Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронный транспорт при фотосинтезе

    На рис. 189 представлена более современная модель транспорта электронов при фотосинтезе. [c.346]

    Модель транспорта электронов при фотосинтезе [c.346]

    Совершенно очевидно, что один из наиболее перспективных методов крупномасштабного преобразования солнечной энергии основан на использовании биосистем. Широкое применение биосистем для получения энергии способно обеспечить свыше 15 % производства энергии для экономически развитых стран. В последние 10—15 лет намечены новые пути биотрансформации солнечной энергии при фотосинтезе. Установлено, что некоторые микробиологические системы характеризуются высокой эффективностью фотосинтеза. Так, фоторазложение воды, осуществляемое суспензией хлореллы с образованием кислорода, в оптимальных условиях культивирования дает 130—140 л газа с 1 м освещаемой поверхности в сутки. Известно, что одна из особенностей процесса фотосинтеза — уменьшение эффективности преобразования солнечной энергии при высоких значениях интенсивности света. Новые технологии позволяют повысить эффективность фотосинтеза при высокой интенсивности света. Разрабатываются системы, эффективно поглощающие световой поток и обогащенные реакционными центрами по отношению к пигменту. Световые кривые фотосинтеза улучшаются также с увеличением скорости лимитирующей стадии электронного транспорта. Например, проведение процесса при повышенных температурах в системах термофильных микроорганизмов увеличивает эффективность преобразования солнечной энергии при высокой интенсивности света. [c.26]


    Из множества различных схем, предложенных для транспорта электронов при фотосинтезе, большинству известных данных удовлетворяет лишь зигзагообразная 2-схема (рис. [c.342]

    Вещества, ингибирующие электронный транспорт, как следствие ингибируют также окислительное фосфорилирование, фотосинтез и фотофосфорилирование. Некоторые вещества (например, динитрофенол), которые разобщают или ингибируют фосфорилирование или ингибируют стадию выделения кислорода в процессе фотосинтеза, могут не оказывать влияния на электронный транспорт или даже стимулировать его. [c.251]

    Изучение у прокариот электронтранспортных цепей, функционирующих в процессах дыхания и фотосинтеза I и II типов, выявило принципиальное сходство между ними. В обеих системах электронного транспорта есть флавопротеины, хиноны, цитохромы и белки, содержащие негемовое железо, позволяющие переносить электроны вниз по термодинамической лестнице. Таким образом, по существу обе электронтранспортные цепи являются окислительными. Разнообразие в их организации обнаружено при более детальном изучении и выражается как в широком наборе доноров и акцепторов электронов, так и в конкретной организации самих цепей химическом строении переносчиков, принадлежащих к одному типу, их наборе, расположении и т.д. [c.97]

    В течение длительного времени считали, что АТФ и другие высокоэнергетические соединения, находящиеся в равновесии с ним, представляют собой единственную форму энергии, которая может использоваться живыми клетками во всех энергозависимых процессах. Вопрос о характере связи между транспортом электронов, с одной стороны, и превращением фосфорных соединений, с другой, долгое время оставался неясным. Было установлено, что использование энергетических ресурсов (органических или неорганических соединений при дыхании, света при фотосинтезе) связано с переносом электронов по цепи, состоящей из белковых и небелковых компонентов, способных к обратимому окислению — восстановлению. В результате этого переноса освобождающаяся на отдельных участках дыхательной или фотосинтетической цепи энергия трансформируется в химическую энергию фосфатных связей АТФ. Молекулярный механизм фосфорилирования, сопряженный с электронным транспортом, был неизвестен. [c.100]

    К Ре8-белкам относится группа белков, участвующих в процессах электронного транспорта (ферредоксины), и ряд ферментов, катализирующих окислительно-восстановительные реакции. Установлено, что Ре8-белки являются ключевыми в таких важных клеточных процессах, как фотосинтез, дыхание, азотфиксация, фиксация СО2. [c.232]


    Во второй том вошли материалы по биоэнергетике и метаболизму клетки. Рассмотрены роль глюкозы в биоэнергетических процессах, цикл лимонной кислоты, электронный транспорт, окислительное фосфорилирование, регуляция образования АТФ, окисление жирных кислот в тканях животных, окислительный распад аминокислот, биосинтез углеводов, липидов, нуклеотидов, аминокислот, а также фотосинтез. [c.372]

    ЭЛЕКТРОННЫЙ ТРАНСПОРТ ПРИ ФОТОСИНТЕЗЕ [c.25]

Рис.42. Схема транспорта электрона при фотосинтезе Пх -пластохинон Пц - пластоцианин д - ферредоксин Рис.42. <a href="/info/191226">Схема транспорта электрона</a> при фотосинтезе Пх -пластохинон Пц - пластоцианин д - ферредоксин
    Схема нециклического транспорта электрона в фотосинтезе высших растений и водорослей выражается уравнением [c.206]

Рис. 131. Транспорт электронов при фотосинтезе (обозначения см. на рис. 130) Рис. 131. <a href="/info/97244">Транспорт электронов</a> при фотосинтезе (обозначения см. на рис. 130)
    Все эти различия являются следствием отсутствия у них ФС И они не могут использовать воду как донор электронов в нециклическом электронном транспорте, образовывать кислород из воды при фотосинтезе и обладают только циклическим фотофосфорилированием. Почти все пурпурные и зеленые бактерии — строгие анаэробы. [c.186]

    Участие ферредоксина в транспорте электронов при фотосинтезе, а также биологической утилизации и образовании водорода демонстрирует следующая схема  [c.197]

    Несмотря на то, что механизмы бактериального и растительного фотосинтеза имеют много общего, между ними есть некоторые частные различия. Фотофизические и первичные фотохимические стадии любого фотосинтеза универсальны с тем лишь исключением, что у бактерий функцией фотохимически активного пигмента обладает не хлорофилл, а бактериохлорофилл. Наиболее выраженные различия обнаруживаются на стадии электронного транспорта и сопряженного с ним фосфорилирования. Они касаются числа фотосистем, управляющих электронным транспортом, природы и последовательности расположения в цепи переносчиков электронов. Кроме того, между различными представителями бактериального мира отмечается некоторая вариабельность по всем этим признакам. [c.89]

Рис. 7.8-13. Схематическое изображение цепи электронного транспорта фотосинтеза (ЭТФ). На входе — НгО и свет, на выходе—NADP и Ог. Белки ЭТФ представлены с помощью сокращенных названий или в виде темных кружков. Рис. 7.8-13. <a href="/info/376711">Схематическое изображение</a> <a href="/info/169405">цепи электронного транспорта</a> фотосинтеза (ЭТФ). На входе — НгО и свет, на выходе—NADP и Ог. Белки ЭТФ представлены с помощью <a href="/info/573866">сокращенных названий</a> или в виде темных кружков.
    В 40-50-х гг. М. Калвин, используя изотоп С, выявил механизм фиксации СО2. Д. Арнон (1954) открыл фотофос-ф( илирование (инициируемый светом синтез АТФ из АДФ и Н3РО4) и сформулировал концепцию электронного транспорта в мембранах хлоропластов. Р. Эмерсон и Ч.М. Льюис (1942-43) обнаружили резкое снижение эффективности фотосинтеза при Х>700 нм (красное падение, или первый эффект Эмерсона), а в 1957 Эмерсон наблюдал неадцитивное [c.179]

    Система тилакоидных мембран хлоропласта превраш,а-ет энергию света в форму, которая может быть использована для осушествления химических реакций. Целиком процесс фотосинтеза был схематически представлен на рис. 10.1. В приводимом ниже обсуждении фотосинтеза рассматриваются три стадии. Первая стадия представляет собой световую реакцию — первичный процесс, с помош,ью которого энергия света поглощается светособирающими пигментами и переносится на фотохимические реакционные центры. На второй стадии поглощенная энергия света используется для осуществления транспорта электронов от воды до NADP+. В ходе электронного транспорта устанавливается градиент заряда, или концентрации протонов, через функциональные везикулы мембраны. Третья стадия представляет собой путь, по которому NADPH, образованный электронтранспортной системой, и АТР, генерируемый за счет различий электрохимического потенциала протонного градиента, используются для фиксации СО2 и синтеза углеводов. Хотя в целях упрощения процесс фотосинтеза разбит на три стадии, необходимо помнить, что поглощение света, транспорт электронов и генерация электрохимического градиента в действительности очень тесно сопряжены. [c.333]


    Фотосинтез можно определить как процесс фотоиндуцирован-ного электронного транспорта, конечным результатом которого является усвоение СО2. Скорость фотосинтеза зависит от интен- сивности падающего света I. Грубо говоря, скорость образования некоего субстрата пропорциональна числу поглощенных квантов. Этот неустойчивый субстрат преобразуется далее в ферментативных процессах. Опыт показывает, что для продукции одной молекулы О2 нужно и 8 молекул субстрата. Па один ферментативный комплекс или на одну молекулу обобщенного фермента (фотосинтетическая единица) приходится около 300 молекул хлорофилла (50 в фотосинтезирующих бактериях). [c.448]

    В процессах дыхания и фотосинтеза освобождающаяся при переносе электронов энергия запасается первоначально в форме электрохимического трансмембранного градиента ионов водорода (ДДн+)> т.е. имеет место превращение химической и электромагнитной энергии в электрохимическую. Последняя затем может быть использована для синтеза АТФ. Поскольку в обоих процессах синтез АТФ обязательно связан с мембранами, реакции, приводящие к его образованию, получили название мембранзави-симого фосфорилирования. Последнее подразделяется на два вида окислительное (АТФ образуется в процессе электронного переноса при окислении химических соединений) и ф о-тосинтетическое (синтез АТФ связан с фотосинтетическим электронным транспортом) фосфорилирование. Следует подчеркнуть, что принципы генерации АТФ при фотосинтезе и дыхании, т. е. механизмы мембранзависимого фосфорилирования, одинаковы. Таким образом, энергия, получаемая в процессах брожения, дыхания или фотосинтеза, запасается в определенных формах. [c.97]

    У цианобактерий и прохлорофит в результате двух фотохимических реакций электроны поднимаются до уровня приблизительно -500 мВ, что делает возможным их прямой перенос на молекулы ферредоксина и НАДФ (рис. 75, В). В группах эубактерий, осуществляющих кислородный фотосинтез, фотоиндуци-руются два потока электронов циклический и нециклический. Циклический перенос электронов, связанный с активностью фотосистемы I, приводит к получению только энергии. При нециклическом электронном транспорте, обеспечиваемом активностью двух последовательно функционирующих фотохимических реакций, на конечном этапе электронного переноса образуется восстановитель, а на отрезке электронтранепортной цепи между двумя фотосистемами, где электроны переносятся по электрохимическому градиенту, имеет место запасание энергии в молекулах АТФ. [c.284]

    Электрон от акцептора фотосистемы II проходит через цепь переносчиков и поступает в реакционный центр фотосистемы I, на фотоокисленную форму хлорофилла а — пигмент Пуоо ( о=+500 мВ), заполняя электронную вакансию аналогично тому, как это происходит при фотосинтезе зеленых серобактерий. Перенос электронов от акцептора электронов фотосистемы II до реакционного центра фотосистемы I — темновой процесс, состоящий из серии этапов, в которых участвуют переносчики с понижающимися восстановительными потенциалами, такие как цитохромы разного типа, пластоцианин (медьсодержащий белок), пластохинон. Электронный транспорт на этом участке на определенных этапах сопровождается ориентированным поперек мембраны переносом протонов и, следовательно, генерированием Дрн+> разрядка которого с помощью протонной АТФ-синтазы приводит к синтезу АТФ. [c.288]

    У цианобактерий обнаружена способность к бескислородному фотосинтезу, связанная с отключением II фотосистемы при сохранении активности I фотосистемы (см. рис. 75, В). В этих условиях у них возникает потребность в иных, чем Н2О, экзогенных донорах электронов. В качестве последних цианобактерии могут использовать некоторые восстановленные соединения серы (H2S, НагЗгОз), Н2, ряд органических соединений (сахара, кислоты). Так как поток электронов между двумя фотосистемами прерывается, синтез АТФ сопряжен только с циклическим электронным транспортом, связанным с I фотосистемой. Способность к бескислородному фотосинтезу обнаружена у многих цианобактерий из разных групп, но активность фиксации СО2 за счет этого процесса низка, составляя, как правило, несколько процентов от скорости ассимиляции СО2 в условиях функционирования обеих фотосистем. Только некоторые цианобактерии могут расти за счет бескислородного фотосинтеза, например Os illatoria limneti a, вьще-ленная из озера с высоким содержанием сероводорода. Способность цианобактерий переключаться при изменении условий с одного типа фотосинтеза на другой служит иллюстрацией гибкости их светового метаболизма, имеющей важное экологическое значение. [c.314]

    Со сформированными электронтранспортными цепями, локализованными в мембране, содержащими все типы переносчиков и имеющими прямое отнощение к получению клеткой энергии, мы уже встречаемся у рассмотренных в гл. 13 и 14 анаэробных эубактерий с наиболее просто организованной энергетикой хе-мотрофного (брожение) и фототрофного (бескислородный фотосинтез) типа некоторых пропионовокислых бактерий, всех фотосинтезирующих пурпурных и зеленых бактерий. В клеточных мембранах этих организмов локализованы и функционируют сопряженные с электронным транспортом АТФ-синтазы. [c.348]

    Для перехода к использованию энергии света необходимо было создание фоторецепторных молекул и подключение части из них к имеющимся электронтранспортным цепям. Такие фоторецепторы — М -порфирины — были сформированы. Фотосинтез начался, видимо, с создания системы фотоиндуцированного циклического электронного транспорта и служил сначала в качестве [c.354]

    Способы получения архебактериями энергии включает бес-хлорофилльный фотосинтез, брожение, аэробное и анаэробное дыхание, при котором конечными акцепторами электронов могут быть СО2 и другие С,-соединения, молекулярная сера, N0 , Ре " и Мо . У организмов, получающих энергию с использованием электронного транспорта, в качестве электронпереносящих компонентов обнаружены ферредоксины, хиноны, цитохромы. Электронный транспорт сопряжен с трансмембранным переносом протонов. Механизм окислительного фосфорвдирования архебактерий соответствует хемиосмотическому принципу и сходен с аналогичным механизмом эубактерий и митохондрий. В то же время следует подчеркнуть, что архебактериям свойственны типы энергетического метаболизма, не встречающиеся у эубактерий и эукариот. Это бесхлорофилльный фотосинтез и особый тип анаэробного дыхания, в процессе которого происходит образование метана. [c.415]

    Дискутируется вопрос о месте первого в электрон-транспорт-ной системе фотосинтеза и о месте второго в электрон-транспорт-ной системе дыхания. Как видно из опытов, эти вещества по функциональным группам идентичны п-бензохинону, образующемуся в результате окисления гидрохинона. Не исключено, что гидрохинон в цитохромоксидазной системе и и-бензохинон в реакции Хилла действуют как аналоги естественных веществ. Выше были указаны примеры, когда при применении в системах вместо простых фенолов более сложных фенольных веществ из растений получались аналогичные результаты. Все это свидетельствует о том, что опыты с простыми экзогенными веществами приносят пользу в деле познания окислительно-восстановительных процессов црирод-ных фенольных веществ в организмах. Возникает вопрос, в чем конкретно состоит биологическое значение рассмотренных здесь систем. Еще в начале нашего века Палладии [26] высказал предположение, что фенольные вещества в растениях выполняют функции переноса водорода с субстратов дыхания на молед улярный кислород. Изложенные здесь факты являются экспериментальным подтверждением этого предположения. Обнаружено, в том числе и нами [2], что полифенолоксидаза концентрируется в наружных частях растений. Так как растения дышат поверхностью, то не исключено, что система полифенолоксидаза — фенольное вещество выполняет важную роль в питании растений кислородом. Как сле- [c.144]

    Приведенный на рис.42 путь транспорта электрона при фотосинтезе называется нециклическим в отличие от индуцированного светом другого пути - циклического, обозначенного на рисунке пунктирной линией. В циклическом пути электрон, удаленный из фотовозбувденной молекулы хлорофилла, возвращается к ней по "замкнутой" системе, включащей ряд переносчиков и кофакторов, циклическим путем - отсвда и название этого пути переноса электрона. Молекула хлорофилла здесь является и донором и акцептором электрона. Этот путь транспорта электронов осуществляется при участии только фотосистемы I. [c.170]

    Эффективность процесса фотосинтеза в г1елом, по вышеизложенной концепции, определяется эффективностью параллельно осуществляемых в хлоропластах фотореакций и обоих путей транспорта электрона, а не соотношением скоростей двух последовательных фото-реакций при нециклическом переносе электрона в фотосинтезе, как ато принято в настоящее время большинством исследователей и трактовалось в более ранних работах Арнона. Ослаблере интенсив- [c.214]

    Борисов А.HJ. Термодинамические соображения против одноквантового электронного транспорта при фотосинтезе у растений. "Молекул.Оиол.", 19696, т.З, вып.З, стр.343-3 й. [c.276]

    Фотоионизация ароматических углеводородов и последующие реакции электронного переноса в биоагрегатах являются моделью процессов, возможно играющих основную роль в фотосинтезе и электронном транспорте в мембранах. Было показано [27, 281, что некоторые попициклические углеводороды, например пирен, эффективно фо той они зуются в водных мицеллярных растворах по одно- или дву -квантовым механизмам. Исследования, проведенные методом импульсного радиолиза [29, 30], показали, что заряд поверхности мицелп оказывает отчетливое каталитическое (или ингибирующее) влияние на реакции гидратированных эпектронов (.Представляло интерес [c.323]

    Процессы трансформации энергии при дыхании и фотосинтезе включают в себя в качестве необходимого элемента перенос электронов по электрон-транспортной цепи (ЭТЦ), образованной встроенными в мембрану окислительновосстановительными ферментами. ЭТЦ митохондрий, хлоропластов и хромато-форов фотосинтезирующих бактерий имеют большое сходство как на уровне отдельных переносчиков электронов, так и на уровне отдельных комплексов молекул-переносчиков. Одна полная цепь переноса электрона состоит из нескольких отдельных комплексов. Эти комплексы — естественные субъединицы цепи, в полной мере способные осуществлять перенос электрона. Кроме того, в ЭТЦ имеются участки, на которых перенос электрона происходит с помощью отдельных переносчиков. Соответственно при математическом описании процессов следует учитывать различия в организации отдельных участков электронного транспорта.  [c.79]

    Ключевым компонентом бактериальной фотосинтетической цепи являются цитохромы типа 6 и с. В цитохромах типа с гем ковалентно связан с белком, а в цитохромах типа Ь — нековалентно. На рис. XXVH.6 приведена упрощенная схема электронного транспорта в фотосинтезе бактериального типа, где формально объединена компоненты разных типов бактерий. [c.285]

    В гл. 3 шла речь о том, что различные полипептиды ассоциируют, образуя большие мультиферментные комплексы, которые с высокой эффективностью катализируют сложные реакции благодаря кооперативной работе субъединиц. Аналогичные комплексы белков обнаружены и в мембранах. Наиболее изучен среди них бактериальный фотосинтезирующий реакционный центр. Этот белковый комплекс находится в плазматической мембране пурпурных фотосинтезирующих бактерий Rhodopseudomonas viridis. Он использует поглощенную энергию света для создания электрона с высокой энергией, позволяющей ему пересекать мембрану быстрее чем за наносекунду. Затем электрон переходит к другим переносчикам электронов, находящимся в мембране, которые используют часть энергии, высвобождаемой в процессе электронного транспорта для синтеза АТР в цитозоле. Реакционный центр построен из четырех различных полипептидов L, М, Н и цитохрома. Для изучения трехмерной пространственной структуры этот комплекс был солюбилизирован в растворе детергента, закристаллизован в виде комплекса белков с детергентом и изучен методом рентгеноструктурного анализа. Как оказалось, реакционный центр содержит четыре молекулы хлорофилла и восемь других коферментов, переносящих электроны. В гл. 7 мы будем говорить о том, что для понимания фотосинтеза очень важным оказалось установление точного положения каждого из коферментов в комплексе. Не мепее значимым (в большой степени относящимся к теме данной главы) событием стало выяснение организации четырех белковых субъединиц в трансмембранном комплексе. Субъединицы L и М гомологичны и состоят каждая из пяти а-спиралей, пронизывающих липидный бислой плазматической мембраны (рис. 6-32). Эти две субъединицы образуют гетеродимер, представляющий собой ядро реак- [c.371]


Библиография для Электронный транспорт при фотосинтезе: [c.585]    [c.110]   
Смотреть страницы где упоминается термин Электронный транспорт при фотосинтезе: [c.50]    [c.166]    [c.172]    [c.104]    [c.117]    [c.209]    [c.218]    [c.71]    [c.308]    [c.144]    [c.75]    [c.118]   
Смотреть главы в:

Фотохимические процессы в слоях -> Электронный транспорт при фотосинтезе




ПОИСК





Смотрите так же термины и статьи:

Фотосинтез

Электроны при фотосинтезе



© 2024 chem21.info Реклама на сайте