Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Подготовка пробы и газа-носителя

    Принцип действия крана-дозатора газовых проб следующий. Передвижение штока из одного фиксированного положения в другое изменяет порядок сообщения штуцеров крана между собой. Так, в положении I (рнс. 71) поток анализируемого газа, выходящий через штуцер 4, заполняет дозирующую трубку, включенную между штуцерами 3 и 6, и выходит через штуцер 5 (направление движения может быть обратным). Газ-носитель входит в кран через штуцер 2 и выходит через штуцер / (направление движения может быть обратным). В этом положении штока линии газа-носителя и исследуемого газа не сообщаются. При перемещении штока в положение // дозирующая трубка оказывается включенной в поток газа-носителя, и заполняющий ее исследуемый газ потоком газа-носителя вытесняется в колонку. В положении // линия анализируемого газа перекрыта и не продувается для подготовки следующего дозирования необходимо вернуть шток в положение /. [c.177]


    В промышленных хроматографах схемы с несколькими колонками применяют в первую очередь для сокращения продолжительности анализа. Иногда удается существенно сократить время анализа, изменяя с помощью соответствующего переключателя только направление потока газа-носителя в колонке. Комбинация колонок может быть использована также для удаления загрязнений или нежелательных компонентов из анализируемой смесп. Айерс (1958) указывает, что этот способ экономичнее, чем применение сложной системы подготовки пробы. [c.379]

    Хроматограф ХЛ-4. Это отечественный лабораторный хроматограф, разработанный СКВ АНН. Он предназначен для анализа газообразных и жидких веществ с температурой кипения до 200 °С. Схема храматографа приведена на рис. III, 16. Прибор состоит из двух блоков блока колонки (датчика) и блока регистратора (вторичного прибора). Датчик включает систему подготовки газа-носителя, устройство для ввода газообразных и жидких проб, термостат (рабочие температуры от комнатной до 150 °С), колонки и катарометр. Вторичный прибор состоит из регистратора (электронного потенциометра ЭПП-17М2), системы управления хроматографом, электронного регулятора температуры термостата, измерительной схемы детектора. [c.184]

    В блоке подготовки газов проводят очистку и осушку газа- носителя и устанавливают требуемую скорость и давление газа. Дозирующее устройство позволяет вводить в колонку определенное количество анализируемой смеси. Газовую пробу вводят с помощью газового дозатора, а жидкую —с помощью микрошприца. Обычно дозатор совмещают с испарителем, из которого проба газом-носителем переносится в хроматографическую колонку. [c.355]

    Газ-носитель, необходимый для продвижения разделяемой смеси по колонке, поступает через панель подготовки газов, которая обеспечивает его очистку, а также регулирование и стабилизацию потока. Анализируемую смесь в виде газа или жидкости вводят шприцем через резиновое уплотнение в дозатор-испаритель. В дозаторе-испарителе вся жидкая проба быстро испаряется. Затем проба потоком газа-носителя вносится в колонку и перемещается вдоль нее. При полном разделении из колонки последовательно выходят бинарные смеси газа-носителя с каждым из компонентов смеси. [c.170]


    Система автоматического контроля качественных показателей процесса пиролиза [34]. Отделение пиролиза производства олефинов включает шесть пиролизных печей, использующих в качестве сырья бензин, и две печи, использующих этан. Система контроля выполняет автоматическую подготовку пробы (газов пиролиза), хроматографический анализ газовой фазы на выходе каждой печи и в общем коллекторе, автоматический ввод информации от хроматографа в УВМ, обработку информации и печать результатов анализов на телетайпе, а также расчет выхода товарного продукта на поданное сырье для каждой печи и всего отделения в целом. В системе используются три хроматографа РХ-1. Один хроматограф подключен к выходам этановых печей, а два других — к выходам бензиновых печей и, к общему коллектору. Для сокращения продолжительности анализа в хроматографах, подключенных к бензиновым печам, применяется программирование расхода газа-носителя. Поскольку в этом случае сложно выполнить количественный расчет хроматограмм по высотам пиков, то для этих хроматографов в качестве расчетного параметра компонента принята площадь его пика. Хроматографы, определяющие состав газовой фазы продуктов на этановых печах, дают информацию [c.185]

    Для успешной съемки спектров поглощения анализируемые вещества следует подготовить. Они должны быть прежде всего весьма чистыми. Вещество на выходе непосредственно из хроматографической колонки или из детектора выделяют из потока газа-носителя при помощи систем специальных ловушек, а затем используют обычный метод подготовки проб для ИК спектроскопии. [c.195]

    Следующая стадия после выбора сорбента и подготовки колонки— проверка эффективности разделения при различных параметрах проведения процесса температуре, скорости газа-носителя, длине и диаметре колонки и т. д. Техника выполнения хроматографического анализа чрезвычайно проста. Пробу жидкости отбирают специальным микрошприцем и вводят в испаритель хроматографа при выбранной постоянной скорости газа-носителя. В качестве последнего [c.132]

    Вещество на выходе непосредственно из хроматографической колонки или из детектора выделяют из потока газа-носителя при помощи систем специальных ловушек, а затем используют обычный метод подготовки проб для ИК-спектроскопии. Вещество, попадающее в ловушку, либо вымораживается и затем подвергается обычной подготовке, либо улавливается таким образом, чтобы затем его можно было бы без дальнейших приготовлений подвергать спект--ральному анализу. [c.121]

    Схема работы с капиллярной колонкой и пламенно-ионизационным детектором хроматографа Цвет-1-64 показана на рис. 36. В этом случае хроматограф действует следующим образом. Газ-носитель азот с панели подготовки газов (ППГ) течет с заданной скоростью в испаритель пробы. Затем он разделяется в тройнике. Часть потока поступает в капиллярную колонку, а другая часть — во сто крат большая доля — направляется через боковой и-образный капилляр в атмосферу. Тройник, капиллярная колонка и и-образный капилляр с подобранным газовым сопротивлением очерчены на рисунке пунктиром. Они составляют систему, называемую делителем потока. [c.80]

    Для обеспечения идентичности теплового режима колонок используются воздушные термостаты с возможно меньшим градиентом температуры в зоне расположения колонок. Идентичность газового режима достигается подбором элементов установки и регулирования расходов с близкими динамическими характеристиками. Чувствительность детекторов ДИП уравнивается соответствующей корректировкой расходов водорода в каждой горелке. Наконец, равенство количества неподвижной фазы в колонках достигается одинаковой геометрией колонок и контролем массы (а не объема) сорбента при заполнении колонок. Подготовка двухколоночной схемы к работе должна заканчиваться балансированием по результатам записи нулевой линии в холостом (без введения пробы) цикле программирования температуры. Оно состоит в таком направленном изменении рабочих параметров (главным образом, расхода газа-носителя в сравнительной колонке), которое приводит к уменьшению сигнала разбаланса при конечной температуре цикла. При тщательном балансировании схемы возможна работа на шкалах 10" А и выше (до максимальных рабочих температур неподвижных фаз). [c.83]

    Использование литературных данных по параметрам удерживания. Из широкого набора параметров. удерживания для целей идентификации при сопоставлении с опубликованными данными используют индексы удерживания и относительные времена удерживания. Чтобы сопоставление было корректным, необходимо измерения выполнять в условиях, идентичных тем, прн которых получены опубликованные данные. Эти условия должны контролироваться в Первую очередь по следующим пунктам 1) тнп сорбента (марка, фирма-изготовитель, количество неподвижной фазы и характеристики твердого носителя, условия предварительной активации илн обработки сорбента, условия кондиционирования колонки) 2) температурные режимы колонки и системы ввода пробы 3) параметры (длина, диаметр, материал) и условия предварительной подготовки колонки 4) объем вводимой пробы 5) расход, входное и выходное давление газа-носителя 6) способ измерения мертвого времени. [c.214]


    Для анализа ракетного топлива на основе фтора Лизий с сотр. [578] разработали хроматограф, изготовленный из монель-металла и стали и снабженный детектором фирмы Со у-Мас . Газовый хроматограф состоит из пяти следующих функциональных частей системы подготовки газа-носителя, регулировки его давления и расхода, его осушки, очистки и измерения системы дозирования пробы хроматографической колонны с устройством, поддерживающим избранный температурный режим системы детектирования пробы и системы регистрации. [c.65]

    Блок подготовки газа и программирования предназначается для очистки газа-носителя и воздуха, для подготовки пробы к анализу, для программной и автоматической работы прибора при проведении анализа. [c.371]

    Газохроматографические фракции выделяют из потока газа-носителя при помощи систем ловушек, а затем используют обычный метод подготовки проб для ИК-спектроскопии. Подготовку проб производят во времени независимо от снятия спектров, т. е. работают прерывным методом. [c.255]

    Принципиальная схема газового хроматографа представлена на рис. 57. Газ-носитель из баллона 1 поступает в блок подготовки газов 2, где происходит его очистка, устанавливается объемная скорость и давление. В качестве газа-носителя используют гелий, азот, аргон, двуокись углерода. В обогреваемый до температуры выше кипения исследуемой смеси испаритель 4, через который протекает поток газа-носителя, микрошприцем 3 через резиновую мембрану вводят пробу [c.46]

    ПОДГОТОВКА ПРОБЫ И ГАЗА-НОСИТЕЛЯ [c.269]

    Хроматограф ХП-499 включает 5 блоков, в том числе датчик, блок управления, панели подготовки пробы и газа-носителя, регистратор и пневматическую приставку. В датчике, работающем при 25—120 °С, расположены пробоотборный и переключающий пневматические краны, колонки и катарометр. Взрыво-безопасность датчика позволяет располагать его вблизи технологической аппаратуры, из которой отбирают анализируемую пробу. Работа колонок осуществляется по схеме с полуобратной продувкой. Имеются две колонки, на которых происходит разделение пробы, и одна уравновешивающая (буферная), которая служит для создания гидравлического сопротивления во [c.277]

    ПОДГОТОВКА ПРОБЫ И ГАЗА-НОСИТЕЛЯ, КАЛИБРОВКА ПРОМЫШЛЕННЫХ ПРИБОРОВ [c.324]

    Подготовка пробы и газа-носителя, калибровка промышленных приборов [c.292]

    В эмиссионном спектральном анализе интенсивность характеристического излучения на длине волны аналитической линии является по существу аналитическим сигналом. Характеристическое излучение происходит исключительно от определяемого элемента или от элемента, присутствующего в пробе. Однако характеристическое излучение не свободно от помех и может испытывать влияние со стороны фонового излучения на той же длине волны, что и аналитическая линия, и со стороны линейчатого спектра постороннего элемента или полос молекул и свободных радикалов. Может также случиться, что регистрируемый и определяемый элемент является внешней примесью с ее собственным излучением. Анализируемая проба может быть загрязнена во время пробоотбора и подготовки пробы. Загрязнение возможно также за счет примесей в других материалах, которые испаряются и возбуждаются вместе с пробой. Например, причиной таких примесей может быть носитель, противоэлектрод, воздух или защит ный газ. [c.259]

Рис. 55. Схема пробоотбора из потока товарного пропилена. а — панель подготовки пробы б — панель подготовки газа-носителя в — датчик хроматографа / — колонка 2 вентиль тонкой регулировки 3 — основной трубопровод отбора пробы 4 — вентиль сброса 5 — фильтр осушки газа-носителя 6—фильтр очистки газа-носителя. Рис. 55. Схема пробоотбора из потока товарного пропилена. а — панель <a href="/info/40268">подготовки пробы</a> б — панель подготовки газа-носителя в — датчик хроматографа / — колонка 2 вентиль <a href="/info/1445855">тонкой регулировки</a> 3 — основной <a href="/info/130944">трубопровод отбора пробы</a> 4 — вентиль сброса 5 — фильтр <a href="/info/1768498">осушки газа-носителя</a> 6—<a href="/info/152197">фильтр очистки газа</a>-носителя.
    Регулировка потока анализируемого продукта осуществляется вентилями и приборами панели подготовки пробы регулирование параметров газа-носителя — приборами панели подготовки газа-носителя. [c.95]

    В соответствии с условиями эксплуатации потоковый хроматограф, применяемый на промышленной технологической установке, как правило, размещают следующим образом. Блок подготовки пробы, анализатор, блоки подготовки газа-носителя и вспомогательных газов, а также ряд узлов, обеспечивающих их работу, размещают у точки отбора пробы в непосредственной близости от технологического оборудования. Эти блоки конструктивно часто объединяют в единый суперблок — датчик хроматографа. В датчике хроматографа иногда [c.73]

    Принципиальная схема газового хроматографа представлена на рис. 57. Газ-носитель из баллона / поступает в блок подготовки газов 2, где происходит его очистка, устанавливаются объемная скорость и давление. В качестве газа-гюсителя используют гелий, азот, аргон, углекислый газ. В обогреваемый до температуры выше кипения исследуемой смеси испаритель 5, через который протекает поток газа-носителя, микрошприцем 3 через резиновую мембрану вводят пробу вещества. Захватив пары анализируемой пробы, газ-носитель поступает в хроматографическую колонку 6 — металлическую или стеклянную трубку длиной обычно от 0,5 до 4 м и диаметром 2—8 мм, заполненную гранулированной насадкой. Во избе-жение конденсации паров пробы колонка помещена в термостат 7. Выходящий из колонки газовый поток содержит зоны отдельных компонентов, разделенные зонами чистого газа-носителя и отличающиеся от них по электрической проводимости, плотности или другим параметрам. Измерение этих параметров на выходе из колонки позволяет определить относительное содержание компонента в смеси. Устройство, непрерывно регистрирующее значение того или иного параметра газового потока, называется детектором 8. [c.49]

    Газовые смеси лучше дозировать ие шприцем, а краном-дозатором. Потоком газа-носителн проба вводится в хроматографическую колонку. За счет различной адсорбируемости (н ГАХ) или различной растворимости (в ГЖХ) происходит разделение компонентов разделяемой смеси. В случае полного разделения из колонки последовательно выходит бинарная смесь газа-носителя с каждым из компонентой. Эта смесь попадает в детектор, который регистрирует разделенные компоненты. Органические вешества, попадающие в детектор, ионизируются в пламени водорода. Необходимые для поддержания пламени газы водород и воздух подаются от панели подготовки газов. Возникающий в электрическом поле детектора ионный ток пропорционален количеству поступающего в горелку ре- [c.243]

    Колонки металлические (2 м X 3 мм), заполненные хроматоном N-AW (0,2—0,25 мм), модифицированным 0,5 % (по массе) поверхностно-активного вещества (например, полиэтиленгликольмонолаурата) и смоченным одной из следующих неподвижных фаз в количестве 20 % (по массе) 1) апиезон Ь 2) трикрезилфосфат 3) полиэтиленгликоль-1500 (ПЭГ-1500). Для размещения в термостате хроматографа всех названных колонок, образующих три параллельных канала разделения, прибор доукомплектовывают дополнительным блоком испарителя или выводят входной конец третьей колонки через отверстие в крышке термостата и оборудуют его устройством для наколоночного ввода пробы. В том и другом случаях для обеспечения работы газовой схемы с тремя параллельными колонками (обладающими примерно одинаковым гидродинамическим сопротивлением) на выходе одного из двух штатных каналов блока подготовки газа-носителя устанавливают тройник выходы колонок связывают с детектором через крестовину (рис. IV.8). [c.291]

    Принципиальная схема газового или жидкостного хроматографа показана рис.3.3. Установка и стабилизация скорости потока газа и очистка газа-носителя и дополнительных газов (если они необходимы для питания детеетора), а также измерение скорости потока газа выполняются системой подготовки газов 1. Особенно важное значение имеет установка и стабилизация расхода газа-носителя, оказывающего непосредственное влияние на параме ы удерживания и размеры пиков на хроматограмме. Дозирующее устройство 2 позволяет вводить в поток газа-носителя непосредственно перед колонкой определенное количество анализируемой смеси в газообразном состоянии. Поток газа-носителя вносит анализируемую пробу в колонку [c.56]

    Схема современного газового хроматографа изображена на рис. 4.1.5. Для создания перепада давления через колонку хроматограф подсоединяют к источнику со сжатым газом 1 (баллонная или лабораторная линия со сжатым газом). Через колонку поток газа-носителя должен проходить с постоянной и определенной скоростью, поэтому на входе в колонку на линии газа-носителя устанавливают регулятор и стабилизатор расхода газа-носителя 2 и измеритель расхода газа 3. Если газ-носитель загрязнен нежелательными примесями, то в этом случае устанавливается еще фильтр 4. Таким образом, на входе в колонку подключается ряд устройств, часто объединяемых в один блок (блок подготовки газа), назначение которого — установка, стабилизация, измерение и очистка потока газа-носителя. Перед входом в колонку устанавливается устройство для ввода анализируемой пробы в колонку — до-затор-испаритель 5. Обычно анализируемую пробу вводят микрошприцем 8 через самозатекаюшес термостойкое резиновое уплотнение в дозаторе, газовые пробы вводят дозирующим шестиходовым краном. [c.259]

    Газ-носитель, проба и-воздух подводятся к штуцерам блока подготовки газа БП23. Выходной штуцер с надписью выход пробы соединяется гибким шлангом или трубкой из нержавеющей стали со штуцером разделительной колонки РК-20 с надписью Проба . К штуцеру воздух охлаждения РК-20 подводится воздух от заводской магистрали под давлением 1,5-2 кПсмК .........  [c.371]

    В аналитических хроматографах в подавляющем большинстве случаев используют проявительный вариант хроматографии, в котором инертный газ-носитель непрерывно продувается через хроматографическую колонку. Чтобы получить определенный расход газа, нужно создать перепад давления на входе и выходе колонки. С этой целью колонку подсоединяют к источнику со сжатым газом (баллоном или лабораторной линией со сжатым газом). Через колонку поток газа-носителя должен проходить с постоянной определенной скоростью, для этого на входе в колонку на линии газа-носителя устанавливают регулятар расхода газа-носителя 2 и измеритель расхода газа 5. Если газ-носитель загрязнен нежелательными примесями, то его пропускают через фильтр 4. Таким образом, на входе в колонку включается ряд устройств, часто объединяемых в один блок (блок подготовки газа), назначение которого — установление, стабилизация, измерение и очистка потока газа-носителя. Перед колонкой помещают еще устройство для ввода анализируемой пробы в колонку, так называемый дозатор-испаритель 5. Обычно анализируемую пробу вводят микро- [c.20]

    Пористые полимеры получают путем гетерогенной реакции сшивания из различных (большей частью ароматических) мономеров в присутствии инертного растворителя при последующей сушке образуются частицы более или менее постоянной пористости. Торговые продукты, как правило, могут содержать остаточные мономеры и олигомеры органические и неорганические агенты, вводимые для регулирования размеров зерен остатки растворителя и кислотные группы на поверхности, образующиеся вследствие окисления в процессе изготовления. Все это обусловливает для большого числа соединений заметные различия величин удерживания и сильно ограничивает воспроизводимость результатов при переходе от одной партии продуктов к другой. Тем не менее пористые полимеры представляют большую ценность при разделении и микроанализе сильнополярных веществ, таких как гликоли, полиспирты, амины, и смесей органических и неорганических соединений. Особое внимание в целях лучшей воспроизводимости следует уделять тщательной подготовке материала, при которой устраняются упоминавшиеся выше загрязнения, и (прежде всего при повышенных температурах) исключению кислорода из газа-носителя и проб во избежание окисления. Необходимо учитывать, что ввиду неоднородности поверхности многих продуктов изотерма адсорбции для них нелинейна, и поэтому удерживание зависит от количества вещества в пробе. [c.212]

    Нижнюю часть прибора занимают узлы подготовки газа-носителя и пробы. Система пробоподготовки набирается из различных элементов в соответствии с требованиями анализа и составом пробы. Анализ жидкости производится иосредством предварительного испарения в нагревателе-испарителе, совмещенном с редуктором. Анализатор рекомендуется размещать под навесом, чтобы исключить влияние на прибор резких колебаний температуры. [c.60]

    И 20М реоплекс 400, силиконовый эластомер SE-30 и др.). Проводили как прямое хроиматографирование образца коньячного спирта, так и применяли описанный ранее [6] способ подготовки проб на препаративном хроматографе. Пример хроматограммы коньячного спирта приведен на рисунке. Режим анализа температура 100°, нагрев испарителя 200°, расход газа-носителя (гелия) 60 мл1мин. Хроматографическая колонка длиной 2 ж и диаметром 0,4 см была заполнена хроматоном N-AW 0,20—0,025 мм с нанесенным реоплексом 400 (15% ). [c.64]

    I — баллон с испытуемым веществом 2 — редуктор балонный 3 — баллон с газом-носителем 4 — регулятор давления 5 — дроссель 6 — пробоотборная петля 7 — элемент системы подготовки пробы 8 — детектор 9 — регистрирующий прибор /О — колонка —переключатель /г — коммутирующий кран 13 — система стабилизации газовых потоков. [c.79]


Смотреть страницы где упоминается термин Подготовка пробы и газа-носителя: [c.42]    [c.215]    [c.153]    [c.38]    [c.271]    [c.8]   
Смотреть главы в:

Введение в газовую хроматографию -> Подготовка пробы и газа-носителя




ПОИСК







© 2025 chem21.info Реклама на сайте