Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Применение ниобия и тантала

    Продолжающееся повышение требований к чистоте металлов и расширение производства таких тугоплавких металлов, как ниобий, тантал, молибден, вольфрам, и др., и сплавов на их основе показали, что вакуумные дуговые и электро-шлаковые печи не могут полностью удовлетворить эти потребности, в основном из-за того, что в них нельзя получить существенный перегрев металла жидкой ванны над температурой плавления и выдержать ванну при этой температуре в течение времени, нужного для глубокой очистки металла от примесей и газов. Кроме того, особенности рабочего процесса вакуумной дуговой печи не позволяют полностью использовать обычные средства металлургии, такие, как легирование, применение раскисли-телей, флюсов и т. п. Поэтому последние 10—15 лет во всех крупных промышленных странах ведутся работы по созданию плавильных агрегатов, свободных от указанных недостатков. Одним из таких новых типов плавильных установок являются электронные печи. [c.234]


    Многие Э. X. (гл. обр. металлы) первоначально стали известны в виде соед. (преим. оксидов) и получены в свободном виде много лет спустя, что было связано с трудностями хим. восстановления этих металлов из их соединений. В составе животных и растительных организмов обнаружено более 70 Э. X. Подавляющее большинство Э. х. находит то или иное практич. применение. Нек-рые элементы, считавшиеся ранее бесперспективными, теперь играют исключительно важную роль как материалы новой техники (напр., бериллий, титан, цирконий, галлий, германий, ниобий, тантал, рений). [c.473]

    Важнейшие области применения. Ниобий и тантал применяются в качестве компонентов многих сплавов, в атомной энергетике, химическом машиностроении, электровакуумной технике [5]. [c.60]

    Вследствие незначительной растворимости тетрафторида урана и в особенности двойных фторидов урана-аммония, урана-натрия или урана-калия [173, 275], а также возможности отделения урана от больших количеств циркония, ниобия, тантала, бора, железа, ванадия и других элементов, образующих растворимые фторидные комплексы [275, 991], метод отделения урана (IV) в виде фторидов нашел достаточно широкое применение. Методика осаждения урана (IV) плавиковой кислотой приводится в разделе Весовые методы определения . [c.272]

    Применение. Наиболее широкое применение ниобий находит в виде сплава с железом (феррониобий) в черной металлургии. Металлические ниобий и тантал и их сплавы используют в тех случаях, когда необходимо работать при высоких температурах. Ниобий и тантал входят в состав жаропрочных сплавов, используемых для изготовления газовых турбин реактивных двигателей находят применение в атомной промышленности, в химическом машиностроении благодаря их высокой коррозионной стойкости в агрессивных средах. [c.147]

    В настоящее время хлорная металлургия применяется для производства титаиа, ниобия, тантала, циркония, гафния, редкоземельных элементов, германия, кремния, олова и даже алюминия. Она является эффективной при переработке не только многокомпонентных руд, но и промышленных отходов, содержащих ценные элементы, металлолома, отработанных тепловыделяющих элементов ядерных реакторов и т. п. Она нашла широкое применение в металлургии редких металлов. Преимуществами хлорной металлургии по сравнению с традиционными способами извлечения металлов из руд являются полнота вскрытия сырья (полнота извлечения из него ценных элементов), а также высокая избирательность. Метод требует совершенной технологии и высокой культуры производства, поскольку хлор и его летучие соединения очень токсичны и химически агрессивны. [c.171]


    Излагается технология редких металлов, нашедших широкое применение в атомной технике циркония, гафния, литня, бериллия, редкоземельных элементов, ниобия, тантала и ванадия. [c.2]

    Титан, ниобий, тантал, хром и медь в количествах, не превышающих содержание циркония, не мешают определению. Не мешает также небольшое количество железа III (восстанавливаясь при том же потенциале, железо будет давать подкладку , т. е. начальные и остаточные токи, величина которых будет зависеть от концентрации железа). Алюминий мешает определению. Погрешность определения составляет около 1 % отн. Метод может быть применен для определения циркония в различных объектах. [c.354]

    В настоящее время редкие металлы получили применение в самых разнообразных областях науки и техники, причем области применения их из года в год расширяются. Это прежде всего объясняется особыми физическими и химическими свойствами редких металлов, так, например, германий является ценнейшим материалом дЛ1 изготовления полупроводниковых приборов, широко применяемых в различных областях радиотехники и электронике. Для этих же целей применяются индий, теллур, селен и другие. Введение редких металлов в стали и в сплавы цветных металлов обеспечило получение материалов, стойких против коррозии, жаропрочных, обладающих большой механической прочностью и другими ценными свойствами. В химической технологии и металлургии принято разделять редкие металлы на следующие технические подгруппы а) легкие литий, рубидий, цезий, бериллий и др б) тугоплавкие титан, цирконий, гафний, ванадий, ниобий, тантал, молибден, вольфрам, рений в) рассеянные галлий, индий, таллий, германий г) редкоземельные скандий, иттрий, лантан и лантаноиды радиоактивные полоний, радий, актиний и актиноиды. [c.419]

    Широкое применение жаропрочных сплавов потребовало получения в чистом виде большого числа как редких (вольфрам, молибден, титан, цирконий, ниобий, тантал, ванадий), так и обычных металлов (никель, кобальт, хром, марганец, медь), причем предел содержания основных вредных примесей— мышьяка, сурьмы, олова, кадмия, висмута, свинца — составлял [c.7]

    Весьма немногие материалы устойчивы к воздействию восстановительных кислот, применяемых в производстве искусственного волокна на основе целлюлозы практически используются гуммированная сталь, свинец и углеродистые материалы. Для теилообменников, стенки трубчатых элементов которых должны обладать высокой теплопроводностью, применение указанных материалов невозможно. Трубные пучки из высоколегированных сталей, титана и сплавов на основе никеля обладают недостаточной коррозионной стойкостью, а применение в качестве конструкционных материалов циркония, ниобия, тантала и благородных металлов экономически нецелесообразно. [c.153]

    Хорошие результаты можно ожидать от применения ниобия и тантала. [c.243]

    Обработка фильтрата. Фильтрат, полученный после осаждения по п. а , может быть сразу применен для определения кальция и магния. Фильтрат, полеченный после обработки по п. б , может содержать некоторые металлы, которые должны быть предварительно выделены. Для этого нужно сначала разрушить тартраты. Раствор выпаривают в большой платиновой чашке с 10—12 мл серной кислоты и осторожно нагревают до тех пор, пока не начнется ясное обугливание. Слегка -охлаждают, покрывают часовым стеклом и осторожно приливают 5 мл азотной кислоты (лучше дымящей) когда бурная реакция прекратится, постепенно нагревают до гех пор, пока органические вещества полностью не окислятся обработку азотной кислотой, если нужно, повторяют Чашку охлаждают, растворяют остаток в воде и прибавляют раствор аммиака, чтобы осадить алюминий, титан, цирконий, бериллий, ниобий, тантал и уран, а также фосфор и ванадий, если количество этих двух элементов не превышает того, которое может соединиться с основаниями в виде фосфатов и ванадатов. В присутствии алюминия избытка аммиака надо избегать. Если фосфор и ванадий присутствуют в количестве большем, чем то, какое может быть связано алюминием, титаном и др., то в осадке можно ожидать присутствия щелочноземельных металлов. После растворения осадка в горячей разбавленной (1 1) соляной кислоте дальнейшее разделение идет обычным путем. [c.92]

    Это исследование было предпринято с целью изучения применимости газо-жидкостной распределительной хроматографии для разделения металлов в виде их летучих солей. Данный метод должен оказаться весьма полезным при разделении ниобия — тантала, циркония — гафния, примыкающих к ним лан-танидов, актинидов и др., если удастся подобрать подходящие летучие соединения. Ввиду летучести галоидных соединений большого числа металлов (табл. 1) наша первая задача состояла в изучении поведения при хроматографическом разделении именно этих соединений, после чего мы намеревались исследовать алкоксиды металлов и некоторые хелатные соединения. Применение галоидных соединений металлов, естественно, на< кладывает некоторые ограничения на выбор материала колонок. Галогенопроизводные могут вести себя как кислоты в толковании Льюиса и даже как галогенирующие агенты, что приводит к взаимодействию их с веществом, используемым в качестве неподвижной фазы. Кроме того, вследствие относительно высоких точек кипения галоидных соединений колонки должны рабо- [c.387]


    ПРИМЕНЕНИЕ НИОБИЯ И ТАНТАЛА 167 [c.167]

    Здесь перечислены только некоторые из возможных областей применения ниобия н тантала и их сплавов и соединений. Полный обзор областей их применения можно найти в специальной работе О. П. Колчина [448]. Некоторые экономические и статистические данные приводятся в работах [450, 451]. [c.169]

    Требования к коррозионной стойкости металлических конструкционных сплавов, предъявляемые современной техникой, становятся все более высокими. Появляются новые, особо агрессивные среды, повышаются температуры, давления и механические нагрузки, при которых работают ответственные металлоконструкции. Именно поэтому в последнее время при широком использовании коррозионностойких сталей и сплавов на основе никеля и титана возрастает практическое применение более редких металлов — циркония, молибдена, ниобия, тантала, вольфрама, кобальта и других металлов и сплавов на их основе. [c.6]

    За последнее время характер применения ниобия за рубежом (США) существенно изменяется. Отмечаются две потенциальные области применения, в которых ниобий имеет известные преимущества перед танталом атомная энергетика и реактивные двигатели. Меньшее эффективное сечение поглощения нейтронов, высокая прочность и другие благоприятные свойства определяют выбор ниобия и его сплавов в качестве материала оболочки для урановых стержней в реакторах. Для применения при высоких температурах в реактивных двигателях ниобий более предпочтителен, чем тантал, так как имеет значительно меньший удельный вес и легче обрабатывается давлением. [c.565]

    О. П. К о л ч и н. Производство и применение ниобия и тантала за рубежом, Сб. переводных статей Ниобий и тантал под ред. О. П. Колчина, ИЛ, 1960, 5-19. [c.911]

    В атомной технике фтористый водород применяется для получения шестифтористого урана. Жидкий фтористый водород используется как катализатор в процессах алкилировання в нефтепереработке. Фтористоводородная кислота широко применяется для травления нержавеющей стали, а также для обработки руд и очистки некоторых редких метал- лов (ниобия, тантала, бериллия), производство которых выросло в связи с применением их в оборонной промышленности. [c.414]

    Это общее утверждение впрочем не означает, что сплавы со сте-хиометрической потерей материала от коррозии совершенно непригодны для изготовления заземлителей на станциях катодной защиты. Иногда в качестве материала для анодных заземлителей применяют даже железный лом кроме того, при электролитической обработке воды используют алюминиевые аноды (см. раздел 21.3). Цинковые сплавы находят применение как материал для анодов лри электролитическом травлении для удаления ржавчины, чтобы предотвратить образование гремучего хлорного газа на аноде. Для внутренней защиты резервуаров при очень низкой электропроводности содержащейся в них воды на магниевые протекторы иногда накладывают ток от внешнего источника с целью увеличить токоотдачу (в амперах) (см. раздел 21.1). По так называемому способу Кателько наряду с алюминиевыми анодами (протекторами) намеренно устанавливают медные, чтобы наряду с защитой от коррозии обеспечить также и предотвращение обрастания благодаря внедрению токсичных соединений меди в поверхностный слой. Впрочем, все такие области применения являются сугубо специальными. На практике число материалов, пригодных для изготовления анодных заземлителей, сравнительно ограничено. В основном могут применяться следующие материалы графит, магнетит, ферросилид с различными добавками, сплавы свинца с серебром, а также так называемые вентильные металлы с покрытиями из благородных металлов, например платины. Вентильными называют металлы с пассивными поверхностными слоями, не имеющими электронной проводимости и сохраняющими стойкость даже при очень положительных потенциалах, например титан, ниобий, тантал и вольфрам. [c.198]

    Применение гелия в иромышлеииости и науке многообразно [9, 2]. Гелий используется во многих отраслях машиностроения и металлургии. Крупными потребителями являются раке-то- и самолетостроение, атомная, морская и космическая техника. В атмосфере гелия производят сварку, иаплавку и резку нержавеющей стали, алюминия, магния, вольфрама, меди, серебра, свинца, берилиевой и кремнистой бронзы. Гелий используется при извлечении из руд и изготовлении изделий из титана, циркония, ниобия, тантала, германия, кремния и их сплавов. Он применяется в ракетах и управляемых снарядах в качестве двигательной силы для подачи топлива в камеру сгорания. [c.189]

    Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии рассмотрены важнеЯшне области применения, рудное сырье и его обогащение, получение соединений элементов из концентратов и отходов производства, современные методы разделения и очистки элементов. [c.2]

    Титрование Мп(П) раствором перманганата калия до Мп(П1) наиболее удобно проводить при потенциале платинового электрода -f-0,4 в (отн. МИЭ) [154, 594, 595, 661, 1022]. При этом полностью исключается как анодный ток окисления Mn(II), так и катодный ток, образующ ийся при титровании Мл(П1). Кривые титрования получаются отчетливыми. Ионы Fe(III), Al(III), Ti(IV), a(II), Mg(II), Ni(II), o(II) в присутствии пирофосфата не мешают титрованию, так как образуют с пирофосфатом натрия комплексные соединения, не окисляюш иеся КМПО4 при указанном значении потенциала. Сг(П1) дает комплексное соединение с пирофосфатом натрия, состав и прочность которого изменяются во времени и поэтому в его присутствии необходимо выдержать раствор 15— 20 мин. перед титрованием. Восстановители должны отсутствовать. Обычно титрование проводят с одним или двумя платиновыми индикаторными электродами. Использование амперометрической установки с двумя индикаторными электродами обеспечивает резкое возрастание величины тока вблизи точки эквивалентности, что позволяет заканчивать определение без построения графиков. Амперометрическое титрование Ми(II) по катодной волне перманганата с применением медного и графитового электродов дает удовлетворительные результаты. Недостаток графитового электрода — довольно медленное установление величины тока. Медные и молибденовые электроды не пригодны для проведения анодных процессов на фоне раствора пирофосфата натрия. Ниобий-танта-ловый электрод не может служить индикаторным электродом при амперометрическом титровании перманганатом [153]. Были применены серебряные и другие электроды [1006, 1489]. Титрованием Мп(П) перманганатом калия до Мп(1П) определяют марганец в стали, чугуне [661, 1084, 1489] и цинковых электролитах [154]. [c.50]

    Применению экстракции для переработки растворов при химическом обогащении руд никеля — кобальта, урана, ниобия — тантала, циркония посвящен ряд докладов XV Международного конгресса по обогащению полезных ископаемых [53]. Экстракция перспективна для извлечения меди из растворов кучного и подземного выщелачивания. Б зарубежной практике ее осуществляют экстрагентами Lix 64 , Lix 34 , Шелл 529 , Акорга , Келекс . Медь успешно концентрируется и при сорбции на амфолитах с последующей десорбцией раствором серной кислоты. [c.113]

    В связи с расширяющимися областями применения ниобия все острее ставится вопрос о наиболее равдюнальных методах переработки руд, содержащих ниобий и тантал. Однако химизм процессов переработки руд щелочным методом до сих пор окончательно не выяснен. Поэтому вопросы детального изучения химии ниобия могут способствовать в дальнейшем нахождению путей эффективных методов отделения ниобия ог тантала и других элементов и получению его в чистом виде. [c.238]

    Основные научные работы посвящены химии и минералогии редких элементов. Исследовал минералы, содержащие ниобий, тантал, лантан, торий, церий, уран и цирконий. Описал ильменские цирконы и разработал способ получения окиси циркония, нашедший промышленное применение. Открыл (1836) и исследовал минералы ирнт и осмит, описал тройную соль из осмия, иридия и платины. Составил и опубликовал (1859) первую в мире обобщающую сводку урановых минералов. Собрал обширную коллекцию минералов. [c.138]

    Основные научные исследования посвящены неорганической химии и физической химии редких и радиоактивных элементов, комплексных соединений. Его ранние работы в области химии молибдена и вольфрама, в частности по изучению состава изополивольфраматов и реакций их восстановления, получению химически чистого молиб-дата аммония и др., были использованы в 1920-х при организации отечественного производства вольфрама и молибдена. Результаты работ по хлорированию окислов бери.илия, ниобия, тантала и других элементов (1928—1934) нашли применение при организации производства этих металлов. Осуществил (с 1938) цикл работ по химии цезия и рубидия, по изучению (с 1945) гетерополисоединений нептуния и плутония, по исследованию (с 1953) технеция и других компонентов радиоактивных отходов атомной промышленности. Исходя из представлений о водородной связи, предложил (1957) [c.475]

    Некоторые металлы, потребность в которых в связи с развитие.м новой техники непрерывно возрастает, вообще могут быть получены только три применении вакуума, как, например, ниобий и таитал [274]. Эти металлы, как и титан, являются самыми перспективными для химического аппаратостроения, так как они обладают превосходной коррозионной устойчивостью по отношению к действию многих агрессивных сред и прежде всего слот. Ниобий, тантал, их сплавы и некоторые соединения могут быть применены для изготовления нагревателей, конденсаторов, реакторов, аэраторов, адсорберов, мешалок, клапанов, трубопроводов, сит, проволочных фильтров. На ниобий практически не действуют применяемые в качестве жидко-металлических охладителей в ядерных реакторах жидкие расплавы натрия и его сплава с калием, лития, висмута, свинца, ртути, олова. Химическая устойчивость обусловлена наличием окисной пленки на поверхности металла. Эти металлы тугоплавки, имеют низкую упругость пара при высоких температурах  [c.340]

    Купфероновый метод вполне надежен для определения железа, титана, циркония, ванадия и в отдельных случаях — олова, ниобия, тантала, урана (IV), галлия и, вероятно, гафния. Этим методом можно определять также медь и торий, но осаждать их следует из слабокислых растворов результаты определения этих элементов менее удовлетворительны, чем при обычно принятых методах. Из числа элементов, мешающих применению кунферонового метода, следует упомянуть таллий (III), сурьму (III), палладий, ниобий, тантал, молибден, висмут, церий, торий, вольфрам и большие количества кремния, фосфора, щелочноземельных и щелочных металлов Торий и церий частично выделяются купфероном даже из растворов, содержащих 40% (по объему) серной кислоты. Уран (VI) не влияет на осаждение купфероном. Число элементов, мешающих определению купфероном, может показаться очень значительным, но нужно принять во внимание, что часть из них относится к группе сероводорода и может быть легко отделена перед осаждением купфероном, а некоторые элементы встречаются редко. Здесь следует указать на представляющие интерес разделения, которые можно осуществить этим методом, а именно 1) отделение железа, титана, циркония, галлия и ванадия при анализе чистых алюминия, никеля, цинка и т. п. 2) отделение осаждающихся купфероном элементов от алюминия, хрома, магния и фосфора при анализе различных руд и горных пород 3) отделение ванадия (V) от урана (VI), разделение урана (IV) и урана (VI) и отделение ванадия от фосфора. Осажденяе купфероном может быть осуществлено в присутствии винной кислоты, что дает возможность предварительно отделять железо в виде сульфида. Для этого в раствор вводят достаточное количество винной кислоты, чтобы он оставался прозрачным нри последующем добавлении аммиака. В кислом растворе восстанавливают железо сероводородом и затем подщелачивают аммиаком. Выделившийся осадок сульфида железа отфильтровывают, как описано нри осаждении сульфидом аммония (стр. 115), фильтрат подкисляют серной кислотой, удаляют сероводород кипячением и после этого проводят осаждение купфероном. [c.144]

    Титан количественно осаждается купфероном из разбавленных сер-нойислых растворов и отделяется таким образом от алюминия, хрома, урана (VI), фосфора, никеля и щелочноземельных металлов. Единственным недостатком этого метода является то, что многие другие элементы также осаждаются купфероном. Например, железо, цирконий, ниобий, тантал и ванадий осаждаются количественно, а некоторые редкоземельные металлы, вольфрам и элементы сероводородной группы — частично. Купфероновый и объемный методы в основном отличаются друг от друга тем, что применению объемного метода не препятствует цирконий, редкоземельные металлы и тантал, а применению кунферонового метода — уран (VI). [c.661]

    Очень большое значение приобретает метод хлорирования ниобиевых и танталовых концентратов. Он был разработан в Советском Союзе в конце тридцатых годов Г. Г, Уразовым и И. С, Морозовым [385, 386] для переработки ниобий-титановых (лопаритовых) концентратов. Хлорирование ведут газообразным хлором при 650—700° С, причем концентрат предварительно брикетируют с древесным углем и патокой брикеты просушивают и коксуют при 700—800° С. В процессе хлорирования отгоняются легколетучие хлориды ниобия, тантала, титана и железа остальные компоненты руды, в том числе редкие земли, остаются в печи для хлорирования, откуда могут быть извлечены и соответствующим образом переработаны. Хлориды ниобия, тантала и железа улавливают в приемнике, имеющем температуру 150—200° С, а хлорид титана как более летучий конденсируют во втором приемнике. Хлориды подвергают гидролизу для получения пятиокисей ниобия и тантала (хлорид титана также используют для получения соединений титана). Были также разработаны условия гидролиза [386]. Главная трудность заключалась в очистке пятиокися ниобия от железа. Эта трудность была преодолена правильным подбором соотношения между количествами хлорида ниобия (точнее — оксихлорида) и воды и применением 2%-ной соляной кислоты для промывания осадка пятиокиси ниобия. Полученная пятиокись ниобия содержала 0,5% РегОз и 0,25% ТагОз. [c.157]

    Наиболее значительной областью применения ниобия является металлургия, главным образом производство нержавеющих аустенитных хромоникелевых сталей, в которые ниобий вводится в качестве стабилизатора в целях предотвращения выпадения карбида при температурах 427—872°. Его применение предотвращает меж-кристаллитную коррозию, улучшает сварочные свойства, повышает пластичность сталей, их прочность я сопротивление ползучести при высоких температурах. Ниобий вводится в стали в виде феррониобия, содержащего 50—60% ниобия, или в виде ферротанталниобия, содержащего около 40% ниобия и 20% тантала. Для устранения межкристаллитной коррозии хромоникелевых нержавеющих сталей (18% Сг и 8% N1) содержание ниобия в них должно превышать примерно в, 10 раз содержание углерода и достигает приблизительно 0,8% 1527]. [c.558]

    Кармайкл. Области применения ниобия. Сб. переводных статей Ниобий и тантал , под ред. О. П. Колчина, ИЛ, 1960, 49—54. [c.911]

    Последующее развитие этих работ, вызванное главным образом потребностя1ми авиации и ракетной техники, привело к созданию сплавов на основе металлов так называемой больщой четверки — ниобия, тантала, молибдена и вольфрама, обладающих длительной прочностью 10—15 кГ/ммР-, при температуре 1200° С и выше [2, 3]. (см. рис. 1). Следует иметь в виду, что использование сплавов на основе тантала и вольфрама ограничено их высоким удельным весом. Поэтому применение танталовых сплавов наиболее целесообразно при температурах 1400—1600° С, а вольфрамовых — выше 1700° С [3]. [c.213]

    Особенно эффективно применение приборов большой дисперсии при анализе проб, в состав которых входят редкоземельные элементы, соединения ниобия, тантала, вольфрама, молибдена и других, обладающих сложными многолннейчатыми спектрами. [c.94]


Смотреть страницы где упоминается термин Применение ниобия и тантала: [c.590]    [c.16]    [c.497]    [c.270]    [c.293]    [c.948]    [c.355]    [c.169]    [c.65]    [c.81]   
Смотреть главы в:

Редкие металлы -> Применение ниобия и тантала




ПОИСК





Смотрите так же термины и статьи:

Ниобий тантале

Тантал



© 2024 chem21.info Реклама на сайте