Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Осаждение и коррозия металлов

    Электролиз водных растворов — важная отрасль металлургии тяжелых цветных металлов меди,висмута, сурьмы,олова, свинца, никеля, кобальта, кадмия, цинка. Он применяется также для получения благородных и рассеянных металлов, марганца и хрома. Электролиз используют непосредственно для катодного выделения металла после того, как он был переведен из руды в раствор, а раствор подвергнут очистке. Такой процесс называют электроэкстракцией. Электролиз применяется также для очистки металла — электролитического рафинирования. Этот процесс состоит в анодном растворении загрязненного металла и в последующем его катодном осаждении. Рафинирование и электроэкстракцию проводят с жидкими электродами из ртути и амальгам (амальгамная металлургия) и с электродами из твердых металлов. К электролитическим способам получения металлов относят также цементацию — восстановление ионов металла другим более электроотрицательным металлом. Цементация основана на тех же принципах, что и электрохимическая коррозия при наличии локальных элементов. Выделение металлов осуществляют иногда восстановлением их водородом, которое также может включать электрохимические стадии ионизации водорода и осаждение ионов металла за счет освобождающихся при этом электронов. [c.227]


    Коррозия является самопроизвольным процессом разрушения металлов в отличие от не называемого коррозией преднамеренного разрушения металлов при их растворении в кислотах (с целью получения солей), в гальванических элементах (с целью получения постоянного электрического тока), при анодном растворении в электролизерах (с целью последующего катодного осаждения металла из раствора) и т. п. Причина коррозии металлов — химическое или электрохимическое взаимодействие с окружающей средой — отграничивает коррозионные процессы от процессов радиоактивного распада металлов и от эрозии — механического разрушения металлов (при шлифовке металлов или износе трущихся деталей машин). [c.8]

    Картина осложняется еще больше, когда на слоях осадков одновременно идут окислительно-восстановительные процессы и растворение или осаждение металлов. Здесь нужно учитывать как ионную, так и электронную проводимость в слоях осадков. Такой случай встречается, например, при одновременном выделении кислорода и коррозии металла через пассирующий слой. Согласно Феттеру и Вайлю так же протекают процессы на пассивированном железе. Эти представления нужно распространить также на пассивирующие слои на N1, Со, Сг, а также на благородных металлах. [c.416]

    Частным случаем параллельных реакций являются так называемые сопряженные реакции, под которыми подразумеваются параллельно протекающие на электроде противоположно направленные (анодные и катодные) процессы в условиях, когда внешний ток равен нулю. Примерами таких реакций являются коррозия металлов (в кислой среде параллельно идут анодное растворение металла и катодное восстановление ионов водорода), бестоковое осаждение металлов (катодный разряд ионов металла с одновременным окислением входящего в состав раствора органического вещества) и т. д. [c.268]

    Скорости электродных процессов рассматриваются обычно с применением тех же приемов, что и скорость химических реакций. Но при этом, однако, нужно иметь в виду сложность протекания большинства электрохимических превращений по сравнению с химическими, а также то, что решающая роль здесь принадлежит плотности тока . Процесс разряда ионов, как известно, происходит на фазовой границе электрод — электролит. Таким образом, электродные реакции являются гетерогенными процессами, кинетика которых определяется многими специфическими затруднениями. Помимо собственно разряда, т. е. перехода ионов из одной фазы (раствора) в другую (газ, металл), процесс обычно включает в себя миграцию, диффузию и конвекцию частиц, совместный разряд ионов примесей, некоторое растворение (коррозию) уже осажденного ранее металла и другие, сопутствующие процессу разряда явления, которые осложняют суммарный эффект. Реальная электрохимическая система не может быть правильно истолкована без учета всех явлений, предшествующих элементарному акту разряда и сопровождающих его. Электродная реакция может быть представлена рядом последовательных стадий, через которые она проходит. Такими стадиями являются  [c.240]


    Самопроизвольная коррозия металлов в водных растворах и электролитическое осаждение металлов из водных растворов их солей являются электрохимическими процессами. По этой причине они рассматриваются в данном параграфе, хотя основное внимание уделяется контактной коррозии, которая оказывает особое влияние на поведение несплошного металлического покрытия, нанесенного на основной слой металла, менее устойчивого к действию коррозии. [c.14]

    Продукты коррозии металлов образуются в результате окисления во время производственных процессов (например, при литье и термообработке) или вследствие реакции с коррозионной средой при хранении. Скорость коррозии можно контролировать и свести до минимума благодаря использованию соответствующих способов защиты от нее, но вряд ли коррозию можно полностью предотвратить. Продукты коррозии на поверхности металла должны быть полностью удалены перед нанесением покрытия, так как присутствие их мешает гальваническим процессам и (или) сказывается на эксплуатационных качествах покрытия. Поврежденные или хрупкие окисные пленки образуют области слабого сцепления между покрытием и основным металлом, что может привести к нарушению покрытия. Так как подвергнувшиеся коррозии участки невосприимчивы к электролитическому осаждению, после нанесения покрытия они остаются оголенными. Разность между электродными потенциалами поврежденного участка и основной поверхности может вызывать гальваническое воздействие, которое приводит к интенсивной коррозии при эксплуатации. [c.57]

    Скорость коррозии алюминия, погруженного в воду, зависит от количества растворенного в воде кислорода, содержания хлорида и в особенности от присутствия тяжелых металлов (таких, как медь). Состав и количество солей в воде, влияющих на образование окислов, также сказываются на скорости коррозии. Очень высокое содержание хлорида вызывает мгновенную общую коррозию поэтому алюминий, как правило, непригоден для эксплуатации в морской воде. В питьевой воде присутствие даже очень небольшого количества растворенной меди способствует возникновению точечной коррозии, а твердые окислы, осаждающиеся в питтингах, вызывают снижение активности микросреды внутри язв. Благодаря последнему фактору скорость коррозии несколько снижается по мере увеличения длительности ее воздействия. При температуре приблизительно до 80° С точечной коррозии не возникает, вероятно, в результате осаждения тяжелых металлов и твердых солей и уменьшения количества растворенного кислорода. [c.108]

    Обычно металлизированные пластмассы корродируют по механизму, характерному для анодной защиты растворяется подслой меди, и вследствие этого на поверхности появляются зеленые или темно-коричневые пятна продуктов коррозии. При более длительном процессе коррозии подтравливаются химически осажденные слои металла, особенно никеля, уменьшается адгезия, появляются точечные вздутия. На такой вид коррозионного разрушения оказывает влияние природа металлизированной пластмассы. Например, полипропиленовые детали более устойчивы, чем детали из АБС-пластика. При еще более продолжительном [c.23]

    Другое направление исходит из того очевидного положения, что в электролите па металлическом электроде всегда протекают электрохимические реакции. Следовательно, при анодном окислении восстановителя потенциал электрода сдвигается в отрицательную область, где должны протекать и катодные процессы электрохимического осаждения металла из его ионов. Таким образом, весь окислитель-но-восстановительный процесс химической металлизации протекает на металлической поверхности электрода путем сопряжения двух или более электрохимических реакций (рис. 7). Подобные же рассуждения приводят при объяснении процессов коррозии металлов, только при коррозии процесс идет в направлении растворения металла, а при химической металлизации — в направлении его осаждения. [c.32]

    Электролизом расплавов получают и рафинируют щел. и щел.-зем. металлы, РЗЭ, А1, Т1, Ве, 2г, Тп, и и др., осаждению к-рых из водных р-ров препятствует выделение на катоде На. Электроосаждением в расплавах можно изготовлять фасонные полые изделия из тугоплавких материалов, наносить коррозионно-, жаро- и износостойкие покрытия. Гальванич. элементы с расплавленными электролитами примен. в кач-ве высокотемпературных хим. источников тока, к-рые обладают высокими эдс и большими разрядными токами. Использование расплавов позволяет исследовать электрохим. р-ции при высоких т-рах и изучать коррозию металлов в средах, применяемых в совр. технике. м. В. Смирнов. [c.706]

    В большинстве работ, посвященных механизму защиты железа от коррозии фосфатами, высказывается мнение, что фосфатный слой осаждается из электролита, а пассивирующий окисел возникает за счет взаимодействия металла с кислородом. Роль вторичного осажденного из электролита фосфата заключается в снижении скорости растворения окисного слоя. В работах [47] было показано, что в присутствии фосфатов на анодной поляризационной кривой имеется два потенциала пассивации один из них смещен на 0,2 В в отрицательную сторону по сравнению с потенциалом обычной пассивации, наблюдаемым в боратном буфере, не содержащем фосфатов. Из этого делается вывод, что в фосфатных растворах переходу железа в пассивное состояние предшествует специфическая пассивация, обусловленная вторичным осаждением фосфата металла из раствора. Накопление на поверхности стали плохорастворимого фосфата железа создает благоприятные условия для обычной окисной пассивации. [c.66]


    Оловянно-никелевые покрытия с содержанием олова 65% обладают высокой стойкостью к корро зии в атмосферных условиях, в том числе и при наличии в атмосфере сернистокислых соединений. В водных растворах они пассивны и устойчивы к уксусу, щелочам, фруктовым сокам и др. Способность этих покрытий усиливать коррозию металла подложки можно предотвратить путем тщательного нанесения сплава в два слоя с промежуточным осаждением тонкого слоя меди. Оловянно-никелевые покрытия широко применяются для металлоизделий, используемых в закрытых помещениях. [c.153]

    Б y Ш e Ле Б., Л и 6 a н a т и С., Л а к о м б П, Влияние осаждения радиоактивной серы на электрохимическую коррозию железа, — В кн, Коррозия металлов (в жидких и газообразных средах), М,, 1964, с. 299—312. [c.394]

    Аналогичный подход применим и в случае цементации. Следует учитывать однако, что при коррозии на каждом из металлов реализуются и анодные (растворение металла) и катодные (восстановление присутствующих в растворе окислителей) реакции, в то время как при цементации на анодных участках происходит только растворение Мь а на катодных — осаждение Мг. Таким образом, уравнение (37) является лишь частным случаем уравнения (90), а контактный обмен — частным случаем контактной коррозии металлов. [c.150]

    Глава XIV ОСАЖДЕНИЕ И КОРРОЗИЯ МЕТАЛЛОВ [c.636]

    ГЛАВА ХГУ. ОСАЖДЕНИЕ й КОРРОЗИЯ МЕТАЛЛОВ 627 [c.639]

    ГЛАВА XIV. ОСАЖДЕНИЕ Н КОРРОЗИЯ МЕТАЛЛОВ 643 [c.655]

    Осаждение прочих металлов. Кроме указанных металлов в современной гальванотехнике применяется осаждение иридия, рутения, рения, галлия и таллия, а также некоторых других, которые не относятся к категории редких, но и не входят в группу металлов, широко применяемых в качестве защитно-декоративных покрытий. К ним относятся висмут, марганец и сурьма. Все эти металлы редко применяются в промышленности и используются главным образом при лабораторных исследованиях. Поэтому в настоящем справочнике технология их осаждения не приводится. Исключение представляет сурьма, осаждение которой используется для частичной замены оловянных покрытий под пайку, для покрытия печатных радиотехнических схем, для замены кадмия в условиях морской коррозии и в других отраслях машиностроения. Сурьма—серебристо-белый металл с уд. весом 6,88 и температурой плавления 630,5° С. [c.167]

    Окисление металлического железа ароматическими нитросоединениями в растворе электролита начинается с образования гидроксида Ре +, который затем окисляется в гидроксид Ре +. Последний вступает во взаимодействие с вновь образующимся в результате коррозии металла гидроксидом Ре +. Осажденный по одному из двух способов пигмент промывают декантацией, фильтруют, сушат и подвергают размолу. В качестве пигмента применяют соединения, содержащие не менее 17—18% FeO. [c.311]

    В машиностроении для защиты изделий от коррозии используют гальваническое осаждение многих металлов цинка, кадмия, никеля, хрома, олова, свинца, золота, серебра и др. Применяют также электролитические сплавы, например Си—2п, Си—5п, 5п—В и многослойные покрытия. [c.155]

    Катодные ингибиторы, повышающие перенапряжение катодного процесса, применяются в тех случаях, когда коррозия протекает с водородной деполяризацией. В качестве ингибиторов применяют соли, содержащие катионы некоторых тяжелых металлов (Л8С1з, В1(804)з). Происходит контактное осаждение этих металлов на стали, вследствие чего повышается перенапряжение водорода. На рис. 10.4 показано влияние небольшой добавки А8202 (0,045 % в пересчете на мышьяк) на скорость коррозии углеродистой стали в серной кислоте. [c.301]

    Параболическому закону диффузии подчиняется кинетика процессов диффузии, сопровон<дающейся необратимой химической реакцией, как, например, образование окалины в сталях, газовая коррозия металлов, образование осадков в студнях и т. д. Видимой границей зоны реакции в таких процессах является граница образования новой фазы — фазы продукта реакции, как, например, граница окисла металла при образовании окалины, граница осадка при реакции осаждения в студнях и т. п. Эта граница находится на расстоянии X от места начала диффузии и перемещается во времени но параболическому закону. Расстояние X соответствует достижению ко времени I диффундирующим веществом (кислород, диффундирующий в металл металл, диффундирующий в окисел металла соль, образующая осадок с веществом, растворенным в студне, диффундирующая в студень и т. д.) концентрации, отвечающей стехиомет-рическому составу продуктов реакции, т. е. стехиометрически эквивалентной концентрации другого реагирующего вещества. Физически это означает, что при течении процессов нарастания слоя твердых продуктов реакции на исходном твердом теле (например, окалинообразование, процессы выщелачивания и т. п.) диффундирующий извне компонент потребляется в зоне реакции (граница раздела исходная фаза — слой продуктов) и не пересекает ее потому, что его концентрация за зоной реакции практически равна нулю. [c.118]

    Причинами, обусловливающими большую скорость коррозии металлов в морской атмосфере, являются высокая относительная влажность и наличие в воздухе частичек хлористого натрия, которые попадают на металлическую поверхность вместе с конденсационной водой или же благодаря непосредственному осаждению. Причины, приводящие к появлению в воздухе морских районов относительно больших количеств хлористого натрия, а также механизм возникновения на поверхости металлов минерализованных [c.202]

    КОБАЛЬТИРОВАНИЕ - нанесение на поверхность металлических изделий слоя кобальта. Кобальтовые покрытия защищают изделия от коррозии металлов, придают им декоративный вид, повышают твердость и износостойкость. Перед нанесением покрытия поверхность изделий обезжиривают в горячих щелочных растворах с добавками эмульгаторов, очищают от окислов травлением в серной или соляной к-те, изделия промывают в проточной воде, образовавшийся на них шлам удаляют, после чего их поверхность активируют в разбавленной серной или соляной к-те. Различают К. электрохимическое и химическое. Электрохимическое К. заключается в осаждении кобальта (преим. из кислого раствора сернокислого кобальта или двойной сернокислоаммониевой его соли) на катоде, аноды — из чистого металлического кобальта. К раствору иногда добавляют соли щелочных металлов — для повышения электропроводности, хлориды — для активирования анодов и борную к-ту — в качестве буферного соединения, поддерживающего постоянное значение pH. Примерный состав электролита (г/л)i [c.598]

    Исследования по оценке биостатичности ряда химических веществ, известных как эффективные ингибиторы Коррозии металлов, старения полимеров или наводороживания металлов при проведении различных технологических процессов, или известных как адденды в электролитах для осаждения металлопокрытий, или полупродукты органического синтеза, позволили выделить достаточно эффективные для защиты конструкций машин от биоповреждений на этапах производства, ремонта и эксплуатации (табл. 3.3). [c.76]

    Терехов П. И., Рейхштадт А. К, Иванова А. Н., Электролитическое осаждение марганца из водных растворов сульфатов, Груды второй конференции по коррозии металлов , изд. АН СССР, 19.3. [c.176]

    Вторая глава (Р. Ориани, У. Джонсон) посвящена современному состоянию наших знаний о свойствах границы металла с газом или вакуумом. На первый взгляд эта тема имеет весьма отдаленное отношение к электрохимии, но на самом деле это не так. Рассматривая границу раздела металл — жидкость, электрохимики до сих пор больше внимания уделяли той ее части, которая обращена к раствору. Известно, однако, что многие электрохимические явления, и особенно те из них, которые связаны с электрокатализом, осаждением и растворением (коррозией) металлов, очень сильно зависят от свойств самих металлических поверхностей. Учитывая растущий интерес именно к этим аспектам электрохимических явлений, включение данной темы в число проблем, рассматриваемых в данной серии, является вполне оправданным. [c.6]


Смотреть страницы где упоминается термин Осаждение и коррозия металлов: [c.15]    [c.557]    [c.797]    [c.155]    [c.731]    [c.614]    [c.228]   
Смотреть главы в:

Введение в электрохимию -> Осаждение и коррозия металлов




ПОИСК





Смотрите так же термины и статьи:

Коррозия металлов

Коррозия металлов коррозии



© 2025 chem21.info Реклама на сайте