    Кремний не подлежит определению. Прежде чем метод разложения силикатов для определения в них щелочных металлов, предложенный Лоуренсом Смитом, получил всеобщее распространение, было принято поступать следующим образом. Анализируемую породу или минерал, устойчивые к действию соляной, азотной и серной кислот, обрабатывали плавиковой кислотой с добавлением такого количества серной кислоты, какое необходимо для превращения в сульфаты всех присутствующих в пробе основании Этот метод позволял определять в одной навеске не только щелочные металлы, но и другие основания, хотя он, конечно, исключал возможность определения кремния. Метод этот находит иногда применение и в настоящее время (с заменой серной кислоты хлорной кислотой), но имеет тот недостаток, что при его применении невозможно полностью осадить алюминий аммиаком , пока не удалены последние следы фтора. Полное удаление фтора может быть достигнуто растворением солей (остающихся после первого выпаривания) в разбавленной серной кислоте и повторным вьшариванием до сильного выделения паров серной кислоты при работе с хлорной кислотой выпаривают досуха. [c.859]

    По методу У. Шиффелина и Т. Каппона [28], который использовался в США [13, 15, 30], тонкоизмельченный (- 0,09 мм) лепидолит смешивали в стальном реакторе с концентрированной серной кислотой, взятой в количестве 110% (от массы минерала). Смесь выдерживали в течение 30 мин, а затем медленно, в течение более 8 ч, нагревали от 110 до 340° С по специальной прописи с фиксированной по времени выдержкой при определенных значе-ниях температур (степень разложения минерала достигала 94%). Скомковавшуюся массу еще в теплом состоянии обрабатывали водой, и, если из раствора выделялась двуокись кремния, ее отфильтровывали. В раствор переходили соли всех щелочных металлов, алюминия, марганца и железа. Для удаления алюминия в раствор вносили сульфат калия в количестве, рассчитанном на образование калиевых квасцов, первые порции которых особенно богаты рубидием и цезием, так что, проводя дробное выделение квасцов, можно было получать концентрат соединений рубидия и цезия. После отделения квасцов маточный раствор нейтрализовали карбонатом кальция. При этом отделяли остаток алюминия в виде гидроокиси. Далее осаждали кальций, магний, железо и марганец (щавелевой кислотой и раствором аммиака). Это обеспечивало получение чистого раствора сульфата лития. Из него с помощью карбоната калия осаждали технический карбонат лития, который промывали и высушивали при 60° С. [c.231]

    Все эти минералы, по-]шдимому, разлагаются прй сплавлении с пиросульфатами щелочных металлов, но так же, как и обработка с серной кислотой, этот способ скорее используется для технических проб на торий, чем для полного анализа. Для сплавления лучше пользоваться пиросульфатом натрия, чем пиросульфатом калия, вследствие большей растворимости некоторых образующихся в результате сплавления двойных сульфатов натрия. При определении кремния в тех случаях, когда минерал не разлагается кислотами, когда присутствует фтор или требуется определить также содержание бора или фтора, обычно применяют сплавление с карбонатами или едкими щелочами. Сплавлением с карбонатом натрия пользуются также при проведении полного анализа фосфатов. Для определения фтора в минералах, растворимых в горячей концентрированной серной кислоте, можно пользоваться методом отгонки. В техническом анализе для разложения материала иногда применяют сплавление с едким натром или перекисью натрия, но при выполнении полного анализа оба эти реагента менее пригодны, чем карбонат натрия, так как они обычно менее чисты и, кроме того, слишком сильно действуют на сосуды, в которых проводят сплавление. [c.620]

    Кремний не подлежит определению. Прежде чем метод разложения силикатов для определения в них щелочных металлов, предложенный Лоуренсом Смитом, по.тучил всеобщее распространение, было принято поступать следующим образом. Анализируемую породу или минерал, устойчивые к дехгетвию соляной, азотной и серной кислот, обрабатывали плавиковой кислотой с добавлением такого количества серной кислоты, какое необходимо для превращения в сульфаты всех присутствующих [c.938]

    Недавно предложен быстрый и простой способ разложения небольших количеств монацита (100—200 мг) фосфорной кислотой при нагревании [873]. По охлаждении прозрачного раствора до 40° С его разбавляют 0,2-м. фосфорной кислотой и определяют в этом растворе торий и его изотопы радиохимическим методом, а свинец — полярографически (метод специально разработан для определения возраста минерала по коотчеству продуктов радиоактивного распада урана и тория). [c.336]

    Для приготовления алюминия служит сырым продуктом порода или минерал, заключающий водный глинозем, окись железа и другие составные части и известный под именем боксита. Его сплавляют в отражательной печи с содою и затем выщелачивают водою, как сырую соду. В раствор переходит глиноземонатровое соединение. Из полученного раствора выделяют глиноземы, пропуская в него струю углекислоты, пока она поглощается. Угольную кислоту предпочитают соляной кислоте, потому что первая выделяет глинозем в плотном зернистом виде, нерастворимый в уксусной кислоте, удобный для дальнейшего с ним обращения, тогда как соляная кислота осаждает ст денистый глинозем. Угольный газ пол> чают нз известняка прн действии слабой соляной кислоты, собираемой при разложении соли серною кислотою. Крепкая идет для белильной извести. Газ не промьшают, а для определения быстроты его тока имеют боковую запертую трубку, опущенную в сосуд с водою. Когда отворяют кран этой трубки, газ выходит чрез воду и по количеству пузырьков, прошедших чрез воду, судят о том, нужно ли добавить кислоты в прибор илн ее еще достаточно. Осажденный зернистый глинозем помещают для отжима воды в центробежную машину. Такой глинозем представляет совершенно снегообразную легкую, белую массу, имеющую во всех частях один состав. Вот этот-то глинозем и употребляют как для алюминия (в прокаленном виде), так и для приготовления средней серноглиноземной соли. [c.47]

    В нижеследующем методе, которым мы обязаны Кэллмену [48], разложение минерала и извлечение щелочных металлов достигается комбинацией методов Берцелиуса и Л. Смита. Образец обрабатывают плавиковой кислотой и большую часть мешающих элементов удаляют осаждением гидроокисью кальция. Фтор-ионы осаждают в виде фторида кальция, ббльшая же часть лития выщелачивается водой. Осадок, который неизбежно адсорбирует немного лития, подвергают видоизмененной форме спекания по Л. Смиту. Благодаря тому, что кремнезем в значительной степени уже удален первоначальной обработкой фтористоводородной кислотой, спекание по Л. Смиту может быгь проведено примерно при 700° и в гораздо более короткий срок, чем обычно. По мнению Кэллмена, остаток после спекания, выщелоченный водой, всегда свободен от весомых количеств лития и метод приложим ко всем литиевым минералам как силикатного, так и фосфатного типа (включая амблигонит). Он утверждает, что в многочисленных определениях лития в литиевых минералах все отбрасываемые остатки или осадки при работе по нижеприведенному методу оказывались свободными от весомых количеств лития. [c.142]

    Теория процесса. Для большей определенности изложения несколько ограничим область рассматриваемых материалов (распространение выводов на другие руды очевидно). Примем, что содержащийся в руде минерал — соль одноосновной кислоты НЭпОт-хИгО и р-валентного металла Ме ее формула такова Ме(Э От)р. Для разложения этого минерала необходимо использовать достаточно сильную кислоту, не склонную к анодному окислению. Этим требованиям отвечает серная кислота. [c.22]

    Переходя к вопросу об определении бериллия в природных материалах, прежде всего следует остановиться на способах их разложения. Поскольку бериллий чаще всего встречается в природе в виде минерала берилла, труд-норазлагаемого кислотами, для вскрытия бериллийсодержащих материалов обычно прибегают к сплавлению с си. гьнодействующими плавнями. Применяемые на практике методы можно разделить па две группы. [c.83]

    В случае разложения минерала (за исключением фосфатов) азотной, соляной или серной кислотами кремнекислоту переводят в нерастворимую форму так же, как при анализе силикатов (стр. 860), и отфильтровывают. Если для разложения пробы, содержащей свинец, применяют серную кислоту, то совместно с кремнекислотой выделяется сульфат свинца, который до прокаливания остатка следует удалить обработкой ацетатом аммония или горячей соляной кислотой. В противном случае может образоваться силикат свинца, что приведет к неполному его-извлечению При разложении материала, в котором находятся олово и сурьма, азотной кислотой осадок кремнекислоты загрязняется окислами этих элементов. Титан, ниобий и тантал ири выпаривании с этими кислотами также переходят в нерастворимую форму. После прокаливания и взвешивания выделенной смеси кремний можно отогнать вглпариванием с фтористоводородной и несколькими каплями серной кислоты, а затем нелетучий остаток прокалить и взвесить, определив таким образом содержание кремнекислоты. Нелетучий остаток следует потом сплавить с пнросульфатом щелочного металла или карбонатом (в зависимости от состава осадка) и плав соответствующим образом обработать для разделения и определения находящихся в нем компонентов. [c.570]

    Опыты, проведенные главным образом с силикатами, показали следующее 1) хотя сравнительно быстрое измельчение на воздухе (15— 30 мин.) и продолжительное измельчение под спиртом и не всегда приводит к заметному окислению порошка породы (а иногда, по-видимому, не происходит никакого окисления), однако это нельзя считать правилом. Поэтому нельзя рекомендовать проводить измельчение в той или другой из этих сред во всех случаях 2) спирт, несмотря на его большую растворяющую способность в отношении кислорода, по-видимому, несколько лучше защищает железо (И) от окисления, чем вода. Он имеет еще и то преимущество, что может быть быстро удален из вещества после измельчения 3) из примененных органических веществ спирт оказался более действенным средством, чем четыреххлористый углерод 4) довольно большие расхождения результатов параллельных анализов получаются в случае присутствия в породе трудно разлагаемых железосодержащих минералов (гранат и др.), если последние не измельчены до очень тонкого порошка 5) совпадение результатов параллельных определений, проведенных как методом Пратта, так и методом Кука, получается превосход-ное при работе с тонкими порошками пробы, а при анализе крупных порошков—только в тех случаях, когда они легко поддаются разложению плавиковой кислотой 6) так как измельченная в порошок порода, прошедшая через сито с 30 или даже 60 отверстиями на 1 линейный сантиметр, часто содержит меньше 0,1% влаги, то если в этой породе нет веществ, чувствительных к влаге, можно заключить, что при ее измельчении имело место такое же малое окисление железа (II), как и поглощение влаги. Этот вывод справедлив при условии, что найденное небольшое количество влаги происходит действительно вследствие увеличения поверхности во время измельчения, а не содержалось в породе раньше. Поэтому если при такой степени измельчения порошок породы легко разлагается плавиковой кислотой, можно быть уверенным, что определение в нем железа (II) даст результат, очень близкий к действительному его содержанию, при условии, что определение будет проведено с необходимыми предосторожностями и что никаких других источников ошибок не будет 7) у различных минералов после многочасового измельчения при одинаковых условиях можно наблюдать очень различные степени окисления— от нескольких процентов до 45% всей FeO и не всегда тот минерал, который а priori рассматривается как легко окисляющийся, действительно показывает наиболее сильное окисление. Мягкий или вязкий минерал, измельченный вместе с твердым, подвергается большему окислению, чем если он измельчается один. [c.904]


Смотреть страницы где упоминается термин Определение в минералах при разложении кислотами: [c.40]    [c.260]    [c.932]    [c.200]    [c.28]    [c.593]    [c.42]    [c.260]    [c.247]    [c.169]    [c.280]    [c.853]    [c.422]   
Смотреть главы в:

Методы анализа по фотометрии пламени -> Определение в минералах при разложении кислотами

Методы анализа по фотометрии пламени -> Определение в минералах при разложении кислотами




ПОИСК







© 2025 chem21.info Реклама на сайте